16#ifndef dealii_matrix_free_evaluation_kernels_h
17#define dealii_matrix_free_evaluation_kernels_h
36 template <MatrixFreeFunctions::ElementType element,
bool is_
long>
40 template <
bool is_
long>
58 template <
bool is_
long>
77 template <
bool is_
long>
127 evaluate(
const unsigned int n_components,
129 const Number *values_dofs_actual,
133 integrate(
const unsigned int n_components,
135 Number *values_dofs_actual,
137 const bool add_into_values_array);
142 *univariate_shape_data)
165 template <
int dim,
int fe_degree,
int n_q_po
ints_1d,
typename Number>
173 evaluate(
const unsigned int n_components,
175 const Number *values_dofs_actual,
179 integrate(
const unsigned int n_components,
181 Number *values_dofs_actual,
183 const bool add_into_values_array);
195 const unsigned int n_components,
197 const Number *values_dofs_actual,
203 std::array<const MatrixFreeFunctions::UnivariateShapeData<Number2> *, 3>
204 univariate_shape_data;
208 univariate_shape_data.fill(&shape_data.front());
210 if (shape_data.size() == dim)
211 for (
int i = 1; i < dim; ++i)
212 univariate_shape_data[i] = &shape_data[i];
214 Eval eval0 = create_evaluator_tensor_product(univariate_shape_data[0]);
215 Eval eval1 = create_evaluator_tensor_product(univariate_shape_data[1]);
216 Eval eval2 = create_evaluator_tensor_product(univariate_shape_data[2]);
218 const unsigned int temp_size =
221 (Eval::n_rows_of_product > Eval::n_columns_of_product ?
222 Eval::n_rows_of_product :
223 Eval::n_columns_of_product);
228 temp2 = temp1 +
std::max(Utilities::fixed_power<dim>(
229 shape_data.front().fe_degree + 1),
230 Utilities::fixed_power<dim>(
231 shape_data.front().n_q_points_1d));
235 temp2 = temp1 + temp_size;
238 const std::size_t n_q_points = temp_size == 0 ?
240 Eval::n_columns_of_product;
241 const std::size_t dofs_per_comp =
245 const Number *values_dofs = values_dofs_actual;
248 const std::size_t n_dofs_per_comp =
250 Number *values_dofs_tmp =
251 temp1 + 2 * (
std::max(n_dofs_per_comp, n_q_points));
253 fe_degree != -1 ? fe_degree : shape_data.front().fe_degree;
254 for (
unsigned int c = 0; c < n_components; ++c)
255 for (
int i = 0, count_p = 0, count_q = 0;
256 i < (dim > 2 ? degree + 1 : 1);
259 for (
int j = 0; j < (dim > 1 ? degree + 1 - i : 1); ++j)
261 for (
int k = 0; k < degree + 1 - j - i;
262 ++k, ++count_p, ++count_q)
263 values_dofs_tmp[c * dofs_per_comp + count_q] =
264 values_dofs_actual[c * n_dofs_per_comp + count_p];
265 for (
int k = degree + 1 - j - i; k < degree + 1;
267 values_dofs_tmp[c * dofs_per_comp + count_q] = Number();
269 for (
int j = degree + 1 - i; j < degree + 1; ++j)
270 for (
int k = 0; k < degree + 1; ++k, ++count_q)
271 values_dofs_tmp[c * dofs_per_comp + count_q] = Number();
273 values_dofs = values_dofs_tmp;
282 for (
unsigned int c = 0; c < n_components; ++c)
285 eval0.template values<0, true, false>(values_dofs, values_quad);
287 eval0.template gradients<0, true, false>(values_dofs,
291 values_dofs += dofs_per_comp;
292 values_quad += n_q_points;
293 gradients_quad += n_q_points;
298 for (
unsigned int c = 0; c < n_components; ++c)
303 eval0.template gradients<0, true, false>(values_dofs, temp1);
304 eval1.template values<1, true, false, 2>(temp1,
309 eval0.template values<0, true, false>(values_dofs, temp1);
311 eval1.template gradients<1, true, false, 2>(temp1,
316 eval1.template values<1, true, false>(temp1, values_quad);
319 values_dofs += dofs_per_comp;
320 values_quad += n_q_points;
321 gradients_quad += 2 * n_q_points;
326 for (
unsigned int c = 0; c < n_components; ++c)
331 eval0.template gradients<0, true, false>(values_dofs, temp1);
332 eval1.template values<1, true, false>(temp1, temp2);
333 eval2.template values<2, true, false, 3>(temp2,
338 eval0.template values<0, true, false>(values_dofs, temp1);
341 eval1.template gradients<1, true, false>(temp1, temp2);
342 eval2.template values<2, true, false, 3>(temp2,
348 eval1.template values<1, true, false>(temp1, temp2);
350 eval2.template gradients<2, true, false, 3>(temp2,
356 eval2.template values<2, true, false>(temp2, values_quad);
359 values_dofs += dofs_per_comp;
360 values_quad += n_q_points;
361 gradients_quad += 3 * n_q_points;
374 values_quad -= n_components * n_q_points;
375 values_dofs -= n_components * dofs_per_comp;
376 for (std::size_t c = 0; c < n_components; ++c)
377 for (std::size_t q = 0; q < n_q_points; ++q)
378 values_quad[c * n_q_points + q] +=
379 values_dofs[(c + 1) * dofs_per_comp - 1];
392 const unsigned int n_components,
394 Number *values_dofs_actual,
396 const bool add_into_values_array)
398 std::array<const MatrixFreeFunctions::UnivariateShapeData<Number2> *, 3>
399 univariate_shape_data;
402 univariate_shape_data.fill(&shape_data.front());
404 if (shape_data.size() == dim)
405 for (
int i = 1; i < dim; ++i)
406 univariate_shape_data[i] = &shape_data[i];
408 Eval eval0 = create_evaluator_tensor_product(univariate_shape_data[0]);
409 Eval eval1 = create_evaluator_tensor_product(univariate_shape_data[1]);
410 Eval eval2 = create_evaluator_tensor_product(univariate_shape_data[2]);
412 const unsigned int temp_size =
415 (Eval::n_rows_of_product > Eval::n_columns_of_product ?
416 Eval::n_rows_of_product :
417 Eval::n_columns_of_product);
422 temp2 = temp1 +
std::max(Utilities::fixed_power<dim>(
423 shape_data.front().fe_degree + 1),
424 Utilities::fixed_power<dim>(
425 shape_data.front().n_q_points_1d));
429 temp2 = temp1 + temp_size;
432 const std::size_t n_q_points = temp_size == 0 ?
434 Eval::n_columns_of_product;
435 const unsigned int dofs_per_comp =
437 Utilities::fixed_power<dim>(shape_data.front().fe_degree + 1) :
440 Number *values_dofs =
442 temp1 + 2 * (std::max<std::size_t>(
453 for (
unsigned int c = 0; c < n_components; ++c)
457 if (add_into_values_array ==
false)
458 eval0.template values<0, false, false>(values_quad,
461 eval0.template values<0, false, true>(values_quad,
467 add_into_values_array ==
true)
468 eval0.template gradients<0, false, true>(gradients_quad,
471 eval0.template gradients<0, false, false>(gradients_quad,
476 values_dofs += dofs_per_comp;
477 values_quad += n_q_points;
478 gradients_quad += n_q_points;
483 for (
unsigned int c = 0; c < n_components; ++c)
488 eval1.template values<1, false, false>(values_quad, temp1);
489 if (add_into_values_array ==
false)
490 eval0.template values<0, false, false>(temp1, values_dofs);
492 eval0.template values<0, false, true>(temp1, values_dofs);
496 eval1.template gradients<1, false, false, 2>(gradients_quad +
500 eval1.template values<1, false, true>(values_quad, temp1);
501 if (add_into_values_array ==
false)
502 eval0.template values<0, false, false>(temp1, values_dofs);
504 eval0.template values<0, false, true>(temp1, values_dofs);
505 eval1.template values<1, false, false, 2>(gradients_quad,
507 eval0.template gradients<0, false, true>(temp1, values_dofs);
511 values_dofs += dofs_per_comp;
512 values_quad += n_q_points;
513 gradients_quad += 2 * n_q_points;
518 for (
unsigned int c = 0; c < n_components; ++c)
523 eval2.template values<2, false, false>(values_quad, temp1);
524 eval1.template values<1, false, false>(temp1, temp2);
525 if (add_into_values_array ==
false)
526 eval0.template values<0, false, false>(temp2, values_dofs);
528 eval0.template values<0, false, true>(temp2, values_dofs);
532 eval2.template gradients<2, false, false, 3>(gradients_quad +
536 eval2.template values<2, false, true>(values_quad, temp1);
537 eval1.template values<1, false, false>(temp1, temp2);
538 eval2.template values<2, false, false, 3>(gradients_quad + 1,
540 eval1.template gradients<1, false, true>(temp1, temp2);
541 if (add_into_values_array ==
false)
542 eval0.template values<0, false, false>(temp2, values_dofs);
544 eval0.template values<0, false, true>(temp2, values_dofs);
545 eval2.template values<2, false, false, 3>(gradients_quad,
547 eval1.template values<1, false, false>(temp1, temp2);
548 eval0.template gradients<0, false, true>(temp2, values_dofs);
552 values_dofs += dofs_per_comp;
553 values_quad += n_q_points;
554 gradients_quad += 3 * n_q_points;
565 values_dofs -= n_components * dofs_per_comp - dofs_per_comp + 1;
566 values_quad -= n_components * n_q_points;
568 for (
unsigned int c = 0; c < n_components; ++c)
570 values_dofs[0] = values_quad[0];
571 for (
unsigned int q = 1; q < n_q_points; ++q)
572 values_dofs[0] += values_quad[q];
573 values_dofs += dofs_per_comp;
574 values_quad += n_q_points;
578 for (
unsigned int c = 0; c < n_components; ++c)
579 values_dofs[c * dofs_per_comp] = Number();
580 values_dofs += n_components * dofs_per_comp;
586 const std::size_t n_dofs_per_comp =
588 values_dofs -= dofs_per_comp * n_components;
590 fe_degree != -1 ? fe_degree : shape_data.front().fe_degree;
591 for (
unsigned int c = 0; c < n_components; ++c)
592 for (
int i = 0, count_p = 0, count_q = 0;
593 i < (dim > 2 ? degree + 1 : 1);
596 for (
int j = 0; j < (dim > 1 ? degree + 1 - i : 1); ++j)
598 for (
int k = 0; k < degree + 1 - j - i;
599 ++k, ++count_p, ++count_q)
600 values_dofs_actual[c * n_dofs_per_comp + count_p] =
601 values_dofs[c * dofs_per_comp + count_q];
604 count_q += i * (degree + 1);
611 template <
int dim,
int fe_degree,
int n_q_po
ints_1d,
typename Number>
618 Number>::evaluate(
const unsigned int n_components,
620 const Number *values_dofs_actual,
625 const std::size_t n_dofs =
636 const auto *
const shape_values = shape_data.front().shape_values.data();
638 const auto *in = values_dofs_actual;
640 for (
unsigned int c = 0; c < n_components; ++c)
647 shape_values, in, out, n_dofs, n_q_points, 1, 1);
656 const auto *
const shape_gradients =
657 shape_data.front().shape_gradients.data();
659 const auto *in = values_dofs_actual;
661 for (
unsigned int c = 0; c < n_components; ++c)
668 shape_gradients, in, out, n_dofs, n_q_points * dim, 1, 1);
669 out += n_q_points * dim;
677 template <
int dim,
int fe_degree,
int n_q_po
ints_1d,
typename Number>
684 Number>::integrate(
const unsigned int n_components,
686 Number *values_dofs_actual,
688 const bool add_into_values_array)
693 const std::size_t n_dofs =
704 const auto *
const shape_values = shape_data.front().shape_values.data();
706 auto *out = values_dofs_actual;
708 for (
unsigned int c = 0; c < n_components; ++c)
710 if (add_into_values_array ==
false)
716 shape_values, in, out, n_dofs, n_q_points, 1, 1);
723 shape_values, in, out, n_dofs, n_q_points, 1, 1);
732 const auto *
const shape_gradients =
733 shape_data.front().shape_gradients.data();
735 auto *out = values_dofs_actual;
737 for (
unsigned int c = 0; c < n_components; ++c)
739 if (add_into_values_array ==
false &&
746 shape_gradients, in, out, n_dofs, n_q_points * dim, 1, 1);
753 shape_gradients, in, out, n_dofs, n_q_points * dim, 1, 1);
755 in += n_q_points * dim;
779 static_assert(basis_size_1 == 0 || basis_size_1 <= basis_size_2,
780 "The second dimension must not be smaller than the first");
804 template <
typename Number,
typename Number2>
811 const Number *values_in,
813 const unsigned int basis_size_1_variable =
815 const unsigned int basis_size_2_variable =
819 basis_size_1 != 0 || basis_size_1_variable <= basis_size_2_variable,
820 ExcMessage(
"The second dimension must not be smaller than the first"));
828 constexpr int next_dim = (dim == 1 || (dim == 2 && basis_size_1 > 0 &&
829 basis_size_1 == basis_size_2)) ?
836 (basis_size_1 == 0 ? 0 : basis_size_2),
839 eval_val(transformation_matrix,
842 basis_size_1_variable,
843 basis_size_2_variable);
844 const unsigned int np_1 =
845 basis_size_1 > 0 ? basis_size_1 : basis_size_1_variable;
846 const unsigned int np_2 =
847 basis_size_1 > 0 ? basis_size_2 : basis_size_2_variable;
849 ExcMessage(
"Cannot transform with 0-point basis"));
851 ExcMessage(
"Cannot transform with 0-point basis"));
855 values_in = values_in + n_components * Utilities::fixed_power<dim>(np_1);
857 values_out + n_components * Utilities::fixed_power<dim>(np_2);
858 for (
unsigned int c = n_components; c != 0; --c)
860 values_in -= Utilities::fixed_power<dim>(np_1);
861 values_out -= Utilities::fixed_power<dim>(np_2);
863 for (
unsigned int q = np_1; q != 0; --q)
870 transformation_matrix,
872 (q - 1) * Utilities::fixed_power<next_dim>(np_1),
874 (q - 1) * Utilities::fixed_power<next_dim>(np_2),
875 basis_size_1_variable,
876 basis_size_2_variable);
881 if (basis_size_1 > 0 && basis_size_2 == basis_size_1 && dim == 2)
883 eval_val.template values<0, true, false>(values_in, values_out);
884 eval_val.template values<1, true, false>(values_out, values_out);
887 eval_val.template values<dim - 1,
true,
false>(values_in,
890 eval_val.template values<dim - 1,
true,
false>(values_out,
925 template <
typename Number,
typename Number2>
932 const bool add_into_result,
935 const unsigned int basis_size_1_variable =
937 const unsigned int basis_size_2_variable =
941 basis_size_1 != 0 || basis_size_1_variable <= basis_size_2_variable,
942 ExcMessage(
"The second dimension must not be smaller than the first"));
943 Assert(add_into_result ==
false || values_in != values_out,
945 "Input and output cannot alias with each other when "
946 "adding the result of the basis change to existing data"));
952 constexpr int next_dim =
954 ((basis_size_1 == 0 || basis_size_2 > basis_size_1) && dim > 1)) ?
960 (basis_size_1 == 0 ? 0 : basis_size_2),
963 eval_val(transformation_matrix,
964 transformation_matrix,
965 transformation_matrix,
966 basis_size_1_variable,
967 basis_size_2_variable);
968 const unsigned int np_1 =
969 basis_size_1 > 0 ? basis_size_1 : basis_size_1_variable;
970 const unsigned int np_2 =
971 basis_size_1 > 0 ? basis_size_2 : basis_size_2_variable;
973 ExcMessage(
"Cannot transform with 0-point basis"));
975 ExcMessage(
"Cannot transform with 0-point basis"));
977 for (
unsigned int c = 0; c < n_components; ++c)
979 if (basis_size_1 > 0 && basis_size_2 == basis_size_1 && dim == 2)
982 eval_val.template values<1, false, false>(values_in, values_in);
984 eval_val.template hessians<1, false, false>(values_in,
990 eval_val.template values<0, false, true>(values_in,
993 eval_val.template hessians<0, false, true>(values_in,
999 eval_val.template values<0, false, false>(values_in,
1002 eval_val.template hessians<0, false, false>(values_in,
1008 if (dim == 1 && add_into_result)
1011 eval_val.template values<0, false, true>(values_in,
1014 eval_val.template hessians<0, false, true>(values_in,
1020 eval_val.template values<0, false, false>(values_in,
1023 eval_val.template hessians<0, false, false>(values_in,
1029 eval_val.template values<dim - 1,
false,
false>(values_in,
1032 eval_val.template hessians<dim - 1,
false,
false>(
1033 values_in, values_in);
1037 for (
unsigned int q = 0; q < np_1; ++q)
1044 transformation_matrix,
1047 q * Utilities::fixed_power<next_dim>(np_2),
1049 q * Utilities::fixed_power<next_dim>(np_1),
1050 basis_size_1_variable,
1051 basis_size_2_variable);
1053 values_in += Utilities::fixed_power<dim>(np_2);
1054 values_out += Utilities::fixed_power<dim>(np_1);
1078 template <
typename Number,
typename Number2>
1083 const Number *values_in,
1084 Number *scratch_data,
1087 constexpr int next_dim = dim > 1 ? dim - 1 : dim;
1088 Number *my_scratch =
1089 basis_size_1 != basis_size_2 ? scratch_data : values_out;
1091 const unsigned int size_per_component =
Utilities::pow(basis_size_2, dim);
1092 Assert(coefficients.
size() == size_per_component ||
1093 coefficients.
size() == n_components * size_per_component,
1095 const unsigned int stride =
1096 coefficients.
size() == size_per_component ? 0 : 1;
1098 for (
unsigned int q = basis_size_1; q != 0; --q)
1105 transformation_matrix,
1118 eval_val(transformation_matrix);
1119 const unsigned int n_inner_blocks =
1120 (dim > 1 && basis_size_2 < 10) ? basis_size_2 : 1;
1121 const unsigned int n_blocks =
Utilities::pow(basis_size_2, dim - 1);
1122 for (
unsigned int ii = 0; ii < n_blocks; ii += n_inner_blocks)
1123 for (
unsigned int c = 0; c < n_components; ++c)
1125 for (
unsigned int i = ii; i < ii + n_inner_blocks; ++i)
1126 eval_val.template values_one_line<dim - 1, true, false>(
1127 my_scratch + i, my_scratch + i);
1128 for (
unsigned int q = 0; q < basis_size_2; ++q)
1129 for (
unsigned int i = ii; i < ii + n_inner_blocks; ++i)
1130 my_scratch[i + q * n_blocks + c * size_per_component] *=
1131 coefficients[i + q * n_blocks +
1132 c * stride * size_per_component];
1133 for (
unsigned int i = ii; i < ii + n_inner_blocks; ++i)
1134 eval_val.template values_one_line<dim - 1, false, false>(
1135 my_scratch + i, my_scratch + i);
1137 for (
unsigned int q = 0; q < basis_size_1; ++q)
1144 transformation_matrix,
1160 template <
int n_po
ints_1d,
int dim,
typename Number,
typename Number2>
1164 const Number *values,
1168 (n_points_1d + 1) / 2 * n_points_1d);
1186 eval.template gradients<0, true, false>(values, gradients);
1190 eval.template gradients<2, true, false, dim>(values, gradients + 2);
1191 constexpr unsigned int loop_bound = (dim > 2 ? n_points_1d : 1);
1192 constexpr unsigned int n_points_2d = n_points_1d * n_points_1d;
1193 const Number *in = values + (loop_bound - 1) * n_points_2d;
1194 Number *out = gradients + (loop_bound - 1) * dim * n_points_2d;
1195 for (
unsigned int l = 0; l < loop_bound; ++l)
1197 eval_2d.template gradients<0, true, false, dim>(in, out);
1198 eval_2d.template gradients<1, true, false, dim>(in, out + 1);
1200 out -= dim * n_points_2d;
1214 template <
int n_po
ints_1d,
int dim,
typename Number,
typename Number2>
1219 const Number *gradients,
1220 const bool add_into_values_array)
1223 (n_points_1d + 1) / 2 * n_points_1d);
1242 if (add_into_values_array)
1243 eval.template gradients<0, false, true>(gradients, values);
1245 eval.template gradients<0, false, false>(gradients, values);
1249 constexpr unsigned int loop_bound = (dim > 2 ? n_points_1d : 1);
1250 constexpr unsigned int n_points_2d = n_points_1d * n_points_1d;
1252 const Number *in = gradients + (loop_bound - 1) * dim * n_points_2d;
1253 Number *out = values + (loop_bound - 1) * n_points_2d;
1254 for (
unsigned int l = 0; l < loop_bound; ++l)
1256 if (add_into_values_array)
1257 eval_2d.template gradients<0, false, true, dim>(in, out);
1259 eval_2d.template gradients<0, false, false, dim>(in, out);
1260 eval_2d.template gradients<1, false, true, dim>(in + 1, out);
1261 in -= dim * n_points_2d;
1266 eval.template gradients<2, false, true, dim>(gradients + 2, values);
1277 template <
int n_po
ints_1d,
int dim,
typename Number>
1308 for (
unsigned int comp = 0; comp < n_components; ++comp)
1311 eval.template hessians<0, true, false>(values, hessians);
1317 eval.template gradients<0, true, false>(values, scratch);
1318 eval.template gradients<1, true, false>(scratch,
1319 hessians + dim * n_points);
1321 eval.template hessians<1, true, false>(values, hessians + n_points);
1326 eval.template gradients<2, true, false>(scratch,
1327 hessians + 4 * n_points);
1329 eval.template gradients<1, true, false>(values, scratch);
1330 eval.template gradients<2, true, false>(scratch,
1331 hessians + 5 * n_points);
1333 eval.template hessians<2, true, false>(values,
1334 hessians + 2 * n_points);
1338 hessians += (dim * (dim + 1)) / 2 * n_points;
1350 template <
int n_q_po
ints_1d,
int dim,
typename Number>
1354 const bool add_into_values_array)
1379 for (
unsigned int comp = 0; comp < n_components; ++comp)
1382 if (add_into_values_array ==
true)
1383 eval.template hessians<0, false, true>(hessians, values);
1385 eval.template hessians<0, false, false>(hessians, values);
1389 eval.template hessians<1, false, true>(hessians + n_points, values);
1393 eval.template hessians<2, false, true>(hessians + 2 * n_points,
1396 eval.template gradients<2, false, false>(hessians + 5 * n_points,
1398 eval.template gradients<1, false, true>(scratch, values);
1401 eval.template gradients<2, false, false>(hessians + 4 * n_points,
1408 eval.template gradients<1,
false, (dim > 2)>(hessians +
1411 eval.template gradients<0, false, true>(scratch, values);
1415 hessians += (dim * (dim + 1)) / 2 * n_points;
1427 template <
int dim,
typename Number>
1430 const Number *values_dofs,
1436 using Eval =
typename Impl::Eval;
1438 Impl::create_evaluator_tensor_product(&univariate_shape_data[0]);
1439 Eval eval1 = Impl::create_evaluator_tensor_product(
1440 &univariate_shape_data[std::min<int>(1,
1441 univariate_shape_data.size() - 1)]);
1442 Eval eval2 = Impl::create_evaluator_tensor_product(
1443 &univariate_shape_data[std::min<int>(2,
1444 univariate_shape_data.size() - 1)]);
1449 tmp1 +
std::max(Utilities::fixed_power<dim>(
1450 univariate_shape_data.front().fe_degree + 1),
1451 Utilities::fixed_power<dim>(
1452 univariate_shape_data.front().n_q_points_1d));
1455 for (
unsigned int comp = 0; comp < n_components;
1457 hessians += n_points * dim * (dim + 1) / 2,
1463 eval0.template hessians<0, true, false>(values_dofs, hessians);
1467 eval0.template hessians<0, true, false>(values_dofs, tmp1);
1468 eval1.template values<1, true, false>(tmp1, hessians);
1470 eval0.template gradients<0, true, false>(values_dofs, tmp1);
1471 eval1.template gradients<1, true, false>(tmp1,
1472 hessians + 2 * n_points);
1474 eval0.template values<0, true, false>(values_dofs, tmp1);
1475 eval1.template hessians<1, true, false>(tmp1, hessians + n_points);
1479 eval0.template hessians<0, true, false>(values_dofs, tmp1);
1480 eval1.template values<1, true, false>(tmp1, tmp2);
1481 eval2.template values<2, true, false>(tmp2, hessians);
1483 eval0.template gradients<0, true, false>(values_dofs, tmp1);
1484 eval1.template gradients<1, true, false>(tmp1, tmp2);
1485 eval2.template values<2, true, false>(tmp2,
1486 hessians + 3 * n_points);
1488 eval1.template values<1, true, false>(tmp1, tmp2);
1489 eval2.template gradients<2, true, false>(tmp2,
1490 hessians + 4 * n_points);
1492 eval0.template values<0, true, false>(values_dofs, tmp1);
1493 eval1.template hessians<1, true, false>(tmp1, tmp2);
1494 eval2.template values<2, true, false>(tmp2, hessians + n_points);
1496 eval1.template gradients<1, true, false>(tmp1, tmp2);
1497 eval2.template gradients<2, true, false>(tmp2,
1498 hessians + 5 * n_points);
1500 eval1.template values<1, true, false>(tmp1, tmp2);
1501 eval2.template hessians<2, true, false>(tmp2,
1502 hessians + 2 * n_points);
1508 "Only 1d, 2d and 3d implemented for Hessian"));
1521 template <
int dim,
typename Number>
1525 Number *values_dofs,
1526 const bool add_into_values_array)
1531 using Eval =
typename Impl::Eval;
1533 Impl::create_evaluator_tensor_product(&univariate_shape_data[0]);
1534 Eval eval1 = Impl::create_evaluator_tensor_product(
1535 &univariate_shape_data[std::min<int>(1,
1536 univariate_shape_data.size() - 1)]);
1537 Eval eval2 = Impl::create_evaluator_tensor_product(
1538 &univariate_shape_data[std::min<int>(2,
1539 univariate_shape_data.size() - 1)]);
1544 tmp1 +
std::max(Utilities::fixed_power<dim>(
1545 univariate_shape_data.front().fe_degree + 1),
1546 Utilities::fixed_power<dim>(
1547 univariate_shape_data.front().n_q_points_1d));
1550 for (
unsigned int comp = 0; comp < n_components;
1552 hessians += n_points * dim * (dim + 1) / 2,
1558 if (add_into_values_array)
1559 eval0.template hessians<0, false, true>(hessians, values_dofs);
1561 eval0.template hessians<0, false, false>(hessians, values_dofs);
1565 eval1.template values<1, false, false>(hessians, tmp1);
1566 if (add_into_values_array)
1567 eval0.template hessians<0, false, true>(tmp1, values_dofs);
1569 eval0.template hessians<0, false, false>(tmp1, values_dofs);
1572 eval1.template gradients<1, false, false>(hessians + 2 * n_points,
1574 eval0.template gradients<0, false, true>(tmp1, values_dofs);
1576 eval1.template hessians<1, false, false>(hessians + n_points, tmp1);
1577 eval0.template values<0, false, true>(tmp1, values_dofs);
1581 eval2.template values<2, false, false>(hessians, tmp1);
1582 eval1.template values<1, false, false>(tmp1, tmp2);
1584 if (add_into_values_array)
1585 eval0.template hessians<0, false, true>(tmp2, values_dofs);
1587 eval0.template hessians<0, false, false>(tmp2, values_dofs);
1590 eval2.template values<2, false, false>(hessians + 3 * n_points,
1592 eval1.template gradients<1, false, false>(tmp1, tmp2);
1594 eval2.template gradients<2, false, false>(hessians + 4 * n_points,
1596 eval1.template values<1, false, true>(tmp1, tmp2);
1597 eval1.template values<0, false, true>(tmp2, values_dofs);
1600 eval2.template values<2, false, false>(hessians + n_points, tmp1);
1601 eval1.template hessians<1, false, false>(tmp1, tmp2);
1604 eval2.template gradients<2, false, false>(hessians + 5 * n_points,
1606 eval1.template gradients<1, false, true>(tmp1, tmp2);
1609 eval2.template hessians<2, false, false>(hessians + 2 * n_points,
1611 eval1.template values<1, false, true>(tmp1, tmp2);
1612 eval0.template values<0, false, true>(tmp2, values_dofs);
1618 "Only 1d, 2d and 3d implemented for Hessian"));
1636 template <
int dim,
int fe_degree,
typename Number>
1651 const Number *values_dofs,
1654 constexpr std::size_t n_points =
Utilities::pow(fe_degree + 1, dim);
1656 for (
unsigned int c = 0; c < n_components; ++c)
1659 for (
unsigned int i = 0; i < n_points; ++i)
1661 values_dofs[n_points * c + i];
1664 evaluate_gradients_collocation<fe_degree + 1, dim>(
1666 values_dofs + c * n_points,
1674 Number *values_dofs,
1676 const bool add_into_values_array)
1678 constexpr std::size_t n_points =
Utilities::pow(fe_degree + 1, dim);
1680 for (
unsigned int c = 0; c < n_components; ++c)
1684 if (add_into_values_array)
1685 for (
unsigned int i = 0; i < n_points; ++i)
1686 values_dofs[n_points * c + i] +=
1689 for (
unsigned int i = 0; i < n_points; ++i)
1690 values_dofs[n_points * c + i] =
1695 integrate_gradients_collocation<fe_degree + 1, dim>(
1697 values_dofs + c * n_points,
1699 add_into_values_array ||
1717 template <
int dim,
int fe_degree,
int n_q_po
ints_1d,
typename Number>
1723 const Number *values_dofs,
1728 Assert(n_q_points_1d > fe_degree,
1729 ExcMessage(
"You lose information when going to a collocation "
1730 "space of lower degree, so the evaluation results "
1731 "would be wrong. Thus, this class does not permit "
1732 "the chosen operation."));
1733 constexpr std::size_t n_dofs =
Utilities::pow(fe_degree + 1, dim);
1734 constexpr std::size_t n_q_points =
Utilities::pow(n_q_points_1d, dim);
1736 for (
unsigned int c = 0; c < n_components; ++c)
1742 (fe_degree >= n_q_points_1d ? n_q_points_1d : fe_degree + 1),
1743 n_q_points_1d>::do_forward(1,
1744 shape_data.shape_values_eo,
1745 values_dofs + c * n_dofs,
1750 evaluate_gradients_collocation<n_q_points_1d, dim>(
1760 Number *values_dofs,
1762 const bool add_into_values_array)
1766 Assert(n_q_points_1d > fe_degree,
1767 ExcMessage(
"You lose information when going to a collocation "
1768 "space of lower degree, so the evaluation results "
1769 "would be wrong. Thus, this class does not permit "
1770 "the chosen operation."));
1771 constexpr std::size_t n_q_points =
Utilities::pow(n_q_points_1d, dim);
1773 for (
unsigned int c = 0; c < n_components; ++c)
1777 integrate_gradients_collocation<n_q_points_1d, dim>(
1789 (fe_degree >= n_q_points_1d ? n_q_points_1d : fe_degree + 1),
1790 n_q_points_1d>::do_backward(1,
1791 shape_data.shape_values_eo,
1792 add_into_values_array,
1807 template <
int dim,
int fe_degree,
int n_q_po
ints_1d,
typename Number>
1817 template <
bool integrate>
1819 evaluate_or_integrate(
1821 Number *values_dofs_actual,
1823 const bool add_into_values_array =
false);
1828 template <
int dim,
int fe_degree,
int n_q_po
ints_1d,
typename Number>
1829 template <
bool integrate>
1836 evaluate_or_integrate(
1838 Number *values_dofs,
1842 Assert(dim == 2 || dim == 3,
1843 ExcMessage(
"Only dim = 2,3 implemented for Raviart-Thomas "
1844 "evaluation/integration"));
1858 const unsigned int dofs_per_component =
1860 const unsigned int n_points =
Utilities::pow(n_q_points_1d, dim);
1871 integrate_gradients_collocation<n_q_points_1d, dim>(shape_data[0],
1875 if constexpr (dim > 2)
1876 eval.template tangential<2, 0>(shape_data[1], values, values);
1877 eval.template tangential<1, 0>(shape_data[1], values, values);
1878 eval.template normal<0>(shape_data[0], values, values_dofs, add);
1881 gradients += n_points * dim;
1882 values_dofs += dofs_per_component;
1885 integrate_gradients_collocation<n_q_points_1d, dim>(shape_data[0],
1889 if constexpr (dim > 2)
1890 eval.template tangential<2, 1>(shape_data[1], values, values);
1891 eval.template tangential<0, 1>(shape_data[1], values, values);
1892 eval.template normal<1>(shape_data[0], values, values_dofs, add);
1894 if constexpr (dim > 2)
1897 gradients += n_points * dim;
1898 values_dofs += dofs_per_component;
1901 integrate_gradients_collocation<n_q_points_1d, dim>(shape_data[0],
1905 eval.template tangential<1, 2>(shape_data[1], values, values);
1906 eval.template tangential<0, 2>(shape_data[1], values, values);
1907 eval.template normal<0>(shape_data[0], values, values_dofs, add);
1914 eval.template normal<0>(shape_data[0], values_dofs, values);
1915 eval.template tangential<1, 0>(shape_data[1], values, values);
1916 if constexpr (dim > 2)
1917 eval.template tangential<2, 0>(shape_data[1], values, values);
1919 evaluate_gradients_collocation<n_q_points_1d, dim>(shape_data[0],
1924 gradients += n_points * dim;
1925 values_dofs += dofs_per_component;
1927 eval.template normal<1>(shape_data[0], values_dofs, values);
1928 eval.template tangential<0, 1>(shape_data[1], values, values);
1929 if constexpr (dim > 2)
1930 eval.template tangential<2, 1>(shape_data[1], values, values);
1932 evaluate_gradients_collocation<n_q_points_1d, dim>(shape_data[0],
1936 if constexpr (dim > 2)
1939 gradients += n_points * dim;
1940 values_dofs += dofs_per_component;
1942 eval.template normal<2>(shape_data[0], values_dofs, values);
1943 eval.template tangential<0, 2>(shape_data[1], values, values);
1944 eval.template tangential<1, 2>(shape_data[1], values, values);
1946 evaluate_gradients_collocation<n_q_points_1d, dim>(shape_data[0],
1970 template <
int dim,
typename Number,
bool do_
integrate>
1973 template <
int fe_degree,
int n_q_po
ints_1d,
typename OtherNumber>
1975 run(
const unsigned int n_components,
1977 OtherNumber *values_dofs,
1979 const bool sum_into_values_array_in =
false)
1983 static_assert(std::is_same_v<Number, std::remove_const_t<OtherNumber>>,
1984 "Type of Number and of OtherNumber do not match.");
1991 element_type == ElementType::tensor_general) ||
1992 element_type == ElementType::tensor_raviart_thomas,
1996 bool sum_into_values_array = sum_into_values_array_in;
2002 if constexpr (do_integrate)
2006 integrate_hessians_collocation<n_q_points_1d>(
2015 sum_into_values_array);
2016 sum_into_values_array =
true;
2021 if (fe_degree >= 0 && fe_degree + 1 == n_q_points_1d &&
2022 element_type == ElementType::tensor_symmetric_collocation)
2030 sum_into_values_array);
2034 else if (fe_degree >= 0 &&
2036 element_type <= ElementType::tensor_symmetric)
2047 sum_into_values_array);
2049 else if (fe_degree >= 0 &&
2050 element_type <= ElementType::tensor_symmetric_no_collocation)
2061 sum_into_values_array);
2063 else if (element_type == ElementType::tensor_none)
2071 sum_into_values_array);
2073 else if (element_type == ElementType::tensor_symmetric_plus_dg0)
2080 Number>>(n_components,
2084 sum_into_values_array);
2086 else if (element_type == ElementType::truncated_tensor)
2097 sum_into_values_array);
2099 else if (element_type == ElementType::tensor_raviart_thomas)
2101 if constexpr (fe_degree > 0 && n_q_points_1d > 0 && dim > 1)
2108 template evaluate_or_integrate<do_integrate>(
2110 const_cast<Number *
>(values_dofs),
2112 sum_into_values_array);
2118 "in 2d/3d and with templated degree"));
2132 sum_into_values_array);
2141 evaluate_hessians_collocation<n_q_points_1d>(n_components, fe_eval);
2150 template <
typename T>
2153 const unsigned int n_components,
2155 const Number *values_dofs,
2157 const bool sum_into_values_array,
2158 std::bool_constant<false>)
2160 (void)sum_into_values_array;
2162 T::evaluate(n_components, evaluation_flag, values_dofs, fe_eval);
2165 template <
typename T>
2168 const unsigned int n_components,
2170 Number *values_dofs,
2172 const bool sum_into_values_array,
2173 std::bool_constant<true>)
2175 T::integrate(n_components,
2179 sum_into_values_array);
2182 template <
typename T,
typename OtherNumber>
2185 const unsigned int n_components,
2187 OtherNumber *values_dofs,
2189 const bool sum_into_values_array)
2191 evaluate_or_integrate<T>(n_components,
2195 sum_into_values_array,
2196 std::bool_constant<do_integrate>());
2206 template <
int dim,
typename Number>
2212 template <
int fe_degree,
int = 0>
2214 run(
const unsigned int n_components,
2216 const Number *in_array,
2219 const unsigned int given_degree =
2220 (fe_degree > -1) ? fe_degree :
2223 const unsigned int dofs_per_component =
2243 for (
unsigned int d = 0; d < n_components; ++d)
2245 const Number *in = in_array + d * dofs_per_component;
2246 Number *out = out_array + d * dofs_per_component;
2249 evaluator.template hessians<0, true, false>(in, out);
2251 evaluator.template hessians<1, true, false>(out, out);
2253 evaluator.template hessians<2, true, false>(out, out);
2255 for (
unsigned int q = 0; q < dofs_per_component; ++q)
2257 const Number inverse_JxW_q = Number(1.) / fe_eval.
JxW(q);
2258 for (
unsigned int d = 0; d < n_components; ++d)
2259 out_array[q + d * dofs_per_component] *= inverse_JxW_q;
2261 for (
unsigned int d = 0; d < n_components; ++d)
2263 Number *out = out_array + d * dofs_per_component;
2265 evaluator.template hessians<2, false, false>(out, out);
2267 evaluator.template hessians<1, false, false>(out, out);
2268 evaluator.template hessians<0, false, false>(out, out);
2282 template <
int dim,
typename Number>
2288 template <
int fe_degree,
int = 0>
2290 run(
const unsigned int n_desired_components,
2293 const bool dyadic_coefficients,
2294 const Number *in_array,
2297 const unsigned int given_degree =
2298 (fe_degree > -1) ? fe_degree :
2301 const unsigned int dofs_per_component =
2305 inverse_coefficients.
size() % dofs_per_component == 0,
2307 "Expected diagonal to be a multiple of scalar dof per cells"));
2309 if (!dyadic_coefficients)
2311 if (inverse_coefficients.
size() != dofs_per_component)
2313 inverse_coefficients.
size());
2319 inverse_coefficients.
size());
2339 const Number *in = in_array;
2340 Number *out = out_array;
2342 const Number *inv_coefficient = inverse_coefficients.
data();
2344 const unsigned int shift_coefficient =
2345 inverse_coefficients.
size() > dofs_per_component ? dofs_per_component :
2348 const auto n_comp_outer = dyadic_coefficients ? 1 : n_desired_components;
2349 const auto n_comp_inner = dyadic_coefficients ? n_desired_components : 1;
2351 for (
unsigned int d = 0; d < n_comp_outer; ++d)
2353 for (
unsigned int di = 0; di < n_comp_inner; ++di)
2355 const Number *in_ = in + di * dofs_per_component;
2356 Number *out_ = out + di * dofs_per_component;
2357 evaluator.template hessians<0, true, false>(in_, out_);
2359 evaluator.template hessians<1, true, false>(out_, out_);
2361 evaluator.template hessians<2, true, false>(out_, out_);
2363 if (dyadic_coefficients)
2365 const auto n_coeff_components =
2366 n_desired_components * n_desired_components;
2367 if (n_desired_components == dim)
2369 for (
unsigned int q = 0; q < dofs_per_component; ++q)
2370 vmult<dim>(&inv_coefficient[q * n_coeff_components],
2373 dofs_per_component);
2377 for (
unsigned int q = 0; q < dofs_per_component; ++q)
2378 vmult<-1>(&inv_coefficient[q * n_coeff_components],
2382 n_desired_components);
2386 for (
unsigned int q = 0; q < dofs_per_component; ++q)
2387 out[q] *= inv_coefficient[q];
2389 for (
unsigned int di = 0; di < n_comp_inner; ++di)
2391 Number *out_ = out + di * dofs_per_component;
2393 evaluator.template hessians<2, false, false>(out_, out_);
2395 evaluator.template hessians<1, false, false>(out_, out_);
2396 evaluator.template hessians<0, false, false>(out_, out_);
2399 in += dofs_per_component;
2400 out += dofs_per_component;
2401 inv_coefficient += shift_coefficient;
2408 template <
int n_components>
2410 vmult(
const Number *inverse_coefficients,
2413 const unsigned int dofs_per_component,
2414 const unsigned int n_given_components = 0)
2416 const unsigned int n_desired_components =
2417 (n_components > -1) ? n_components : n_given_components;
2419 std::array<Number, dim + 2> tmp = {};
2420 Assert(n_desired_components <= dim + 2,
2422 "Number of components larger than dim+2 not supported."));
2424 for (
unsigned int d = 0; d < n_desired_components; ++d)
2425 tmp[d] = src[d * dofs_per_component];
2427 for (
unsigned int d1 = 0; d1 < n_desired_components; ++d1)
2429 const Number *inv_coeff_row =
2430 &inverse_coefficients[d1 * n_desired_components];
2431 Number sum = inv_coeff_row[0] * tmp[0];
2432 for (
unsigned int d2 = 1; d2 < n_desired_components; ++d2)
2433 sum += inv_coeff_row[d2] * tmp[d2];
2434 dst[d1 * dofs_per_component] = sum;
2447 template <
int dim,
typename Number>
2450 template <
int fe_degree,
int n_q_po
ints_1d>
2452 run(
const unsigned int n_desired_components,
2454 const Number *in_array,
2457 static const bool do_inplace =
2458 fe_degree > -1 && (fe_degree + 1 == n_q_points_1d);
2464 const auto &inverse_shape =
2469 const std::size_t dofs_per_component =
2472 const std::size_t n_q_points = do_inplace ?
2490 for (
unsigned int d = 0; d < n_desired_components; ++d)
2492 const Number *in = in_array + d * n_q_points;
2493 Number *out = out_array + d * dofs_per_component;
2496 auto *temp_2 = do_inplace ?
2498 (temp_1 +
std::max(n_q_points, dofs_per_component));
2502 evaluator.template hessians<2, false, false>(in, temp_1);
2503 evaluator.template hessians<1, false, false>(temp_1, temp_2);
2504 evaluator.template hessians<0, false, false>(temp_2, out);
2508 evaluator.template hessians<1, false, false>(in, temp_1);
2509 evaluator.template hessians<0, false, false>(temp_1, out);
2512 evaluator.template hessians<0, false, false>(in, out);
value_type * data() const noexcept
ScalarNumber shape_info_number_type
const ShapeInfoType & get_shape_info() const
Number JxW(const unsigned int q_point) const
const Number * begin_gradients() const
ArrayView< Number > get_scratch_data() const
const Number * begin_values() const
const Number * begin_hessians() const
#define DEAL_II_ALWAYS_INLINE
#define DEAL_II_NAMESPACE_OPEN
#define DEAL_II_NAMESPACE_CLOSE
static ::ExceptionBase & ExcNotImplemented()
#define Assert(cond, exc)
#define AssertDimension(dim1, dim2)
static ::ExceptionBase & ExcInternalError()
static ::ExceptionBase & ExcDimensionMismatch(std::size_t arg1, std::size_t arg2)
static ::ExceptionBase & ExcMessage(std::string arg1)
#define AssertThrow(cond, exc)
@ tensor_symmetric_no_collocation
@ tensor_symmetric_plus_dg0
EvaluationFlags
The EvaluationFlags enum.
constexpr T pow(const T base, const int iexp)
void evaluate_hessians_collocation(const unsigned int n_components, FEEvaluationData< dim, Number, false > &fe_eval)
constexpr bool use_collocation_evaluation(const unsigned int fe_degree, const unsigned int n_q_points_1d)
void integrate_gradients_collocation(const MatrixFreeFunctions::UnivariateShapeData< Number2 > &shape, Number *values, const Number *gradients, const bool add_into_values_array)
void evaluate_hessians_slow(const unsigned int n_components, const Number *values_dofs, FEEvaluationData< dim, Number, false > &fe_eval)
std::enable_if_t<(variant==evaluate_general), void > apply_matrix_vector_product(const Number2 *matrix, const Number *in, Number *out)
void integrate_hessians_collocation(const unsigned int n_components, FEEvaluationData< dim, Number, false > &fe_eval, const bool add_into_values_array)
void evaluate_gradients_collocation(const MatrixFreeFunctions::UnivariateShapeData< Number2 > &shape, const Number *values, Number *gradients)
void integrate_hessians_slow(const unsigned int n_components, const FEEvaluationData< dim, Number, false > &fe_eval, Number *values_dofs, const bool add_into_values_array)
static const unsigned int invalid_unsigned_int
::VectorizedArray< Number, width > max(const ::VectorizedArray< Number, width > &, const ::VectorizedArray< Number, width > &)
typename FEEvaluationData< dim, Number, false >::shape_info_number_type Number2
static bool run(const unsigned int n_components, const FEEvaluationData< dim, Number, false > &fe_eval, const Number *in_array, Number *out_array)
typename FEEvaluationData< dim, Number, false >::shape_info_number_type Number2
static bool run(const unsigned int n_desired_components, const FEEvaluationData< dim, Number, false > &fe_eval, const ArrayView< const Number > &inverse_coefficients, const bool dyadic_coefficients, const Number *in_array, Number *out_array)
static void vmult(const Number *inverse_coefficients, const Number *src, Number *dst, const unsigned int dofs_per_component, const unsigned int n_given_components=0)
static void do_backward(const unsigned int n_components, const AlignedVector< Number2 > &transformation_matrix, const bool add_into_result, Number *values_in, Number *values_out, const unsigned int basis_size_1_variable=numbers::invalid_unsigned_int, const unsigned int basis_size_2_variable=numbers::invalid_unsigned_int)
static void do_forward(const unsigned int n_components, const AlignedVector< Number2 > &transformation_matrix, const Number *values_in, Number *values_out, const unsigned int basis_size_1_variable=numbers::invalid_unsigned_int, const unsigned int basis_size_2_variable=numbers::invalid_unsigned_int)
static void do_mass(const unsigned int n_components, const AlignedVector< Number2 > &transformation_matrix, const AlignedVector< Number > &coefficients, const Number *values_in, Number *scratch_data, Number *values_out)
static void evaluate(const unsigned int n_components, const EvaluationFlags::EvaluationFlags evaluation_flag, const Number *values_dofs, FEEvaluationData< dim, Number, false > &fe_eval)
static void integrate(const unsigned int n_components, const EvaluationFlags::EvaluationFlags integration_flag, Number *values_dofs, FEEvaluationData< dim, Number, false > &fe_eval, const bool add_into_values_array)
typename FEEvaluationData< dim, Number, false >::shape_info_number_type Number2
static void evaluate_or_integrate(const unsigned int n_components, const EvaluationFlags::EvaluationFlags evaluation_flag, OtherNumber *values_dofs, FEEvaluationData< dim, Number, false > &fe_eval, const bool sum_into_values_array)
static void evaluate_or_integrate(const unsigned int n_components, const EvaluationFlags::EvaluationFlags evaluation_flag, Number *values_dofs, FEEvaluationData< dim, Number, false > &fe_eval, const bool sum_into_values_array, std::bool_constant< true >)
static bool run(const unsigned int n_components, const EvaluationFlags::EvaluationFlags evaluation_flag, OtherNumber *values_dofs, FEEvaluationData< dim, Number, false > &fe_eval, const bool sum_into_values_array_in=false)
static void evaluate_or_integrate(const unsigned int n_components, const EvaluationFlags::EvaluationFlags evaluation_flag, const Number *values_dofs, FEEvaluationData< dim, Number, false > &fe_eval, const bool sum_into_values_array, std::bool_constant< false >)
typename FEEvaluationData< dim, Number, false >::shape_info_number_type Number2
static const EvaluatorVariant variant
typename FEEvaluationData< dim, Number, false >::shape_info_number_type Number2
EvaluatorTensorProduct< variant, dim, fe_degree+1, n_q_points_1d, Number, Number2 > Eval
static void integrate(const unsigned int n_components, const EvaluationFlags::EvaluationFlags integration_flag, Number *values_dofs_actual, FEEvaluationData< dim, Number, false > &fe_eval, const bool add_into_values_array)
static Eval create_evaluator_tensor_product(const MatrixFreeFunctions::UnivariateShapeData< Number2 > *univariate_shape_data)
static void evaluate(const unsigned int n_components, const EvaluationFlags::EvaluationFlags evaluation_flag, const Number *values_dofs_actual, FEEvaluationData< dim, Number, false > &fe_eval)
unsigned int dofs_per_component_on_cell
std::vector< UnivariateShapeData< Number > > data
AlignedVector< Number > shape_values
AlignedVector< Number > shape_hessians_collocation
AlignedVector< Number > shape_values_eo
AlignedVector< Number > shape_hessians_eo
AlignedVector< Number > shape_gradients_collocation_eo
unsigned int n_q_points_1d
AlignedVector< Number > shape_gradients_eo
AlignedVector< Number > shape_hessians
AlignedVector< Number > shape_gradients
AlignedVector< Number > shape_gradients_collocation