deal.II version GIT relicensing-2330-gf6dfc6c370 2025-01-06 13:10:00+00:00
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
step-76.h
Go to the documentation of this file.
1true);
281 FEFaceEvaluation<dim, degree, degree + 1, 1, Number> phi_p(data, /*is_interior_face=*/false);
282
283 for (unsigned int face = range.first; face < range.second; ++face)
284 {
285 phi_m.reinit(face);
286 phi_m.gather_evaluate(src, face_evaluation_flags);
287 phi_p.reinit(face);
288 phi_p.gather_evaluate(src, face_evaluation_flags);
289
290 // some operations on the face quadrature points
291
292 phi_m.integrate_scatter(face_evaluation_flags, dst);
293 phi_p.integrate_scatter(face_evaluation_flags, dst);
294 }
295 },
296 [&](const auto &data, auto &dst, const auto &src, const auto range) {
297 // operation performed boundary faces
298
299 FEFaceEvaluation<dim, degree, degree + 1, 1, Number> phi_m(data, /*is_interior_face=*/true);
300
301 for (unsigned int face = range.first; face < range.second; ++face)
302 {
303 phi_m.reinit(face);
304 phi_m.gather_evaluate(src, face_evaluation_flags);
305
306 // some operations on the face quadrature points
307
308 phi_m.integrate_scatter(face_evaluation_flags, dst);
309 }
310 },
311 dst,
312 src);
313@endcode
314
315in the following way:
316
317@code
318matrix_free.template loop_cell_centric<VectorType, VectorType>(
319 [&](const auto &data, auto &dst, const auto &src, const auto range) {
321 FEFaceEvaluation<dim, degree, degree + 1, 1, Number> phi_m(data, /*is_interior_face=*/true);
322 FEFaceEvaluation<dim, degree, degree + 1, 1, Number> phi_p(data, /*is_interior_face=*/false);
323
324 for (unsigned int cell = range.first; cell < range.second; ++cell)
325 {
326 phi.reinit(cell);
327 phi.gather_evaluate(src, cell_evaluation_flags);
328
329 // some operations on the cell quadrature points
330
331 phi.integrate_scatter(cell_evaluation_flags, dst);
332
333 // loop over all faces of cell
334 for (unsigned int face = 0; face < GeometryInfo<dim>::faces_per_cell; ++face)
335 {
336 if (data.get_faces_by_cells_boundary_id(cell, face)[0] ==
338 {
339 // internal face
340 phi_m.reinit(cell, face);
341 phi_m.gather_evaluate(src, face_evaluation_flags);
342 phi_p.reinit(cell, face);
343 phi_p.gather_evaluate(src, face_evaluation_flags);
344
345 // some operations on the face quadrature points
346
347 phi_m.integrate_scatter(face_evaluation_flags, dst);
348 }
349 else
350 {
351 // boundary face
352 phi_m.reinit(cell, face);
353 phi_m.gather_evaluate(src, face_evaluation_flags);
354
355 // some operations on the face quadrature points
356
357 phi_m.integrate_scatter(face_evaluation_flags, dst);
358 }
359 }
360 }
361 },
362 dst,
363 src);
364@endcode
365
366It should be noted that FEFaceEvaluation is initialized now with two numbers,
367the cell number and the local face number. The given example only
368highlights how to transform face-centric loops into cell-centric loops and
369is by no means efficient, since data is read and written multiple times
370from and to the global vector as well as computations are performed
371redundantly. Below, we will discuss advanced techniques that target these issues.
372
373To be able to use MatrixFree::loop_cell_centric(), following flags of MatrixFree::AdditionalData
374have to be enabled:
375
376@code
377typename MatrixFree<dim, Number>::AdditionalData additional_data;
378
379// set flags as usual (not shown)
380
381additional_data.hold_all_faces_to_owned_cells = true;
382additional_data.mapping_update_flags_faces_by_cells =
383 additional_data.mapping_update_flags_inner_faces |
384 additional_data.mapping_update_flags_boundary_faces;
385
386data.reinit(mapping, dof_handler, constraint, quadrature, additional_data);
387@endcode
388
389In particular, these flags enable that the internal data structures are set up
390for all faces of the cells.
391
392Currently, cell-centric loops in deal.II only work for uniformly refined meshes
393and if no constraints are applied (which is the standard case DG is normally
394used).
395
396
397<a name="step_76-ProvidinglambdastoMatrixFreeloops"></a><h3>Providing lambdas to MatrixFree loops</h3>
398
399
400The examples given above have already used lambdas, which have been provided to
401matrix-free loops. The following short examples present how to transform functions between
402a version where a class and a pointer to one of its methods are used and a
403variant where lambdas are utilized.
404
405In the following code, a class and a pointer to one of its methods, which should
406be interpreted as cell integral, are passed to MatrixFree::loop():
407
408@code
409void
410local_apply_cell(const MatrixFree<dim, Number> & data,
411 VectorType & dst,
412 const VectorType & src,
413 const std::pair<unsigned int, unsigned int> &range) const
414{
416 for (unsigned int cell = range.first; cell < range.second; ++cell)
417 {
418 phi.reinit(cell);
419 phi.gather_evaluate(src, cell_evaluation_flags);
420
421 // some operations on the quadrature points
422
423 phi.integrate_scatter(cell_evaluation_flags, dst);
424 }
425}
426@endcode
427
428@code
429matrix_free.cell_loop(&Operator::local_apply_cell, this, dst, src);
430@endcode
431
432However, it is also possible to pass an anonymous function via a lambda function
433with the same result:
434
435@code
436matrix_free.template cell_loop<VectorType, VectorType>(
437 [&](const auto &data, auto &dst, const auto &src, const auto range) {
439 for (unsigned int cell = range.first; cell < range.second; ++cell)
440 {
441 phi.reinit(cell);
442 phi.gather_evaluate(src, cell_evaluation_flags);
443
444 // some operations on the quadrature points
445
446 phi.integrate_scatter(cell_evaluation_flags, dst);
447 }
448 },
449 dst,
450 src);
451@endcode
452
453<a name="step_76-VectorizedArrayType"></a><h3>VectorizedArrayType</h3>
454
455
456The class VectorizedArray<Number> is a key component to achieve the high
457node-level performance of the matrix-free algorithms in deal.II.
458It is a wrapper class around a short vector of @f$n@f$ entries of type Number and
459maps arithmetic operations to appropriate single-instruction/multiple-data
460(SIMD) concepts by intrinsic functions. The length of the vector can be
461queried by VectorizedArray::size() and its underlying number type by
463
464In the default case (<code>VectorizedArray<Number></code>), the vector length is
465set at compile time of the library to
466match the highest value supported by the given processor architecture.
467However, also a second optional template argument can be
468specified as <code>VectorizedArray<Number, size></code>, where <code>size</code> explicitly
469controls the vector length within the capabilities of a particular instruction
470set. A full list of supported vector lengths is presented in the following table:
471
472<table align="center" class="doxtable">
473 <tr>
474 <th>double</th>
475 <th>float</th>
476 <th>ISA</th>
477 </tr>
478 <tr>
479 <td><code>VectorizedArray<double, 1></code></td>
480 <td><code>VectorizedArray<float, 1></code></td>
481 <td>(auto-vectorization)</td>
482 </tr>
483 <tr>
484 <td><code>VectorizedArray<double, 2></code></td>
485 <td><code>VectorizedArray<float, 4></code></td>
486 <td>SSE2/AltiVec</td>
487 </tr>
488 <tr>
489 <td><code>VectorizedArray<double, 4></code></td>
490 <td><code>VectorizedArray<float, 8></code></td>
491 <td>AVX/AVX2</td>
492 </tr>
493 <tr>
494 <td><code>VectorizedArray<double, 8></code></td>
495 <td><code>VectorizedArray<float, 16></code></td>
496 <td>AVX-512</td>
497 </tr>
498</table>
499
500This allows users to select the vector length/ISA and, as a consequence, the
501number of cells to be processed at once in matrix-free operator evaluations,
502possibly reducing the pressure on the caches, an severe issue for very high
503degrees (and dimensions).
504
505A possible further reason to reduce the number of filled lanes
506is to simplify debugging: instead of having to look at, e.g., 8
507cells, one can concentrate on a single cell.
508
509The interface of VectorizedArray also enables the replacement by any type with
510a matching interface. Specifically, this prepares deal.II for the <code>std::simd</code>
511class that is planned to become part of the C++23 standard. The following table
512compares the deal.II-specific SIMD classes and the equivalent C++23 classes:
513
514
515<table align="center" class="doxtable">
516 <tr>
517 <th>VectorizedArray (deal.II)</th>
518 <th>std::simd (C++23)</th>
519 </tr>
520 <tr>
521 <td><code>VectorizedArray<Number></code></td>
522 <td><code>std::experimental::native_simd<Number></code></td>
523 </tr>
524 <tr>
525 <td><code>VectorizedArray<Number, size></code></td>
526 <td><code>std::experimental::fixed_size_simd<Number, size></code></td>
527 </tr>
528</table>
529 *
530 *
531 * <a name="step_76-CommProg"></a>
532 * <h1> The commented program</h1>
533 *
534 *
535 * <a name="step_76-Parametersandutilityfunctions"></a>
536 * <h3>Parameters and utility functions</h3>
537 *
538
539 *
540 * The same includes as in @ref step_67 "step-67":
541 *
542 * @code
543 *   #include <deal.II/base/conditional_ostream.h>
544 *   #include <deal.II/base/function.h>
545 *   #include <deal.II/base/time_stepping.h>
546 *   #include <deal.II/base/timer.h>
547 *   #include <deal.II/base/utilities.h>
548 *   #include <deal.II/base/vectorization.h>
549 *  
550 *   #include <deal.II/distributed/tria.h>
551 *  
552 *   #include <deal.II/dofs/dof_handler.h>
553 *  
554 *   #include <deal.II/fe/fe_dgq.h>
555 *   #include <deal.II/fe/fe_system.h>
556 *  
557 *   #include <deal.II/grid/grid_generator.h>
558 *   #include <deal.II/grid/tria.h>
559 *   #include <deal.II/grid/tria_accessor.h>
560 *   #include <deal.II/grid/tria_iterator.h>
561 *  
562 *   #include <deal.II/lac/affine_constraints.h>
563 *   #include <deal.II/lac/la_parallel_vector.h>
564 *  
565 *   #include <deal.II/matrix_free/fe_evaluation.h>
566 *   #include <deal.II/matrix_free/matrix_free.h>
567 *   #include <deal.II/matrix_free/operators.h>
568 *  
569 *   #include <deal.II/numerics/data_out.h>
570 *  
571 *   #include <fstream>
572 *   #include <iomanip>
573 *   #include <iostream>
574 *  
575 * @endcode
576 *
577 * A new include for categorizing of cells according to their boundary IDs:
578 *
579 * @code
580 *   #include <deal.II/matrix_free/tools.h>
581 *  
582 *  
583 *  
584 *   namespace Euler_DG
585 *   {
586 *   using namespace dealii;
587 *  
588 * @endcode
589 *
590 * The same input parameters as in @ref step_67 "step-67":
591 *
592 * @code
593 *   constexpr unsigned int testcase = 1;
594 *   constexpr unsigned int dimension = 2;
595 *   constexpr unsigned int n_global_refinements = 2;
596 *   constexpr unsigned int fe_degree = 5;
597 *   constexpr unsigned int n_q_points_1d = fe_degree + 2;
598 *  
599 * @endcode
600 *
601 * This parameter specifies the size of the shared-memory group. Currently,
602 * only the values 1 and numbers::invalid_unsigned_int is possible, leading
603 * to the options that the memory features can be turned off or all processes
604 * having access to the same shared-memory domain are grouped together.
605 *
606 * @code
607 *   constexpr unsigned int group_size = numbers::invalid_unsigned_int;
608 *  
609 *   using Number = double;
610 *  
611 * @endcode
612 *
613 * Here, the type of the data structure is chosen for vectorization. In the
614 * default case, VectorizedArray<Number> is used, i.e., the highest
615 * instruction-set-architecture extension available on the given hardware with
616 * the maximum number of vector lanes is used. However, one might reduce
617 * the number of filled lanes, e.g., by writing
618 * <code>using VectorizedArrayType = VectorizedArray<Number, 4></code> to only
619 * process 4 cells.
620 *
621 * @code
622 *   using VectorizedArrayType = VectorizedArray<Number>;
623 *  
624 * @endcode
625 *
626 * The following parameters have not changed:
627 *
628 * @code
629 *   constexpr double gamma = 1.4;
630 *   constexpr double final_time = testcase == 0 ? 10 : 2.0;
631 *   constexpr double output_tick = testcase == 0 ? 1 : 0.05;
632 *  
633 *   const double courant_number = 0.15 / std::pow(fe_degree, 1.5);
634 *  
635 * @endcode
636 *
637 * Specify max number of time steps useful for performance studies.
638 *
639 * @code
640 *   constexpr unsigned int max_time_steps = numbers::invalid_unsigned_int;
641 *  
642 * @endcode
643 *
644 * Runge-Kutta-related functions copied from @ref step_67 "step-67" and slightly modified
645 * with the purpose to minimize global vector access:
646 *
647 * @code
648 *   enum LowStorageRungeKuttaScheme
649 *   {
650 *   stage_3_order_3,
651 *   stage_5_order_4,
652 *   stage_7_order_4,
653 *   stage_9_order_5,
654 *   };
655 *   constexpr LowStorageRungeKuttaScheme lsrk_scheme = stage_5_order_4;
656 *  
657 *  
658 *  
659 *   class LowStorageRungeKuttaIntegrator
660 *   {
661 *   public:
662 *   LowStorageRungeKuttaIntegrator(const LowStorageRungeKuttaScheme scheme)
663 *   {
665 *   switch (scheme)
666 *   {
667 *   case stage_3_order_3:
669 *   break;
670 *   case stage_5_order_4:
672 *   break;
673 *   case stage_7_order_4:
675 *   break;
676 *   case stage_9_order_5:
678 *   break;
679 *  
680 *   default:
681 *   AssertThrow(false, ExcNotImplemented());
682 *   }
685 *   rk_integrator(lsrk);
686 *   std::vector<double> ci; // not used
687 *   rk_integrator.get_coefficients(ai, bi, ci);
688 *   }
689 *  
690 *   unsigned int n_stages() const
691 *   {
692 *   return bi.size();
693 *   }
694 *  
695 *   template <typename VectorType, typename Operator>
696 *   void perform_time_step(const Operator &pde_operator,
697 *   const double current_time,
698 *   const double time_step,
699 *   VectorType &solution,
700 *   VectorType &vec_ri,
701 *   VectorType &vec_ki) const
702 *   {
703 *   AssertDimension(ai.size() + 1, bi.size());
704 *  
705 *   vec_ki.swap(solution);
706 *  
707 *   double sum_previous_bi = 0;
708 *   for (unsigned int stage = 0; stage < bi.size(); ++stage)
709 *   {
710 *   const double c_i = stage == 0 ? 0 : sum_previous_bi + ai[stage - 1];
711 *  
712 *   pde_operator.perform_stage(stage,
713 *   current_time + c_i * time_step,
714 *   bi[stage] * time_step,
715 *   (stage == bi.size() - 1 ?
716 *   0 :
717 *   ai[stage] * time_step),
718 *   (stage % 2 == 0 ? vec_ki : vec_ri),
719 *   (stage % 2 == 0 ? vec_ri : vec_ki),
720 *   solution);
721 *  
722 *   if (stage > 0)
723 *   sum_previous_bi += bi[stage - 1];
724 *   }
725 *   }
726 *  
727 *   private:
728 *   std::vector<double> bi;
729 *   std::vector<double> ai;
730 *   };
731 *  
732 *  
733 * @endcode
734 *
735 * Euler-specific utility functions from @ref step_67 "step-67":
736 *
737 * @code
738 *   enum EulerNumericalFlux
739 *   {
740 *   lax_friedrichs_modified,
741 *   harten_lax_vanleer,
742 *   };
743 *   constexpr EulerNumericalFlux numerical_flux_type = lax_friedrichs_modified;
744 *  
745 *  
746 *  
747 *   template <int dim>
748 *   class ExactSolution : public Function<dim>
749 *   {
750 *   public:
751 *   ExactSolution(const double time)
752 *   : Function<dim>(dim + 2, time)
753 *   {}
754 *  
755 *   virtual double value(const Point<dim> &p,
756 *   const unsigned int component = 0) const override;
757 *   };
758 *  
759 *  
760 *  
761 *   template <int dim>
762 *   double ExactSolution<dim>::value(const Point<dim> &x,
763 *   const unsigned int component) const
764 *   {
765 *   const double t = this->get_time();
766 *  
767 *   switch (testcase)
768 *   {
769 *   case 0:
770 *   {
771 *   Assert(dim == 2, ExcNotImplemented());
772 *   const double beta = 5;
773 *  
774 *   Point<dim> x0;
775 *   x0[0] = 5.;
776 *   const double radius_sqr =
777 *   (x - x0).norm_square() - 2. * (x[0] - x0[0]) * t + t * t;
778 *   const double factor =
779 *   beta / (numbers::PI * 2) * std::exp(1. - radius_sqr);
780 *   const double density_log = std::log2(
781 *   std::abs(1. - (gamma - 1.) / gamma * 0.25 * factor * factor));
782 *   const double density = std::exp2(density_log * (1. / (gamma - 1.)));
783 *   const double u = 1. - factor * (x[1] - x0[1]);
784 *   const double v = factor * (x[0] - t - x0[0]);
785 *  
786 *   if (component == 0)
787 *   return density;
788 *   else if (component == 1)
789 *   return density * u;
790 *   else if (component == 2)
791 *   return density * v;
792 *   else
793 *   {
794 *   const double pressure =
795 *   std::exp2(density_log * (gamma / (gamma - 1.)));
796 *   return pressure / (gamma - 1.) +
797 *   0.5 * (density * u * u + density * v * v);
798 *   }
799 *   }
800 *  
801 *   case 1:
802 *   {
803 *   if (component == 0)
804 *   return 1.;
805 *   else if (component == 1)
806 *   return 0.4;
807 *   else if (component == dim + 1)
808 *   return 3.097857142857143;
809 *   else
810 *   return 0.;
811 *   }
812 *  
813 *   default:
815 *   return 0.;
816 *   }
817 *   }
818 *  
819 *  
820 *  
821 *   template <int dim, typename Number>
822 *   inline DEAL_II_ALWAYS_INLINE
824 *   euler_velocity(const Tensor<1, dim + 2, Number> &conserved_variables)
825 *   {
826 *   const Number inverse_density = Number(1.) / conserved_variables[0];
827 *  
828 *   Tensor<1, dim, Number> velocity;
829 *   for (unsigned int d = 0; d < dim; ++d)
830 *   velocity[d] = conserved_variables[1 + d] * inverse_density;
831 *  
832 *   return velocity;
833 *   }
834 *  
835 *   template <int dim, typename Number>
836 *   inline DEAL_II_ALWAYS_INLINE
837 *   Number
838 *   euler_pressure(const Tensor<1, dim + 2, Number> &conserved_variables)
839 *   {
840 *   const Tensor<1, dim, Number> velocity =
841 *   euler_velocity<dim>(conserved_variables);
842 *  
843 *   Number rho_u_dot_u = conserved_variables[1] * velocity[0];
844 *   for (unsigned int d = 1; d < dim; ++d)
845 *   rho_u_dot_u += conserved_variables[1 + d] * velocity[d];
846 *  
847 *   return (gamma - 1.) * (conserved_variables[dim + 1] - 0.5 * rho_u_dot_u);
848 *   }
849 *  
850 *   template <int dim, typename Number>
851 *   inline DEAL_II_ALWAYS_INLINE
853 *   euler_flux(const Tensor<1, dim + 2, Number> &conserved_variables)
854 *   {
855 *   const Tensor<1, dim, Number> velocity =
856 *   euler_velocity<dim>(conserved_variables);
857 *   const Number pressure = euler_pressure<dim>(conserved_variables);
858 *  
860 *   for (unsigned int d = 0; d < dim; ++d)
861 *   {
862 *   flux[0][d] = conserved_variables[1 + d];
863 *   for (unsigned int e = 0; e < dim; ++e)
864 *   flux[e + 1][d] = conserved_variables[e + 1] * velocity[d];
865 *   flux[d + 1][d] += pressure;
866 *   flux[dim + 1][d] =
867 *   velocity[d] * (conserved_variables[dim + 1] + pressure);
868 *   }
869 *  
870 *   return flux;
871 *   }
872 *  
873 *   template <int n_components, int dim, typename Number>
874 *   inline DEAL_II_ALWAYS_INLINE
876 *   operator*(const Tensor<1, n_components, Tensor<1, dim, Number>> &matrix,
877 *   const Tensor<1, dim, Number> &vector)
878 *   {
880 *   for (unsigned int d = 0; d < n_components; ++d)
881 *   result[d] = matrix[d] * vector;
882 *   return result;
883 *   }
884 *  
885 *   template <int dim, typename Number>
886 *   inline DEAL_II_ALWAYS_INLINE
888 *   euler_numerical_flux(const Tensor<1, dim + 2, Number> &u_m,
889 *   const Tensor<1, dim + 2, Number> &u_p,
890 *   const Tensor<1, dim, Number> &normal)
891 *   {
892 *   const auto velocity_m = euler_velocity<dim>(u_m);
893 *   const auto velocity_p = euler_velocity<dim>(u_p);
894 *  
895 *   const auto pressure_m = euler_pressure<dim>(u_m);
896 *   const auto pressure_p = euler_pressure<dim>(u_p);
897 *  
898 *   const auto flux_m = euler_flux<dim>(u_m);
899 *   const auto flux_p = euler_flux<dim>(u_p);
900 *  
901 *   switch (numerical_flux_type)
902 *   {
903 *   case lax_friedrichs_modified:
904 *   {
905 *   const auto lambda =
906 *   0.5 * std::sqrt(std::max(velocity_p.norm_square() +
907 *   gamma * pressure_p * (1. / u_p[0]),
908 *   velocity_m.norm_square() +
909 *   gamma * pressure_m * (1. / u_m[0])));
910 *  
911 *   return 0.5 * (flux_m * normal + flux_p * normal) +
912 *   0.5 * lambda * (u_m - u_p);
913 *   }
914 *  
915 *   case harten_lax_vanleer:
916 *   {
917 *   const auto avg_velocity_normal =
918 *   0.5 * ((velocity_m + velocity_p) * normal);
919 *   const auto avg_c = std::sqrt(std::abs(
920 *   0.5 * gamma *
921 *   (pressure_p * (1. / u_p[0]) + pressure_m * (1. / u_m[0]))));
922 *   const Number s_pos =
923 *   std::max(Number(), avg_velocity_normal + avg_c);
924 *   const Number s_neg =
925 *   std::min(Number(), avg_velocity_normal - avg_c);
926 *   const Number inverse_s = Number(1.) / (s_pos - s_neg);
927 *  
928 *   return inverse_s *
929 *   ((s_pos * (flux_m * normal) - s_neg * (flux_p * normal)) -
930 *   s_pos * s_neg * (u_m - u_p));
931 *   }
932 *  
933 *   default:
934 *   {
936 *   return {};
937 *   }
938 *   }
939 *   }
940 *  
941 *  
942 *  
943 * @endcode
944 *
945 * General-purpose utility functions from @ref step_67 "step-67":
946 *
947 * @code
948 *   template <int dim, typename VectorizedArrayType>
949 *   VectorizedArrayType
950 *   evaluate_function(const Function<dim> &function,
951 *   const Point<dim, VectorizedArrayType> &p_vectorized,
952 *   const unsigned int component)
953 *   {
954 *   VectorizedArrayType result;
955 *   for (unsigned int v = 0; v < VectorizedArrayType::size(); ++v)
956 *   {
957 *   Point<dim> p;
958 *   for (unsigned int d = 0; d < dim; ++d)
959 *   p[d] = p_vectorized[d][v];
960 *   result[v] = function.value(p, component);
961 *   }
962 *   return result;
963 *   }
964 *  
965 *  
966 *   template <int dim, typename VectorizedArrayType, int n_components = dim + 2>
968 *   evaluate_function(const Function<dim> &function,
969 *   const Point<dim, VectorizedArrayType> &p_vectorized)
970 *   {
971 *   AssertDimension(function.n_components, n_components);
973 *   for (unsigned int v = 0; v < VectorizedArrayType::size(); ++v)
974 *   {
975 *   Point<dim> p;
976 *   for (unsigned int d = 0; d < dim; ++d)
977 *   p[d] = p_vectorized[d][v];
978 *   for (unsigned int d = 0; d < n_components; ++d)
979 *   result[d][v] = function.value(p, d);
980 *   }
981 *   return result;
982 *   }
983 *  
984 *  
985 * @endcode
986 *
987 *
988 * <a name="step_76-EuleroperatorusingacellcentricloopandMPI30sharedmemory"></a>
989 * <h3>Euler operator using a cell-centric loop and MPI-3.0 shared memory</h3>
990 *
991
992 *
993 * Euler operator from @ref step_67 "step-67" with some changes as detailed below:
994 *
995 * @code
996 *   template <int dim, int degree, int n_points_1d>
997 *   class EulerOperator
998 *   {
999 *   public:
1000 *   static constexpr unsigned int n_quadrature_points_1d = n_points_1d;
1001 *  
1002 *   EulerOperator(TimerOutput &timer_output);
1003 *  
1004 *   ~EulerOperator();
1005 *  
1006 *   void reinit(const Mapping<dim> &mapping,
1007 *   const DoFHandler<dim> &dof_handler);
1008 *  
1009 *   void set_inflow_boundary(const types::boundary_id boundary_id,
1010 *   std::unique_ptr<Function<dim>> inflow_function);
1011 *  
1012 *   void set_subsonic_outflow_boundary(
1013 *   const types::boundary_id boundary_id,
1014 *   std::unique_ptr<Function<dim>> outflow_energy);
1015 *  
1016 *   void set_wall_boundary(const types::boundary_id boundary_id);
1017 *  
1018 *   void set_body_force(std::unique_ptr<Function<dim>> body_force);
1019 *  
1020 *   void
1021 *   perform_stage(const unsigned int stage,
1022 *   const Number cur_time,
1023 *   const Number bi,
1024 *   const Number ai,
1025 *   const LinearAlgebra::distributed::Vector<Number> &current_ri,
1027 *   LinearAlgebra::distributed::Vector<Number> &solution) const;
1028 *  
1029 *   void project(const Function<dim> &function,
1030 *   LinearAlgebra::distributed::Vector<Number> &solution) const;
1031 *  
1032 *   std::array<double, 3> compute_errors(
1033 *   const Function<dim> &function,
1034 *   const LinearAlgebra::distributed::Vector<Number> &solution) const;
1035 *  
1036 *   double compute_cell_transport_speed(
1037 *   const LinearAlgebra::distributed::Vector<Number> &solution) const;
1038 *  
1039 *   void
1040 *   initialize_vector(LinearAlgebra::distributed::Vector<Number> &vector) const;
1041 *  
1042 *   private:
1043 * @endcode
1044 *
1045 * Instance of SubCommunicatorWrapper containing the sub-communicator, which
1046 * we need to pass to MatrixFree::reinit() to be able to exploit MPI-3.0
1047 * shared-memory capabilities:
1048 *
1049 * @code
1050 *   MPI_Comm subcommunicator;
1051 *  
1052 *   MatrixFree<dim, Number, VectorizedArrayType> data;
1053 *  
1054 *   TimerOutput &timer;
1055 *  
1056 *   std::map<types::boundary_id, std::unique_ptr<Function<dim>>>
1057 *   inflow_boundaries;
1058 *   std::map<types::boundary_id, std::unique_ptr<Function<dim>>>
1059 *   subsonic_outflow_boundaries;
1060 *   std::set<types::boundary_id> wall_boundaries;
1061 *   std::unique_ptr<Function<dim>> body_force;
1062 *   };
1063 *  
1064 *  
1065 *  
1066 * @endcode
1067 *
1068 * New constructor, which creates a sub-communicator. The user can specify
1069 * the size of the sub-communicator via the global parameter group_size. If
1070 * the size is set to -1, all MPI processes of a
1071 * shared-memory domain are combined to a group. The specified size is
1072 * decisive for the benefit of the shared-memory capabilities of MatrixFree
1073 * and, therefore, setting the <code>size</code> to <code>-1</code> is a
1074 * reasonable choice. By setting, the size to <code>1</code> users explicitly
1075 * disable the MPI-3.0 shared-memory features of MatrixFree and rely
1076 * completely on MPI-2.0 features, like <code>MPI_Isend</code> and
1077 * <code>MPI_Irecv</code>.
1078 *
1079 * @code
1080 *   template <int dim, int degree, int n_points_1d>
1081 *   EulerOperator<dim, degree, n_points_1d>::EulerOperator(TimerOutput &timer)
1082 *   : timer(timer)
1083 *   {
1084 *   #ifdef DEAL_II_WITH_MPI
1085 *   if (group_size == 1)
1086 *   {
1087 *   this->subcommunicator = MPI_COMM_SELF;
1088 *   }
1089 *   else if (group_size == numbers::invalid_unsigned_int)
1090 *   {
1091 *   const auto rank = Utilities::MPI::this_mpi_process(MPI_COMM_WORLD);
1092 *  
1093 *   MPI_Comm_split_type(MPI_COMM_WORLD,
1094 *   MPI_COMM_TYPE_SHARED,
1095 *   rank,
1096 *   MPI_INFO_NULL,
1097 *   &subcommunicator);
1098 *   }
1099 *   else
1100 *   {
1102 *   }
1103 *   #else
1104 *   (void)subcommunicator;
1105 *   (void)group_size;
1106 *   this->subcommunicator = MPI_COMM_SELF;
1107 *   #endif
1108 *   }
1109 *  
1110 *  
1111 * @endcode
1112 *
1113 * New destructor responsible for freeing of the sub-communicator.
1114 *
1115 * @code
1116 *   template <int dim, int degree, int n_points_1d>
1117 *   EulerOperator<dim, degree, n_points_1d>::~EulerOperator()
1118 *   {
1119 *   #ifdef DEAL_II_WITH_MPI
1120 *   if (this->subcommunicator != MPI_COMM_SELF)
1121 *   MPI_Comm_free(&subcommunicator);
1122 *   #endif
1123 *   }
1124 *  
1125 *  
1126 * @endcode
1127 *
1128 * Modified reinit() function to set up the internal data structures in
1129 * MatrixFree in a way that it is usable by the cell-centric loops and
1130 * the MPI-3.0 shared-memory capabilities are used:
1131 *
1132 * @code
1133 *   template <int dim, int degree, int n_points_1d>
1134 *   void EulerOperator<dim, degree, n_points_1d>::reinit(
1135 *   const Mapping<dim> &mapping,
1136 *   const DoFHandler<dim> &dof_handler)
1137 *   {
1138 *   const std::vector<const DoFHandler<dim> *> dof_handlers = {&dof_handler};
1139 *   const AffineConstraints<double> dummy;
1140 *   const std::vector<const AffineConstraints<double> *> constraints = {&dummy};
1141 *   const std::vector<Quadrature<1>> quadratures = {QGauss<1>(n_q_points_1d),
1142 *   QGauss<1>(fe_degree + 1)};
1143 *  
1145 *   additional_data;
1146 *   additional_data.mapping_update_flags =
1148 *   update_values);
1149 *   additional_data.mapping_update_flags_inner_faces =
1151 *   update_values);
1152 *   additional_data.mapping_update_flags_boundary_faces =
1154 *   update_values);
1155 *   additional_data.tasks_parallel_scheme =
1157 *  
1158 * @endcode
1159 *
1160 * Categorize cells so that all lanes have the same boundary IDs for each
1161 * face. This is strictly not necessary, however, allows to write simpler
1162 * code in EulerOperator::perform_stage() without masking, since it is
1163 * guaranteed that all cells grouped together (in a VectorizedArray)
1164 * have to perform exactly the same operation also on the faces.
1165 *
1166 * @code
1167 *   MatrixFreeTools::categorize_by_boundary_ids(dof_handler.get_triangulation(),
1168 *   additional_data);
1169 *  
1170 * @endcode
1171 *
1172 * Enable MPI-3.0 shared-memory capabilities within MatrixFree by providing
1173 * the sub-communicator:
1174 *
1175 * @code
1176 *   additional_data.communicator_sm = subcommunicator;
1177 *  
1178 *   data.reinit(
1179 *   mapping, dof_handlers, constraints, quadratures, additional_data);
1180 *   }
1181 *  
1182 *  
1183 * @endcode
1184 *
1185 * The following function does an entire stage of a Runge--Kutta update
1186 * and is, alongside the slightly modified setup, the heart of this tutorial
1187 * compared to @ref step_67 "step-67".
1188 *
1189
1190 *
1191 * In contrast to @ref step_67 "step-67", we are not executing the advection step
1192 * (using MatrixFree::loop()) and the inverse mass-matrix step
1193 * (using MatrixFree::cell_loop()) in sequence, but evaluate everything in
1194 * one go inside of MatrixFree::loop_cell_centric(). This function expects
1195 * a single function that is executed on each locally-owned (macro) cell as
1196 * parameter so that we need to loop over all faces of that cell and perform
1197 * needed integration steps on our own.
1198 *
1199
1200 *
1201 * The following function contains to a large extent copies of the following
1202 * functions from @ref step_67 "step-67" so that comments related the evaluation of the weak
1203 * form are skipped here:
1204 * - <code>EulerDG::EulerOperator::local_apply_cell</code>
1205 * - <code>EulerDG::EulerOperator::local_apply_face</code>
1206 * - <code>EulerDG::EulerOperator::local_apply_boundary_face</code>
1207 * - <code>EulerDG::EulerOperator::local_apply_inverse_mass_matrix</code>
1208 *
1209 * @code
1210 *   template <int dim, int degree, int n_points_1d>
1211 *   void EulerOperator<dim, degree, n_points_1d>::perform_stage(
1212 *   const unsigned int stage,
1213 *   const Number current_time,
1214 *   const Number bi,
1215 *   const Number ai,
1216 *   const LinearAlgebra::distributed::Vector<Number> &current_ri,
1217 *   LinearAlgebra::distributed::Vector<Number> &vec_ki,
1218 *   LinearAlgebra::distributed::Vector<Number> &solution) const
1219 *   {
1220 *   for (auto &i : inflow_boundaries)
1221 *   i.second->set_time(current_time);
1222 *   for (auto &i : subsonic_outflow_boundaries)
1223 *   i.second->set_time(current_time);
1224 *  
1225 * @endcode
1226 *
1227 * Run a cell-centric loop by calling MatrixFree::loop_cell_centric() and
1228 * providing a lambda containing the effects of the cell, face and
1229 * boundary-face integrals:
1230 *
1231 * @code
1232 *   data.template loop_cell_centric<LinearAlgebra::distributed::Vector<Number>,
1233 *   LinearAlgebra::distributed::Vector<Number>>(
1234 *   [&](const auto &data, auto &dst, const auto &src, const auto cell_range) {
1235 *   using FECellIntegral = FEEvaluation<dim,
1236 *   degree,
1237 *   n_points_1d,
1238 *   dim + 2,
1239 *   Number,
1240 *   VectorizedArrayType>;
1241 *   using FEFaceIntegral = FEFaceEvaluation<dim,
1242 *   degree,
1243 *   n_points_1d,
1244 *   dim + 2,
1245 *   Number,
1246 *   VectorizedArrayType>;
1247 *  
1248 *   FECellIntegral phi(data);
1249 *   FECellIntegral phi_temp(data);
1250 *   FEFaceIntegral phi_m(data, true);
1251 *   FEFaceIntegral phi_p(data, false);
1252 *  
1253 *   Tensor<1, dim, VectorizedArrayType> constant_body_force;
1254 *   const Functions::ConstantFunction<dim> *constant_function =
1255 *   dynamic_cast<Functions::ConstantFunction<dim> *>(body_force.get());
1256 *  
1257 *   if (constant_function)
1258 *   constant_body_force =
1259 *   evaluate_function<dim, VectorizedArrayType, dim>(
1260 *   *constant_function, Point<dim, VectorizedArrayType>());
1261 *  
1264 *   dim,
1265 *   n_points_1d,
1266 *   n_points_1d,
1267 *   VectorizedArrayType,
1268 *   Number>
1269 *   eval({},
1270 *   data.get_shape_info().data[0].shape_gradients_collocation_eo,
1271 *   {});
1272 *  
1273 *   AlignedVector<VectorizedArrayType> buffer(phi.static_n_q_points *
1274 *   phi.n_components);
1275 *  
1276 * @endcode
1277 *
1278 * Loop over all cell batches:
1279 *
1280 * @code
1281 *   for (unsigned int cell = cell_range.first; cell < cell_range.second;
1282 *   ++cell)
1283 *   {
1284 *   phi.reinit(cell);
1285 *  
1286 *   if (ai != Number())
1287 *   phi_temp.reinit(cell);
1288 *  
1289 * @endcode
1290 *
1291 * Read values from global vector and compute the values at the
1292 * quadrature points:
1293 *
1294 * @code
1295 *   if (ai != Number() && stage == 0)
1296 *   {
1297 *   phi.read_dof_values(src);
1298 *  
1299 *   for (unsigned int i = 0;
1300 *   i < phi.static_dofs_per_component * (dim + 2);
1301 *   ++i)
1302 *   phi_temp.begin_dof_values()[i] = phi.begin_dof_values()[i];
1303 *  
1304 *   phi.evaluate(EvaluationFlags::values);
1305 *   }
1306 *   else
1307 *   {
1308 *   phi.gather_evaluate(src, EvaluationFlags::values);
1309 *   }
1310 *  
1311 * @endcode
1312 *
1313 * Buffer the computed values at the quadrature points, since
1314 * these are overridden by FEEvaluation::submit_value() in the next
1315 * step, however, are needed later on for the face integrals:
1316 *
1317 * @code
1318 *   for (unsigned int i = 0; i < phi.static_n_q_points * (dim + 2); ++i)
1319 *   buffer[i] = phi.begin_values()[i];
1320 *  
1321 * @endcode
1322 *
1323 * Apply the cell integral at the cell quadrature points. See also
1324 * the function <code>EulerOperator::local_apply_cell()</code> from
1325 * @ref step_67 "step-67":
1326 *
1327 * @code
1328 *   for (const unsigned int q : phi.quadrature_point_indices())
1329 *   {
1330 *   const auto w_q = phi.get_value(q);
1331 *   phi.submit_gradient(euler_flux<dim>(w_q), q);
1332 *   if (body_force.get() != nullptr)
1333 *   {
1334 *   const Tensor<1, dim, VectorizedArrayType> force =
1335 *   constant_function ?
1336 *   constant_body_force :
1337 *   evaluate_function<dim, VectorizedArrayType, dim>(
1338 *   *body_force, phi.quadrature_point(q));
1339 *  
1341 *   for (unsigned int d = 0; d < dim; ++d)
1342 *   forcing[d + 1] = w_q[0] * force[d];
1343 *   for (unsigned int d = 0; d < dim; ++d)
1344 *   forcing[dim + 1] += force[d] * w_q[d + 1];
1345 *  
1346 *   phi.submit_value(forcing, q);
1347 *   }
1348 *   }
1349 *  
1350 * @endcode
1351 *
1352 * Test with the gradient of the test functions in the quadrature
1353 * points. We skip the interpolation back to the support points
1354 * of the element, since we first collect all contributions in the
1355 * cell quadrature points and only perform the interpolation back
1356 * as the final step.
1357 *
1358 * @code
1359 *   {
1360 *   auto *values_ptr = phi.begin_values();
1361 *   auto *gradient_ptr = phi.begin_gradients();
1362 *  
1363 *   for (unsigned int c = 0; c < dim + 2; ++c)
1364 *   {
1365 *   if (dim >= 1 && body_force.get() == nullptr)
1366 *   eval.template gradients<0, false, false, dim>(gradient_ptr,
1367 *   values_ptr);
1368 *   else if (dim >= 1)
1369 *   eval.template gradients<0, false, true, dim>(gradient_ptr,
1370 *   values_ptr);
1371 *   if (dim >= 2)
1372 *   eval.template gradients<1, false, true, dim>(gradient_ptr +
1373 *   1,
1374 *   values_ptr);
1375 *   if (dim >= 3)
1376 *   eval.template gradients<2, false, true, dim>(gradient_ptr +
1377 *   2,
1378 *   values_ptr);
1379 *  
1380 *   values_ptr += phi.static_n_q_points;
1381 *   gradient_ptr += phi.static_n_q_points * dim;
1382 *   }
1383 *   }
1384 *  
1385 * @endcode
1386 *
1387 * Loop over all faces of the current cell:
1388 *
1389 * @code
1390 *   for (unsigned int face = 0;
1391 *   face < GeometryInfo<dim>::faces_per_cell;
1392 *   ++face)
1393 *   {
1394 * @endcode
1395 *
1396 * Determine the boundary ID of the current face. Since we have
1397 * set up MatrixFree in a way that all filled lanes have
1398 * guaranteed the same boundary ID, we can select the
1399 * boundary ID of the first lane.
1400 *
1401 * @code
1402 *   const auto boundary_ids =
1403 *   data.get_faces_by_cells_boundary_id(cell, face);
1404 *  
1405 *   Assert(std::equal(boundary_ids.begin(),
1406 *   boundary_ids.begin() +
1407 *   data.n_active_entries_per_cell_batch(cell),
1408 *   boundary_ids.begin()),
1409 *   ExcMessage("Boundary IDs of lanes differ."));
1410 *  
1411 *   const auto boundary_id = boundary_ids[0];
1412 *  
1413 *   phi_m.reinit(cell, face);
1414 *  
1415 * @endcode
1416 *
1417 * Interpolate the values from the cell quadrature points to the
1418 * quadrature points of the current face via a simple 1d
1419 * interpolation:
1420 *
1421 * @code
1423 *   n_points_1d - 1,
1424 *   VectorizedArrayType>::
1425 *   template interpolate_quadrature<true, false>(
1426 *   dim + 2,
1428 *   data.get_shape_info(),
1429 *   buffer.data(),
1430 *   phi_m.begin_values(),
1431 *   face);
1432 *  
1433 * @endcode
1434 *
1435 * Check if the face is an internal or a boundary face and
1436 * select a different code path based on this information:
1437 *
1438 * @code
1439 *   if (boundary_id == numbers::internal_face_boundary_id)
1440 *   {
1441 * @endcode
1442 *
1443 * Process and internal face. The following lines of code
1444 * are a copy of the function
1445 * <code>EulerDG::EulerOperator::local_apply_face</code>
1446 * from @ref step_67 "step-67":
1447 *
1448 * @code
1449 *   phi_p.reinit(cell, face);
1450 *   phi_p.gather_evaluate(src, EvaluationFlags::values);
1451 *  
1452 *   for (const unsigned int q :
1453 *   phi_m.quadrature_point_indices())
1454 *   {
1455 *   const auto numerical_flux =
1456 *   euler_numerical_flux<dim>(phi_m.get_value(q),
1457 *   phi_p.get_value(q),
1458 *   phi_m.normal_vector(q));
1459 *   phi_m.submit_value(-numerical_flux, q);
1460 *   }
1461 *   }
1462 *   else
1463 *   {
1464 * @endcode
1465 *
1466 * Process a boundary face. These following lines of code
1467 * are a copy of the function
1468 * <code>EulerDG::EulerOperator::local_apply_boundary_face</code>
1469 * from @ref step_67 "step-67":
1470 *
1471 * @code
1472 *   for (const unsigned int q :
1473 *   phi_m.quadrature_point_indices())
1474 *   {
1475 *   const auto w_m = phi_m.get_value(q);
1476 *   const auto normal = phi_m.normal_vector(q);
1477 *  
1478 *   auto rho_u_dot_n = w_m[1] * normal[0];
1479 *   for (unsigned int d = 1; d < dim; ++d)
1480 *   rho_u_dot_n += w_m[1 + d] * normal[d];
1481 *  
1482 *   bool at_outflow = false;
1483 *  
1485 *  
1486 *   if (wall_boundaries.find(boundary_id) !=
1487 *   wall_boundaries.end())
1488 *   {
1489 *   w_p[0] = w_m[0];
1490 *   for (unsigned int d = 0; d < dim; ++d)
1491 *   w_p[d + 1] =
1492 *   w_m[d + 1] - 2. * rho_u_dot_n * normal[d];
1493 *   w_p[dim + 1] = w_m[dim + 1];
1494 *   }
1495 *   else if (inflow_boundaries.find(boundary_id) !=
1496 *   inflow_boundaries.end())
1497 *   w_p = evaluate_function(
1498 *   *inflow_boundaries.find(boundary_id)->second,
1499 *   phi_m.quadrature_point(q));
1500 *   else if (subsonic_outflow_boundaries.find(
1501 *   boundary_id) !=
1502 *   subsonic_outflow_boundaries.end())
1503 *   {
1504 *   w_p = w_m;
1505 *   w_p[dim + 1] =
1506 *   evaluate_function(*subsonic_outflow_boundaries
1507 *   .find(boundary_id)
1508 *   ->second,
1509 *   phi_m.quadrature_point(q),
1510 *   dim + 1);
1511 *   at_outflow = true;
1512 *   }
1513 *   else
1514 *   AssertThrow(false,
1515 *   ExcMessage(
1516 *   "Unknown boundary id, did "
1517 *   "you set a boundary condition for "
1518 *   "this part of the domain boundary?"));
1519 *  
1520 *   auto flux = euler_numerical_flux<dim>(w_m, w_p, normal);
1521 *  
1522 *   if (at_outflow)
1523 *   for (unsigned int v = 0;
1524 *   v < VectorizedArrayType::size();
1525 *   ++v)
1526 *   {
1527 *   if (rho_u_dot_n[v] < -1e-12)
1528 *   for (unsigned int d = 0; d < dim; ++d)
1529 *   flux[d + 1][v] = 0.;
1530 *   }
1531 *  
1532 *   phi_m.submit_value(-flux, q);
1533 *   }
1534 *   }
1535 *  
1536 * @endcode
1537 *
1538 * Evaluate local integrals related to cell by quadrature and
1539 * add into cell contribution via a simple 1d interpolation:
1540 *
1541 * @code
1543 *   n_points_1d - 1,
1544 *   VectorizedArrayType>::
1545 *   template interpolate_quadrature<false, true>(
1546 *   dim + 2,
1548 *   data.get_shape_info(),
1549 *   phi_m.begin_values(),
1550 *   phi.begin_values(),
1551 *   face);
1552 *   }
1553 *  
1554 * @endcode
1555 *
1556 * Apply inverse mass matrix in the cell quadrature points. See
1557 * also the function
1558 * <code>EulerDG::EulerOperator::local_apply_inverse_mass_matrix()</code>
1559 * from @ref step_67 "step-67":
1560 *
1561 * @code
1562 *   for (unsigned int q = 0; q < phi.static_n_q_points; ++q)
1563 *   {
1564 *   const auto factor = VectorizedArrayType(1.0) / phi.JxW(q);
1565 *   for (unsigned int c = 0; c < dim + 2; ++c)
1566 *   phi.begin_values()[c * phi.static_n_q_points + q] =
1567 *   phi.begin_values()[c * phi.static_n_q_points + q] * factor;
1568 *   }
1569 *  
1570 * @endcode
1571 *
1572 * Transform values from collocation space to the original
1573 * Gauss-Lobatto space:
1574 *
1575 * @code
1579 *   dim,
1580 *   degree + 1,
1581 *   n_points_1d>::do_backward(dim + 2,
1582 *   data.get_shape_info()
1583 *   .data[0]
1584 *   .inverse_shape_values_eo,
1585 *   false,
1586 *   phi.begin_values(),
1587 *   phi.begin_dof_values());
1588 *  
1589 * @endcode
1590 *
1591 * Perform Runge-Kutta update and write results back to global
1592 * vectors:
1593 *
1594 * @code
1595 *   if (ai == Number())
1596 *   {
1597 *   for (unsigned int q = 0; q < phi.static_dofs_per_cell; ++q)
1598 *   phi.begin_dof_values()[q] = bi * phi.begin_dof_values()[q];
1599 *   phi.distribute_local_to_global(solution);
1600 *   }
1601 *   else
1602 *   {
1603 *   if (stage != 0)
1604 *   phi_temp.read_dof_values(solution);
1605 *  
1606 *   for (unsigned int q = 0; q < phi.static_dofs_per_cell; ++q)
1607 *   {
1608 *   const auto K_i = phi.begin_dof_values()[q];
1609 *  
1610 *   phi.begin_dof_values()[q] =
1611 *   phi_temp.begin_dof_values()[q] + (ai * K_i);
1612 *  
1613 *   phi_temp.begin_dof_values()[q] += bi * K_i;
1614 *   }
1615 *   phi.set_dof_values(dst);
1616 *   phi_temp.set_dof_values(solution);
1617 *   }
1618 *   }
1619 *   },
1620 *   vec_ki,
1621 *   current_ri,
1622 *   true,
1624 *   }
1625 *  
1626 *  
1627 *  
1628 * @endcode
1629 *
1630 * From here, the code of @ref step_67 "step-67" has not changed.
1631 *
1632 * @code
1633 *   template <int dim, int degree, int n_points_1d>
1634 *   void EulerOperator<dim, degree, n_points_1d>::initialize_vector(
1636 *   {
1637 *   data.initialize_dof_vector(vector);
1638 *   }
1639 *  
1640 *  
1641 *  
1642 *   template <int dim, int degree, int n_points_1d>
1643 *   void EulerOperator<dim, degree, n_points_1d>::set_inflow_boundary(
1644 *   const types::boundary_id boundary_id,
1645 *   std::unique_ptr<Function<dim>> inflow_function)
1646 *   {
1647 *   AssertThrow(subsonic_outflow_boundaries.find(boundary_id) ==
1648 *   subsonic_outflow_boundaries.end() &&
1649 *   wall_boundaries.find(boundary_id) == wall_boundaries.end(),
1650 *   ExcMessage("You already set the boundary with id " +
1651 *   std::to_string(static_cast<int>(boundary_id)) +
1652 *   " to another type of boundary before now setting " +
1653 *   "it as inflow"));
1654 *   AssertThrow(inflow_function->n_components == dim + 2,
1655 *   ExcMessage("Expected function with dim+2 components"));
1656 *  
1657 *   inflow_boundaries[boundary_id] = std::move(inflow_function);
1658 *   }
1659 *  
1660 *  
1661 *  
1662 *   template <int dim, int degree, int n_points_1d>
1663 *   void EulerOperator<dim, degree, n_points_1d>::set_subsonic_outflow_boundary(
1664 *   const types::boundary_id boundary_id,
1665 *   std::unique_ptr<Function<dim>> outflow_function)
1666 *   {
1667 *   AssertThrow(inflow_boundaries.find(boundary_id) ==
1668 *   inflow_boundaries.end() &&
1669 *   wall_boundaries.find(boundary_id) == wall_boundaries.end(),
1670 *   ExcMessage("You already set the boundary with id " +
1671 *   std::to_string(static_cast<int>(boundary_id)) +
1672 *   " to another type of boundary before now setting " +
1673 *   "it as subsonic outflow"));
1674 *   AssertThrow(outflow_function->n_components == dim + 2,
1675 *   ExcMessage("Expected function with dim+2 components"));
1676 *  
1677 *   subsonic_outflow_boundaries[boundary_id] = std::move(outflow_function);
1678 *   }
1679 *  
1680 *  
1681 *  
1682 *   template <int dim, int degree, int n_points_1d>
1683 *   void EulerOperator<dim, degree, n_points_1d>::set_wall_boundary(
1684 *   const types::boundary_id boundary_id)
1685 *   {
1686 *   AssertThrow(inflow_boundaries.find(boundary_id) ==
1687 *   inflow_boundaries.end() &&
1688 *   subsonic_outflow_boundaries.find(boundary_id) ==
1689 *   subsonic_outflow_boundaries.end(),
1690 *   ExcMessage("You already set the boundary with id " +
1691 *   std::to_string(static_cast<int>(boundary_id)) +
1692 *   " to another type of boundary before now setting " +
1693 *   "it as wall boundary"));
1694 *  
1695 *   wall_boundaries.insert(boundary_id);
1696 *   }
1697 *  
1698 *  
1699 *  
1700 *   template <int dim, int degree, int n_points_1d>
1701 *   void EulerOperator<dim, degree, n_points_1d>::set_body_force(
1702 *   std::unique_ptr<Function<dim>> body_force)
1703 *   {
1704 *   AssertDimension(body_force->n_components, dim);
1705 *  
1706 *   this->body_force = std::move(body_force);
1707 *   }
1708 *  
1709 *  
1710 *  
1711 *   template <int dim, int degree, int n_points_1d>
1712 *   void EulerOperator<dim, degree, n_points_1d>::project(
1713 *   const Function<dim> &function,
1714 *   LinearAlgebra::distributed::Vector<Number> &solution) const
1715 *   {
1717 *   phi(data, 0, 1);
1719 *   degree,
1720 *   dim + 2,
1721 *   Number,
1722 *   VectorizedArrayType>
1723 *   inverse(phi);
1724 *   solution.zero_out_ghost_values();
1725 *   for (unsigned int cell = 0; cell < data.n_cell_batches(); ++cell)
1726 *   {
1727 *   phi.reinit(cell);
1728 *   for (const unsigned int q : phi.quadrature_point_indices())
1729 *   phi.submit_dof_value(evaluate_function(function,
1730 *   phi.quadrature_point(q)),
1731 *   q);
1732 *   inverse.transform_from_q_points_to_basis(dim + 2,
1733 *   phi.begin_dof_values(),
1734 *   phi.begin_dof_values());
1735 *   phi.set_dof_values(solution);
1736 *   }
1737 *   }
1738 *  
1739 *  
1740 *  
1741 *   template <int dim, int degree, int n_points_1d>
1742 *   std::array<double, 3> EulerOperator<dim, degree, n_points_1d>::compute_errors(
1743 *   const Function<dim> &function,
1744 *   const LinearAlgebra::distributed::Vector<Number> &solution) const
1745 *   {
1746 *   TimerOutput::Scope t(timer, "compute errors");
1747 *   double errors_squared[3] = {};
1749 *   phi(data, 0, 0);
1750 *  
1751 *   for (unsigned int cell = 0; cell < data.n_cell_batches(); ++cell)
1752 *   {
1753 *   phi.reinit(cell);
1754 *   phi.gather_evaluate(solution, EvaluationFlags::values);
1755 *   VectorizedArrayType local_errors_squared[3] = {};
1756 *   for (const unsigned int q : phi.quadrature_point_indices())
1757 *   {
1758 *   const auto error =
1759 *   evaluate_function(function, phi.quadrature_point(q)) -
1760 *   phi.get_value(q);
1761 *   const auto JxW = phi.JxW(q);
1762 *  
1763 *   local_errors_squared[0] += error[0] * error[0] * JxW;
1764 *   for (unsigned int d = 0; d < dim; ++d)
1765 *   local_errors_squared[1] += (error[d + 1] * error[d + 1]) * JxW;
1766 *   local_errors_squared[2] += (error[dim + 1] * error[dim + 1]) * JxW;
1767 *   }
1768 *   for (unsigned int v = 0; v < data.n_active_entries_per_cell_batch(cell);
1769 *   ++v)
1770 *   for (unsigned int d = 0; d < 3; ++d)
1771 *   errors_squared[d] += local_errors_squared[d][v];
1772 *   }
1773 *  
1774 *   Utilities::MPI::sum(errors_squared, MPI_COMM_WORLD, errors_squared);
1775 *  
1776 *   std::array<double, 3> errors;
1777 *   for (unsigned int d = 0; d < 3; ++d)
1778 *   errors[d] = std::sqrt(errors_squared[d]);
1779 *  
1780 *   return errors;
1781 *   }
1782 *  
1783 *  
1784 *  
1785 *   template <int dim, int degree, int n_points_1d>
1786 *   double EulerOperator<dim, degree, n_points_1d>::compute_cell_transport_speed(
1787 *   const LinearAlgebra::distributed::Vector<Number> &solution) const
1788 *   {
1789 *   TimerOutput::Scope t(timer, "compute transport speed");
1790 *   Number max_transport = 0;
1792 *   phi(data, 0, 1);
1793 *  
1794 *   for (unsigned int cell = 0; cell < data.n_cell_batches(); ++cell)
1795 *   {
1796 *   phi.reinit(cell);
1797 *   phi.gather_evaluate(solution, EvaluationFlags::values);
1798 *   VectorizedArrayType local_max = 0.;
1799 *   for (const unsigned int q : phi.quadrature_point_indices())
1800 *   {
1801 *   const auto solution = phi.get_value(q);
1802 *   const auto velocity = euler_velocity<dim>(solution);
1803 *   const auto pressure = euler_pressure<dim>(solution);
1804 *  
1805 *   const auto inverse_jacobian = phi.inverse_jacobian(q);
1806 *   const auto convective_speed = inverse_jacobian * velocity;
1807 *   VectorizedArrayType convective_limit = 0.;
1808 *   for (unsigned int d = 0; d < dim; ++d)
1809 *   convective_limit =
1810 *   std::max(convective_limit, std::abs(convective_speed[d]));
1811 *  
1812 *   const auto speed_of_sound =
1813 *   std::sqrt(gamma * pressure * (1. / solution[0]));
1814 *  
1815 *   Tensor<1, dim, VectorizedArrayType> eigenvector;
1816 *   for (unsigned int d = 0; d < dim; ++d)
1817 *   eigenvector[d] = 1.;
1818 *   for (unsigned int i = 0; i < 5; ++i)
1819 *   {
1820 *   eigenvector = transpose(inverse_jacobian) *
1821 *   (inverse_jacobian * eigenvector);
1822 *   VectorizedArrayType eigenvector_norm = 0.;
1823 *   for (unsigned int d = 0; d < dim; ++d)
1824 *   eigenvector_norm =
1825 *   std::max(eigenvector_norm, std::abs(eigenvector[d]));
1826 *   eigenvector /= eigenvector_norm;
1827 *   }
1828 *   const auto jac_times_ev = inverse_jacobian * eigenvector;
1829 *   const auto max_eigenvalue = std::sqrt(
1830 *   (jac_times_ev * jac_times_ev) / (eigenvector * eigenvector));
1831 *   local_max =
1832 *   std::max(local_max,
1833 *   max_eigenvalue * speed_of_sound + convective_limit);
1834 *   }
1835 *  
1836 *   for (unsigned int v = 0; v < data.n_active_entries_per_cell_batch(cell);
1837 *   ++v)
1838 *   max_transport = std::max(max_transport, local_max[v]);
1839 *   }
1840 *  
1841 *   max_transport = Utilities::MPI::max(max_transport, MPI_COMM_WORLD);
1842 *  
1843 *   return max_transport;
1844 *   }
1845 *  
1846 *  
1847 *  
1848 *   template <int dim>
1849 *   class EulerProblem
1850 *   {
1851 *   public:
1852 *   EulerProblem();
1853 *  
1854 *   void run();
1855 *  
1856 *   private:
1857 *   void make_grid_and_dofs();
1858 *  
1859 *   void output_results(const unsigned int result_number);
1860 *  
1862 *  
1863 *   ConditionalOStream pcout;
1864 *  
1865 *   #ifdef DEAL_II_WITH_P4EST
1867 *   #else
1869 *   #endif
1870 *  
1871 *   const FESystem<dim> fe;
1872 *   const MappingQ<dim> mapping;
1873 *   DoFHandler<dim> dof_handler;
1874 *  
1875 *   TimerOutput timer;
1876 *  
1877 *   EulerOperator<dim, fe_degree, n_q_points_1d> euler_operator;
1878 *  
1879 *   double time, time_step;
1880 *  
1881 *   class Postprocessor : public DataPostprocessor<dim>
1882 *   {
1883 *   public:
1884 *   Postprocessor();
1885 *  
1886 *   virtual void evaluate_vector_field(
1887 *   const DataPostprocessorInputs::Vector<dim> &inputs,
1888 *   std::vector<Vector<double>> &computed_quantities) const override;
1889 *  
1890 *   virtual std::vector<std::string> get_names() const override;
1891 *  
1892 *   virtual std::vector<
1894 *   get_data_component_interpretation() const override;
1895 *  
1896 *   virtual UpdateFlags get_needed_update_flags() const override;
1897 *  
1898 *   private:
1899 *   const bool do_schlieren_plot;
1900 *   };
1901 *   };
1902 *  
1903 *  
1904 *  
1905 *   template <int dim>
1906 *   EulerProblem<dim>::Postprocessor::Postprocessor()
1907 *   : do_schlieren_plot(dim == 2)
1908 *   {}
1909 *  
1910 *  
1911 *  
1912 *   template <int dim>
1913 *   void EulerProblem<dim>::Postprocessor::evaluate_vector_field(
1914 *   const DataPostprocessorInputs::Vector<dim> &inputs,
1915 *   std::vector<Vector<double>> &computed_quantities) const
1916 *   {
1917 *   const unsigned int n_evaluation_points = inputs.solution_values.size();
1918 *  
1919 *   if (do_schlieren_plot == true)
1920 *   Assert(inputs.solution_gradients.size() == n_evaluation_points,
1921 *   ExcInternalError());
1922 *  
1923 *   Assert(computed_quantities.size() == n_evaluation_points,
1924 *   ExcInternalError());
1925 *   Assert(inputs.solution_values[0].size() == dim + 2, ExcInternalError());
1926 *   Assert(computed_quantities[0].size() ==
1927 *   dim + 2 + (do_schlieren_plot == true ? 1 : 0),
1928 *   ExcInternalError());
1929 *  
1930 *   for (unsigned int p = 0; p < n_evaluation_points; ++p)
1931 *   {
1932 *   Tensor<1, dim + 2> solution;
1933 *   for (unsigned int d = 0; d < dim + 2; ++d)
1934 *   solution[d] = inputs.solution_values[p](d);
1935 *  
1936 *   const double density = solution[0];
1937 *   const Tensor<1, dim> velocity = euler_velocity<dim>(solution);
1938 *   const double pressure = euler_pressure<dim>(solution);
1939 *  
1940 *   for (unsigned int d = 0; d < dim; ++d)
1941 *   computed_quantities[p](d) = velocity[d];
1942 *   computed_quantities[p](dim) = pressure;
1943 *   computed_quantities[p](dim + 1) = std::sqrt(gamma * pressure / density);
1944 *  
1945 *   if (do_schlieren_plot == true)
1946 *   computed_quantities[p](dim + 2) =
1947 *   inputs.solution_gradients[p][0] * inputs.solution_gradients[p][0];
1948 *   }
1949 *   }
1950 *  
1951 *  
1952 *  
1953 *   template <int dim>
1954 *   std::vector<std::string> EulerProblem<dim>::Postprocessor::get_names() const
1955 *   {
1956 *   std::vector<std::string> names;
1957 *   for (unsigned int d = 0; d < dim; ++d)
1958 *   names.emplace_back("velocity");
1959 *   names.emplace_back("pressure");
1960 *   names.emplace_back("speed_of_sound");
1961 *  
1962 *   if (do_schlieren_plot == true)
1963 *   names.emplace_back("schlieren_plot");
1964 *  
1965 *   return names;
1966 *   }
1967 *  
1968 *  
1969 *  
1970 *   template <int dim>
1971 *   std::vector<DataComponentInterpretation::DataComponentInterpretation>
1972 *   EulerProblem<dim>::Postprocessor::get_data_component_interpretation() const
1973 *   {
1974 *   std::vector<DataComponentInterpretation::DataComponentInterpretation>
1975 *   interpretation;
1976 *   for (unsigned int d = 0; d < dim; ++d)
1977 *   interpretation.push_back(
1979 *   interpretation.push_back(DataComponentInterpretation::component_is_scalar);
1980 *   interpretation.push_back(DataComponentInterpretation::component_is_scalar);
1981 *  
1982 *   if (do_schlieren_plot == true)
1983 *   interpretation.push_back(
1985 *  
1986 *   return interpretation;
1987 *   }
1988 *  
1989 *  
1990 *  
1991 *   template <int dim>
1992 *   UpdateFlags EulerProblem<dim>::Postprocessor::get_needed_update_flags() const
1993 *   {
1994 *   if (do_schlieren_plot == true)
1995 *   return update_values | update_gradients;
1996 *   else
1997 *   return update_values;
1998 *   }
1999 *  
2000 *  
2001 *  
2002 *   template <int dim>
2003 *   EulerProblem<dim>::EulerProblem()
2004 *   : pcout(std::cout, Utilities::MPI::this_mpi_process(MPI_COMM_WORLD) == 0)
2005 *   #ifdef DEAL_II_WITH_P4EST
2006 *   , triangulation(MPI_COMM_WORLD)
2007 *   #endif
2008 *   , fe(FE_DGQ<dim>(fe_degree), dim + 2)
2009 *   , mapping(fe_degree)
2010 *   , dof_handler(triangulation)
2011 *   , timer(pcout, TimerOutput::never, TimerOutput::wall_times)
2012 *   , euler_operator(timer)
2013 *   , time(0)
2014 *   , time_step(0)
2015 *   {}
2016 *  
2017 *  
2018 *  
2019 *   template <int dim>
2020 *   void EulerProblem<dim>::make_grid_and_dofs()
2021 *   {
2022 *   switch (testcase)
2023 *   {
2024 *   case 0:
2025 *   {
2026 *   Point<dim> lower_left;
2027 *   for (unsigned int d = 1; d < dim; ++d)
2028 *   lower_left[d] = -5;
2029 *  
2030 *   Point<dim> upper_right;
2031 *   upper_right[0] = 10;
2032 *   for (unsigned int d = 1; d < dim; ++d)
2033 *   upper_right[d] = 5;
2034 *  
2036 *   lower_left,
2037 *   upper_right);
2038 *   triangulation.refine_global(2);
2039 *  
2040 *   euler_operator.set_inflow_boundary(
2041 *   0, std::make_unique<ExactSolution<dim>>(0));
2042 *  
2043 *   break;
2044 *   }
2045 *  
2046 *   case 1:
2047 *   {
2049 *   triangulation, 0.03, 1, 0, true);
2050 *  
2051 *   euler_operator.set_inflow_boundary(
2052 *   0, std::make_unique<ExactSolution<dim>>(0));
2053 *   euler_operator.set_subsonic_outflow_boundary(
2054 *   1, std::make_unique<ExactSolution<dim>>(0));
2055 *  
2056 *   euler_operator.set_wall_boundary(2);
2057 *   euler_operator.set_wall_boundary(3);
2058 *  
2059 *   if (dim == 3)
2060 *   euler_operator.set_body_force(
2061 *   std::make_unique<Functions::ConstantFunction<dim>>(
2062 *   std::vector<double>({0., 0., -0.2})));
2063 *  
2064 *   break;
2065 *   }
2066 *  
2067 *   default:
2069 *   }
2070 *  
2071 *   triangulation.refine_global(n_global_refinements);
2072 *  
2073 *   dof_handler.distribute_dofs(fe);
2074 *  
2075 *   euler_operator.reinit(mapping, dof_handler);
2076 *   euler_operator.initialize_vector(solution);
2077 *  
2078 *   std::locale s = pcout.get_stream().getloc();
2079 *   pcout.get_stream().imbue(std::locale(""));
2080 *   pcout << "Number of degrees of freedom: " << dof_handler.n_dofs()
2081 *   << " ( = " << (dim + 2) << " [vars] x "
2082 *   << triangulation.n_global_active_cells() << " [cells] x "
2083 *   << Utilities::pow(fe_degree + 1, dim) << " [dofs/cell/var] )"
2084 *   << std::endl;
2085 *   pcout.get_stream().imbue(s);
2086 *   }
2087 *  
2088 *  
2089 *  
2090 *   template <int dim>
2091 *   void EulerProblem<dim>::output_results(const unsigned int result_number)
2092 *   {
2093 *   const std::array<double, 3> errors =
2094 *   euler_operator.compute_errors(ExactSolution<dim>(time), solution);
2095 *   const std::string quantity_name = testcase == 0 ? "error" : "norm";
2096 *  
2097 *   pcout << "Time:" << std::setw(8) << std::setprecision(3) << time
2098 *   << ", dt: " << std::setw(8) << std::setprecision(2) << time_step
2099 *   << ", " << quantity_name << " rho: " << std::setprecision(4)
2100 *   << std::setw(10) << errors[0] << ", rho * u: " << std::setprecision(4)
2101 *   << std::setw(10) << errors[1] << ", energy:" << std::setprecision(4)
2102 *   << std::setw(10) << errors[2] << std::endl;
2103 *  
2104 *   {
2105 *   TimerOutput::Scope t(timer, "output");
2106 *  
2107 *   Postprocessor postprocessor;
2108 *   DataOut<dim> data_out;
2109 *  
2110 *   DataOutBase::VtkFlags flags;
2111 *   flags.write_higher_order_cells = true;
2112 *   data_out.set_flags(flags);
2113 *  
2114 *   data_out.attach_dof_handler(dof_handler);
2115 *   {
2116 *   std::vector<std::string> names;
2117 *   names.emplace_back("density");
2118 *   for (unsigned int d = 0; d < dim; ++d)
2119 *   names.emplace_back("momentum");
2120 *   names.emplace_back("energy");
2121 *  
2122 *   std::vector<DataComponentInterpretation::DataComponentInterpretation>
2123 *   interpretation;
2124 *   interpretation.push_back(
2126 *   for (unsigned int d = 0; d < dim; ++d)
2127 *   interpretation.push_back(
2129 *   interpretation.push_back(
2131 *  
2132 *   data_out.add_data_vector(dof_handler, solution, names, interpretation);
2133 *   }
2134 *   data_out.add_data_vector(solution, postprocessor);
2135 *  
2137 *   if (testcase == 0 && dim == 2)
2138 *   {
2139 *   reference.reinit(solution);
2140 *   euler_operator.project(ExactSolution<dim>(time), reference);
2141 *   reference.sadd(-1., 1, solution);
2142 *   std::vector<std::string> names;
2143 *   names.emplace_back("error_density");
2144 *   for (unsigned int d = 0; d < dim; ++d)
2145 *   names.emplace_back("error_momentum");
2146 *   names.emplace_back("error_energy");
2147 *  
2148 *   std::vector<DataComponentInterpretation::DataComponentInterpretation>
2149 *   interpretation;
2150 *   interpretation.push_back(
2152 *   for (unsigned int d = 0; d < dim; ++d)
2153 *   interpretation.push_back(
2155 *   interpretation.push_back(
2157 *  
2158 *   data_out.add_data_vector(dof_handler,
2159 *   reference,
2160 *   names,
2161 *   interpretation);
2162 *   }
2163 *  
2164 *   Vector<double> mpi_owner(triangulation.n_active_cells());
2165 *   mpi_owner = Utilities::MPI::this_mpi_process(MPI_COMM_WORLD);
2166 *   data_out.add_data_vector(mpi_owner, "owner");
2167 *  
2168 *   data_out.build_patches(mapping,
2169 *   fe.degree,
2171 *  
2172 *   const std::string filename =
2173 *   "solution_" + Utilities::int_to_string(result_number, 3) + ".vtu";
2174 *   data_out.write_vtu_in_parallel(filename, MPI_COMM_WORLD);
2175 *   }
2176 *   }
2177 *  
2178 *  
2179 *  
2180 *   template <int dim>
2181 *   void EulerProblem<dim>::run()
2182 *   {
2183 *   {
2184 *   const unsigned int n_vect_number = VectorizedArrayType::size();
2185 *   const unsigned int n_vect_bits = 8 * sizeof(Number) * n_vect_number;
2186 *  
2187 *   pcout << "Running with "
2188 *   << Utilities::MPI::n_mpi_processes(MPI_COMM_WORLD)
2189 *   << " MPI processes" << std::endl;
2190 *   pcout << "Vectorization over " << n_vect_number << ' '
2191 *   << (std::is_same_v<Number, double> ? "doubles" : "floats") << " = "
2192 *   << n_vect_bits << " bits ("
2194 *   << std::endl;
2195 *   }
2196 *  
2197 *   make_grid_and_dofs();
2198 *  
2199 *   const LowStorageRungeKuttaIntegrator integrator(lsrk_scheme);
2200 *  
2203 *   rk_register_1.reinit(solution);
2204 *   rk_register_2.reinit(solution);
2205 *  
2206 *   euler_operator.project(ExactSolution<dim>(time), solution);
2207 *  
2208 *  
2209 *   double min_vertex_distance = std::numeric_limits<double>::max();
2210 *   for (const auto &cell : triangulation.active_cell_iterators())
2211 *   if (cell->is_locally_owned())
2212 *   min_vertex_distance =
2213 *   std::min(min_vertex_distance, cell->minimum_vertex_distance());
2214 *   min_vertex_distance =
2215 *   Utilities::MPI::min(min_vertex_distance, MPI_COMM_WORLD);
2216 *  
2217 *   time_step = courant_number * integrator.n_stages() /
2218 *   euler_operator.compute_cell_transport_speed(solution);
2219 *   pcout << "Time step size: " << time_step
2220 *   << ", minimal h: " << min_vertex_distance
2221 *   << ", initial transport scaling: "
2222 *   << 1. / euler_operator.compute_cell_transport_speed(solution)
2223 *   << std::endl
2224 *   << std::endl;
2225 *  
2226 *   output_results(0);
2227 *  
2228 *   unsigned int timestep_number = 0;
2229 *  
2230 *   while (time < final_time - 1e-12 && timestep_number < max_time_steps)
2231 *   {
2232 *   ++timestep_number;
2233 *   if (timestep_number % 5 == 0)
2234 *   time_step =
2235 *   courant_number * integrator.n_stages() /
2237 *   euler_operator.compute_cell_transport_speed(solution), 3);
2238 *  
2239 *   {
2240 *   TimerOutput::Scope t(timer, "rk time stepping total");
2241 *   integrator.perform_time_step(euler_operator,
2242 *   time,
2243 *   time_step,
2244 *   solution,
2245 *   rk_register_1,
2246 *   rk_register_2);
2247 *   }
2248 *  
2249 *   time += time_step;
2250 *  
2251 *   if (static_cast<int>(time / output_tick) !=
2252 *   static_cast<int>((time - time_step) / output_tick) ||
2253 *   time >= final_time - 1e-12)
2254 *   output_results(
2255 *   static_cast<unsigned int>(std::round(time / output_tick)));
2256 *   }
2257 *  
2258 *   timer.print_wall_time_statistics(MPI_COMM_WORLD);
2259 *   pcout << std::endl;
2260 *   }
2261 *  
2262 *   } // namespace Euler_DG
2263 *  
2264 *  
2265 *   int main(int argc, char **argv)
2266 *   {
2267 *   using namespace Euler_DG;
2268 *   using namespace dealii;
2269 *  
2270 *   Utilities::MPI::MPI_InitFinalize mpi_initialization(argc, argv, 1);
2271 *  
2272 *   try
2273 *   {
2274 *   EulerProblem<dimension> euler_problem;
2275 *   euler_problem.run();
2276 *   }
2277 *   catch (std::exception &exc)
2278 *   {
2279 *   std::cerr << std::endl
2280 *   << std::endl
2281 *   << "----------------------------------------------------"
2282 *   << std::endl;
2283 *   std::cerr << "Exception on processing: " << std::endl
2284 *   << exc.what() << std::endl
2285 *   << "Aborting!" << std::endl
2286 *   << "----------------------------------------------------"
2287 *   << std::endl;
2288 *  
2289 *   return 1;
2290 *   }
2291 *   catch (...)
2292 *   {
2293 *   std::cerr << std::endl
2294 *   << std::endl
2295 *   << "----------------------------------------------------"
2296 *   << std::endl;
2297 *   std::cerr << "Unknown exception!" << std::endl
2298 *   << "Aborting!" << std::endl
2299 *   << "----------------------------------------------------"
2300 *   << std::endl;
2301 *   return 1;
2302 *   }
2303 *  
2304 *   return 0;
2305 *   }
2306 * @endcode
2307<a name="step_76-Results"></a><h1>Results</h1>
2308
2309
2310Running the program with the default settings on a machine with 40 processes
2311produces the following output:
2312
2313@code
2314Running with 40 MPI processes
2315Vectorization over 8 doubles = 512 bits (AVX512)
2316Number of degrees of freedom: 27.648.000 ( = 5 [vars] x 25.600 [cells] x 216 [dofs/cell/var] )
2317Time step size: 0.000295952, minimal h: 0.0075, initial transport scaling: 0.00441179
2318Time: 0, dt: 0.0003, norm rho: 5.385e-16, rho * u: 1.916e-16, energy: 1.547e-15
2319+--------------------------------------+------------------+------------+------------------+
2320| Total wallclock time elapsed | 17.52s 10 | 17.52s | 17.52s 11 |
2321| | | |
2322| Section | no. calls | min time rank | avg time | max time rank |
2323+--------------------------------------+------------------+------------+------------------+
2324| compute errors | 1 | 0.009594s 16 | 0.009705s | 0.009819s 8 |
2325| compute transport speed | 22 | 0.1366s 0 | 0.1367s | 0.1368s 18 |
2326| output | 1 | 1.233s 0 | 1.233s | 1.233s 32 |
2327| rk time stepping total | 100 | 8.746s 35 | 8.746s | 8.746s 0 |
2328| rk_stage - integrals L_h | 500 | 8.742s 36 | 8.742s | 8.743s 2 |
2329+--------------------------------------+------------------+------------+------------------+
2330@endcode
2331
2332and the following visual output:
2333
2334<table align="center" class="doxtable" style="width:85%">
2335 <tr>
2336 <td>
2337 <img src="https://www.dealii.org/images/steps/developer/step-67.pressure_010.png" alt="" width="100%">
2338 </td>
2339 <td>
2340 <img src="https://www.dealii.org/images/steps/developer/step-67.pressure_025.png" alt="" width="100%">
2341 </td>
2342 </tr>
2343 <tr>
2344 <td>
2345 <img src="https://www.dealii.org/images/steps/developer/step-67.pressure_050.png" alt="" width="100%">
2346 </td>
2347 <td>
2348 <img src="https://www.dealii.org/images/steps/developer/step-67.pressure_100.png" alt="" width="100%">
2349 </td>
2350 </tr>
2351</table>
2352
2353As a reference, the results of @ref step_67 "step-67" using FCL are:
2354
2355@code
2356Running with 40 MPI processes
2357Vectorization over 8 doubles = 512 bits (AVX512)
2358Number of degrees of freedom: 27.648.000 ( = 5 [vars] x 25.600 [cells] x 216 [dofs/cell/var] )
2359Time step size: 0.000295952, minimal h: 0.0075, initial transport scaling: 0.00441179
2360Time: 0, dt: 0.0003, norm rho: 5.385e-16, rho * u: 1.916e-16, energy: 1.547e-15
2361+-------------------------------------------+------------------+------------+------------------+
2362| Total wallclock time elapsed | 13.33s 0 | 13.34s | 13.35s 34 |
2363| | | |
2364| Section | no. calls | min time rank | avg time | max time rank |
2365+-------------------------------------------+------------------+------------+------------------+
2366| compute errors | 1 | 0.007977s 10 | 0.008053s | 0.008161s 30 |
2367| compute transport speed | 22 | 0.1228s 34 | 0.2227s | 0.3845s 0 |
2368| output | 1 | 1.255s 3 | 1.257s | 1.259s 27 |
2369| rk time stepping total | 100 | 11.15s 0 | 11.32s | 11.42s 34 |
2370| rk_stage - integrals L_h | 500 | 8.719s 10 | 8.932s | 9.196s 0 |
2371| rk_stage - inv mass + vec upd | 500 | 1.944s 0 | 2.377s | 2.55s 10 |
2372+-------------------------------------------+------------------+------------+------------------+
2373@endcode
2374
2375By the modifications shown in this tutorial, we were able to achieve a speedup of
237627% for the Runge-Kutta stages.
2377
2378<a name="step_76-Possibilitiesforextensions"></a><h3>Possibilities for extensions</h3>
2379
2380
2381The algorithms are easily extendable to higher dimensions: a high-dimensional
2382<a href="https://github.com/hyperdeal/hyperdeal/blob/a9e67b4e625ff1dde2fed93ad91cdfacfaa3acdf/include/hyper.deal/operators/advection/advection_operation.h#L219-L569">advection operator based on cell-centric loops</a>
2383is part of the hyper.deal library. An extension of cell-centric loops
2384to locally-refined meshes is more involved.
2385
2386<a name="step_76-ExtensiontothecompressibleNavierStokesequations"></a><h4>Extension to the compressible Navier-Stokes equations</h4>
2387
2388
2389The solver presented in this tutorial program can also be extended to the
2390compressible Navier–Stokes equations by adding viscous terms, as also
2391suggested in @ref step_67 "step-67". To keep as much of the performance obtained here despite
2392the additional cost of elliptic terms, e.g. via an interior penalty method, that
2393tutorial has proposed to switch the basis from FE_DGQ to FE_DGQHermite like in
2394the @ref step_59 "step-59" tutorial program. The reasoning behind this switch is that in the
2395case of FE_DGQ all values of neighboring cells (i.e., @f$k+1@f$ layers) are needed,
2396whilst in the case of FE_DGQHermite only 2 layers, making the latter
2397significantly more suitable for higher degrees. The additional layers have to be,
2398on the one hand, loaded from main memory during flux computation and, one the
2399other hand, have to be communicated. Using the shared-memory capabilities
2400introduced in this tutorial, the second point can be eliminated on a single
2401compute node or its influence can be reduced in a hybrid context.
2402
2403<a name="step_76-BlockGaussSeidellikepreconditioners"></a><h4>Block Gauss-Seidel-like preconditioners</h4>
2404
2405
2406Cell-centric loops could be used to create block Gauss-Seidel preconditioners
2407that are multiplicative within one process and additive over processes. These
2408type of preconditioners use during flux computation, in contrast to Jacobi-type
2409preconditioners, already updated values from neighboring cells. The following
2410pseudo-code visualizes how this could in principal be achieved:
2411
2412@code
2413// vector monitor if cells have been updated or not
2414Vector<Number> visit_flags(data.n_cell_batches () + data.n_ghost_cell_batches ());
2415
2416// element centric loop with a modified kernel
2417data.template loop_cell_centric<VectorType, VectorType>(
2418 [&](const auto &data, auto &dst, const auto &src, const auto cell_range) {
2419
2420 for (unsigned int cell = cell_range.first; cell < cell_range.second; ++cell)
2421 {
2422 // cell integral as usual (not shown)
2423
2424 for (unsigned int face = 0; face < GeometryInfo<dim>::faces_per_cell; ++face)
2425 {
2426 const auto boundary_id = data.get_faces_by_cells_boundary_id(cell, face)[0];
2427
2428 if (boundary_id == numbers::internal_face_boundary_id)
2429 {
2430 phi_p.reinit(cell, face);
2431
2432 const auto flags = phi_p.read_cell_data(visit_flags);
2433 const auto all_neighbors_have_been_updated =
2434 std::min(flags.begin(),
2435 flags().begin() + data.n_active_entries_per_cell_batch(cell) == 1;
2436
2437 if(all_neighbors_have_been_updated)
2438 phi_p.gather_evaluate(dst, EvaluationFlags::values);
2439 else
2440 phi_p.gather_evaluate(src, EvaluationFlags::values);
2441
2442 // continue as usual (not shown)
2443 }
2444 else
2445 {
2446 // boundary integral as usual (not shown)
2447 }
2448 }
2449
2450 // continue as above and apply your favorite algorithm to invert
2451 // the cell-local operator (not shown)
2452
2453 // make cells as updated
2454 phi.set_cell_data(visit_flags, VectorizedArrayType(1.0));
2455 }
2456 },
2457 dst,
2458 src,
2459 true,
2461@endcode
2462
2463For this purpose, one can exploit the cell-data vector capabilities of
2464MatrixFree and the range-based iteration capabilities of VectorizedArray.
2465
2466Please note that in the given example we process <code>VectorizedArrayType::size()</code>
2467number of blocks, since each lane corresponds to one block. We consider blocks
2468as updated if all blocks processed by a vector register have been updated. In
2469the case of Cartesian meshes this is a reasonable approach, however, for
2470general unstructured meshes this conservative approach might lead to a decrease in the
2471efficiency of the preconditioner. A reduction of cells processed in parallel
2472by explicitly reducing the number of lanes used by <code>VectorizedArrayType</code>
2473might increase the quality of the preconditioner, but with the cost that each
2474iteration might be more expensive. This dilemma leads us to a further
2475"possibility for extension": vectorization within an element.
2476 *
2477 *
2478<a name="step_76-PlainProg"></a>
2479<h1> The plain program</h1>
2480@include "step-76.cc"
2481*/
virtual UpdateFlags get_needed_update_flags() const =0
virtual void evaluate_vector_field(const DataPostprocessorInputs::Vector< dim > &input_data, std::vector< Vector< double > > &computed_quantities) const
virtual std::vector< std::string > get_names() const =0
virtual std::vector< DataComponentInterpretation::DataComponentInterpretation > get_data_component_interpretation() const
void submit_value(const value_type val_in, const unsigned int q_point)
void reinit(const size_type size, const bool omit_zeroing_entries=false)
Abstract base class for mapping classes.
Definition mapping.h:318
void loop_cell_centric(void(CLASS::*cell_operation)(const MatrixFree &, OutVector &, const InVector &, const std::pair< unsigned int, unsigned int > &) const, const CLASS *owning_class, OutVector &dst, const InVector &src, const bool zero_dst_vector=false, const DataAccessOnFaces src_vector_face_access=DataAccessOnFaces::unspecified) const
void reinit(const MappingType &mapping, const DoFHandler< dim > &dof_handler, const AffineConstraints< number2 > &constraint, const QuadratureType &quad, const AdditionalData &additional_data=AdditionalData())
Definition point.h:111
constexpr numbers::NumberTraits< Number >::real_type norm_square() const
@ wall_times
Definition timer.h:651
std::enable_if_t< std::is_floating_point_v< T > &&std::is_floating_point_v< U >, typename ProductType< std::complex< T >, std::complex< U > >::type > operator*(const std::complex< T > &left, const std::complex< U > &right)
#define DEAL_II_ALWAYS_INLINE
Definition config.h:109
DerivativeForm< 1, spacedim, dim, Number > transpose(const DerivativeForm< 1, dim, spacedim, Number > &DF)
Point< 2 > second
Definition grid_out.cc:4630
Point< 2 > first
Definition grid_out.cc:4629
unsigned int level
Definition grid_out.cc:4632
#define Assert(cond, exc)
#define AssertDimension(dim1, dim2)
#define AssertThrow(cond, exc)
void loop(IteratorType begin, std_cxx20::type_identity_t< IteratorType > end, DOFINFO &dinfo, INFOBOX &info, const std::function< void(std_cxx20::type_identity_t< DOFINFO > &, typename INFOBOX::CellInfo &)> &cell_worker, const std::function< void(std_cxx20::type_identity_t< DOFINFO > &, typename INFOBOX::CellInfo &)> &boundary_worker, const std::function< void(std_cxx20::type_identity_t< DOFINFO > &, std_cxx20::type_identity_t< DOFINFO > &, typename INFOBOX::CellInfo &, typename INFOBOX::CellInfo &)> &face_worker, AssemblerType &assembler, const LoopControl &lctrl=LoopControl())
Definition loop.h:564
UpdateFlags
@ update_values
Shape function values.
@ update_normal_vectors
Normal vectors.
@ update_JxW_values
Transformed quadrature weights.
@ update_gradients
Shape function gradients.
@ update_quadrature_points
Transformed quadrature points.
#define DEAL_II_NOT_IMPLEMENTED()
std::vector< index_type > data
Definition mpi.cc:735
std::size_t size
Definition mpi.cc:734
const Event initial
Definition event.cc:64
void hyper_rectangle(Triangulation< dim, spacedim > &tria, const Point< dim > &p1, const Point< dim > &p2, const bool colorize=false)
void channel_with_cylinder(Triangulation< dim > &tria, const double shell_region_width=0.03, const unsigned int n_shells=2, const double skewness=2.0, const bool colorize=false)
@ matrix
Contents is actually a matrix.
@ general
No special properties.
double norm(const FEValuesBase< dim > &fe, const ArrayView< const std::vector< Tensor< 1, dim > > > &Du)
Definition divergence.h:471
Point< spacedim > point(const gp_Pnt &p, const double tolerance=1e-10)
Definition utilities.cc:191
SymmetricTensor< 2, dim, Number > C(const Tensor< 2, dim, Number > &F)
SymmetricTensor< 2, dim, Number > e(const Tensor< 2, dim, Number > &F)
SymmetricTensor< 2, dim, Number > d(const Tensor< 2, dim, Number > &F, const Tensor< 2, dim, Number > &dF_dt)
@ LOW_STORAGE_RK_STAGE9_ORDER5
@ LOW_STORAGE_RK_STAGE3_ORDER3
@ LOW_STORAGE_RK_STAGE7_ORDER4
@ LOW_STORAGE_RK_STAGE5_ORDER4
VectorType::value_type * begin(VectorType &V)
T sum(const T &t, const MPI_Comm mpi_communicator)
unsigned int n_mpi_processes(const MPI_Comm mpi_communicator)
Definition mpi.cc:92
T max(const T &t, const MPI_Comm mpi_communicator)
T min(const T &t, const MPI_Comm mpi_communicator)
unsigned int this_mpi_process(const MPI_Comm mpi_communicator)
Definition mpi.cc:107
T reduce(const T &local_value, const MPI_Comm comm, const std::function< T(const T &, const T &)> &combiner, const unsigned int root_process=0)
std::string get_time()
std::string get_current_vectorization_level()
Definition utilities.cc:938
Number truncate_to_n_digits(const Number number, const unsigned int n_digits)
Definition utilities.cc:578
std::string int_to_string(const unsigned int value, const unsigned int digits=numbers::invalid_unsigned_int)
Definition utilities.cc:470
constexpr T pow(const T base, const int iexp)
Definition utilities.h:966
void project(const Mapping< dim, spacedim > &mapping, const DoFHandler< dim, spacedim > &dof, const AffineConstraints< typename VectorType::value_type > &constraints, const Quadrature< dim > &quadrature, const Function< spacedim, typename VectorType::value_type > &function, VectorType &vec, const bool enforce_zero_boundary=false, const Quadrature< dim - 1 > &q_boundary=(dim > 1 ? QGauss< dim - 1 >(2) :Quadrature< dim - 1 >()), const bool project_to_boundary_first=false)
void run(const Iterator &begin, const std_cxx20::type_identity_t< Iterator > &end, Worker worker, Copier copier, const ScratchData &sample_scratch_data, const CopyData &sample_copy_data, const unsigned int queue_length, const unsigned int chunk_size)
long double gamma(const unsigned int n)
void copy(const T *begin, const T *end, U *dest)
int(&) functions(const void *v1, const void *v2)
void reinit(MatrixBlock< MatrixType > &v, const BlockSparsityPattern &p)
static constexpr double PI
Definition numbers.h:254
const types::boundary_id internal_face_boundary_id
Definition types.h:312
static const unsigned int invalid_unsigned_int
Definition types.h:220
void transform(const InputIterator &begin_in, const InputIterator &end_in, OutputIterator out, const Function &function, const unsigned int grainsize)
Definition parallel.h:165
STL namespace.
::VectorizedArray< Number, width > exp(const ::VectorizedArray< Number, width > &)
::VectorizedArray< Number, width > min(const ::VectorizedArray< Number, width > &, const ::VectorizedArray< Number, width > &)
::VectorizedArray< Number, width > max(const ::VectorizedArray< Number, width > &, const ::VectorizedArray< Number, width > &)
::VectorizedArray< Number, width > sqrt(const ::VectorizedArray< Number, width > &)
::VectorizedArray< Number, width > pow(const ::VectorizedArray< Number, width > &, const Number p)
::VectorizedArray< Number, width > abs(const ::VectorizedArray< Number, width > &)
Definition types.h:32
unsigned int boundary_id
Definition types.h:144
const ::parallel::distributed::Triangulation< dim, spacedim > * triangulation