deal.II version GIT relicensing-2165-gc91f007519 2024-11-20 01:40:00+00:00
|
Typedefs | |
template<typename F > | |
using | argument_type_t = typename argument_type< F >::type |
template<typename T > | |
using | has_block_t = decltype(std::declval< const T >().block(0)) |
template<typename T > | |
using | has_n_blocks_t = decltype(std::declval< const T >().n_blocks()) |
template<typename T > | |
using | set_ghost_state_t = decltype(std::declval< const T >().set_ghost_state(std::declval< bool >())) |
Enumerations | |
enum class | EigenvalueAlgorithm { lanczos , power_iteration } |
enum class | FEEvaluationImplHangingNodesRunnerTypes { scalar , vectorized } |
enum class | VectorizationTypes { index , group , mask , sorted } |
enum class | HelperType { constant , dynamic } |
enum | EvaluatorVariant { evaluate_general , evaluate_symmetric , evaluate_evenodd , evaluate_symmetric_hierarchical } |
enum class | EvaluatorQuantity { value , gradient , hessian } |
Functions | |
template<int dim> | |
Point< dim+1 > | create_higher_dim_point (const Point< dim > &point, const unsigned int component_in_dim_plus_1, const double coordinate_value) |
void | ensure_kokkos_initialized () |
internal::GenericDoFsPerObject | expand (const unsigned int dim, const std::vector< unsigned int > &dofs_per_object, const ReferenceCell reference_cell) |
constexpr ReferenceCell | make_reference_cell_from_int (const std::uint8_t kind) |
static ::ExceptionBase & | ExcNonMatchingReferenceCellTypes (ReferenceCell arg1, ReferenceCell arg2) |
unsigned char | combined_face_orientation (const bool face_orientation, const bool face_rotation, const bool face_flip) |
std::tuple< bool, bool, bool > | split_face_orientation (const unsigned char combined_face_orientation) |
template<typename MatrixType > | |
void | reinit (MatrixBlock< MatrixType > &v, const BlockSparsityPattern &p) |
template<typename number > | |
void | reinit (MatrixBlock<::SparseMatrix< number > > &v, const BlockSparsityPattern &p) |
template<int n_points_1d, int dim, typename Number , typename Number2 > | |
void | evaluate_gradients_collocation (const MatrixFreeFunctions::UnivariateShapeData< Number2 > &shape, const Number *values, Number *gradients) |
template<int n_points_1d, int dim, typename Number , typename Number2 > | |
void | integrate_gradients_collocation (const MatrixFreeFunctions::UnivariateShapeData< Number2 > &shape, Number *values, const Number *gradients, const bool add_into_values_array) |
template<int n_points_1d, int dim, typename Number > | |
void | evaluate_hessians_collocation (const unsigned int n_components, FEEvaluationData< dim, Number, false > &fe_eval) |
template<int n_q_points_1d, int dim, typename Number > | |
void | integrate_hessians_collocation (const unsigned int n_components, FEEvaluationData< dim, Number, false > &fe_eval, const bool add_into_values_array) |
template<int dim, typename Number > | |
void | evaluate_hessians_slow (const unsigned int n_components, const Number *values_dofs, FEEvaluationData< dim, Number, false > &fe_eval) |
template<int dim, typename Number > | |
void | integrate_hessians_slow (const unsigned int n_components, const FEEvaluationData< dim, Number, false > &fe_eval, Number *values_dofs, const bool add_into_values_array) |
template<typename VectorizedArrayType , typename Number2 > | |
void | do_vectorized_read (const Number2 *src_ptr, VectorizedArrayType &dst) |
template<typename Number , std::size_t width> | |
void | do_vectorized_read (const Number *src_ptr, VectorizedArray< Number, width > &dst) |
template<typename VectorizedArrayType , typename Number2 > | |
void | do_vectorized_gather (const Number2 *src_ptr, const unsigned int *indices, VectorizedArrayType &dst) |
template<typename Number , std::size_t width> | |
void | do_vectorized_gather (const Number *src_ptr, const unsigned int *indices, VectorizedArray< Number, width > &dst) |
template<typename VectorizedArrayType , typename Number2 > | |
void | do_vectorized_add (const VectorizedArrayType src, Number2 *dst_ptr) |
template<typename Number , std::size_t width> | |
void | do_vectorized_add (const VectorizedArray< Number, width > src, Number *dst_ptr) |
template<typename VectorizedArrayType , typename Number2 > | |
void | do_vectorized_scatter_add (const VectorizedArrayType src, const unsigned int *indices, Number2 *dst_ptr) |
template<typename Number , std::size_t width> | |
void | do_vectorized_scatter_add (const VectorizedArray< Number, width > src, const unsigned int *indices, Number *dst_ptr) |
template<typename Number > | |
void | adjust_for_face_orientation (const unsigned int dim, const unsigned int n_components, const EvaluationFlags::EvaluationFlags flag, const unsigned int *orientation, const bool integrate, const std::size_t n_q_points, Number *tmp_values, Number *values_quad, Number *gradients_quad, Number *hessians_quad) |
template<typename Number , typename VectorizedArrayType > | |
void | adjust_for_face_orientation_per_lane (const unsigned int dim, const unsigned int n_components, const unsigned int v, const EvaluationFlags::EvaluationFlags flag, const unsigned int *orientation, const bool integrate, const std::size_t n_q_points, Number *tmp_values, VectorizedArrayType *values_quad, VectorizedArrayType *gradients_quad=nullptr, VectorizedArrayType *hessians_quad=nullptr) |
template<int n_face_orientations, typename Processor , typename EvaluationData , const bool check_face_orientations = false> | |
void | fe_face_evaluation_process_and_io (Processor &proc, const unsigned int n_components, const EvaluationFlags::EvaluationFlags evaluation_flag, typename Processor::Number2_ *global_vector_ptr, const std::vector< ArrayView< const typename Processor::Number2_ > > *sm_ptr, const EvaluationData &fe_eval, typename Processor::VectorizedArrayType_ *temp1) |
template<int degree, typename EvaluatorType , typename... Args> | |
bool | instantiation_helper_run (const unsigned int given_degree, const unsigned int n_q_points_1d, Args &...args) |
template<int degree, typename EvaluatorType , typename... Args> | |
bool | instantiation_helper_degree_run (const unsigned int given_degree, Args &...args) |
static ::ExceptionBase & | ExcAccessToUninitializedField () |
static ::ExceptionBase & | ExcMatrixFreeAccessToUninitializedMappingField (std::string arg1) |
template<EvaluatorVariant variant, EvaluatorQuantity quantity, int n_rows, int n_columns, int stride_in, int stride_out, bool transpose_matrix, bool add, typename Number , typename Number2 > | |
std::enable_if_t<(variant==evaluate_general), void > | apply_matrix_vector_product (const Number2 *matrix, const Number *in, Number *out) |
template<EvaluatorVariant variant, EvaluatorQuantity quantity, bool transpose_matrix, bool add, bool consider_strides, typename Number , typename Number2 , int n_components = 1> | |
std::enable_if_t<(variant==evaluate_general), void > | apply_matrix_vector_product (const Number2 *matrix, const Number *in, Number *out, const int n_rows, const int n_columns, const int stride_in_given, const int stride_out_given) |
template<EvaluatorVariant variant, EvaluatorQuantity quantity, int n_rows, int n_columns, int stride_in, int stride_out, bool transpose_matrix, bool add, typename Number , typename Number2 > | |
std::enable_if_t<(variant==evaluate_symmetric), void > | apply_matrix_vector_product (const Number2 *matrix, const Number *in, Number *out) |
template<EvaluatorVariant variant, EvaluatorQuantity quantity, int n_rows_static, int n_columns_static, int stride_in_static, int stride_out_static, bool transpose_matrix, bool add, typename Number , typename Number2 > | |
std::enable_if_t<(variant==evaluate_evenodd), void > | apply_matrix_vector_product (const Number2 *DEAL_II_RESTRICT matrix, const Number *in, Number *out, int n_rows_runtime=0, int n_columns_runtime=0, int stride_in_runtime=0, int stride_out_runtime=0) |
template<EvaluatorVariant variant, EvaluatorQuantity quantity, bool transpose_matrix, bool add, bool consider_strides, typename Number , typename Number2 > | |
std::enable_if_t<(variant==evaluate_evenodd), void > | apply_matrix_vector_product (const Number2 *matrix, const Number *in, Number *out, int n_rows, int n_columns, int stride_in, int stride_out) |
template<EvaluatorVariant variant, EvaluatorQuantity quantity, int n_rows, int n_columns, int stride_in, int stride_out, bool transpose_matrix, bool add, typename Number , typename Number2 > | |
std::enable_if_t<(variant==evaluate_symmetric_hierarchical), void > | apply_matrix_vector_product (const Number2 *matrix, const Number *in, Number *out) |
template<int n_rows_template, int stride_template, bool contract_onto_face, bool add, int max_derivative, typename Number , typename Number2 > | |
std::enable_if_t< contract_onto_face, void > | interpolate_to_face (const Number2 *shape_values, const std::array< int, 2 > &n_blocks, const std::array< int, 2 > &steps, const Number *input, Number *DEAL_II_RESTRICT output, const int n_rows_runtime=0, const int stride_runtime=1) |
constexpr bool | use_collocation_evaluation (const unsigned int fe_degree, const unsigned int n_q_points_1d) |
template<int n_rows_template, int stride_template, bool contract_onto_face, bool add, int max_derivative, typename Number , typename Number2 > | |
std::enable_if_t<!contract_onto_face, void > | interpolate_to_face (const Number2 *shape_values, const std::array< int, 2 > &n_blocks, const std::array< int, 2 > &steps, const Number *input, Number *DEAL_II_RESTRICT output, const int n_rows_runtime=0, const int stride_runtime=1) |
template<int dim, int n_points_1d_template, typename Number > | |
void | weight_fe_q_dofs_by_entity (const Number *weights, const unsigned int n_components, const int n_points_1d_non_template, Number *data) |
template<int dim, int n_points_1d_template, typename Number > | |
void | weight_fe_q_dofs_by_entity_shifted (const Number *weights, const unsigned int n_components, const int n_points_1d_non_template, Number *data) |
template<int dim, int n_points_1d_template, typename Number > | |
bool | compute_weights_fe_q_dofs_by_entity (const Number *data, const unsigned int n_components, const int n_points_1d_non_template, Number *weights) |
template<int dim, int n_points_1d_template, typename Number > | |
bool | compute_weights_fe_q_dofs_by_entity_shifted (const Number *data, const unsigned int n_components, const int n_points_1d_non_template, Number *weights) |
template<int dim, typename Number > | |
void | compute_values_of_array (::ndarray< Number, 2, dim > *shapes, const std::vector< Polynomials::Polynomial< double > > &poly, const Point< dim, Number > &p, const unsigned int derivative=1) |
template<typename Number > | |
void | compute_values_of_array (::ndarray< Number, 2, 0 > *, const std::vector< Polynomials::Polynomial< double > > &, const Point< 0, Number > &, const unsigned int) |
template<int dim, typename Number > | |
void | compute_values_of_array_in_pairs (::ndarray< Number, 2, dim > *shapes, const std::vector< Polynomials::Polynomial< double > > &poly, const Point< dim, Number > &p0, const Point< dim, Number > &p1) |
template<int dim, int length, typename Number2 , typename Number , int n_values = 1, bool do_renumber = true, int stride = 1> | |
std::array< typename ProductTypeNoPoint< Number, Number2 >::type, 2+n_values > | do_interpolate_xy (const Number *values, const std::vector< unsigned int > &renumber, const ::ndarray< Number2, 2, dim > *shapes, const int n_shapes_runtime, int &i) |
template<int dim, typename Number , typename Number2 , int n_values = 1, bool do_renumber = true, int stride = 1> | |
std::array< typename ProductTypeNoPoint< Number, Number2 >::type, dim+n_values > | evaluate_tensor_product_value_and_gradient_shapes (const ::ndarray< Number2, 2, dim > *shapes, const int n_shapes, const Number *values, const std::vector< unsigned int > &renumber={}) |
template<int dim, typename Number , typename Number2 , int n_values = 1, int stride = 1> | |
std::array< typename ProductTypeNoPoint< Number, Number2 >::type, dim+n_values > | evaluate_tensor_product_value_and_gradient_linear (const Number *values, const Point< dim, Number2 > &p) |
template<int dim, typename Number , typename Number2 > | |
std::pair< typename ProductTypeNoPoint< Number, Number2 >::type, Tensor< 1, dim, typename ProductTypeNoPoint< Number, Number2 >::type > > | evaluate_tensor_product_value_and_gradient (const std::vector< Polynomials::Polynomial< double > > &poly, const ArrayView< const Number > &values, const Point< dim, Number2 > &p, const bool d_linear=false, const std::vector< unsigned int > &renumber={}) |
template<int dim, int length, typename Number2 , typename Number , bool do_renumber = true, int stride = 1> | |
ProductTypeNoPoint< Number, Number2 >::type | do_interpolate_xy_value (const Number *values, const std::vector< unsigned int > &renumber, const ::ndarray< Number2, 2, dim > *shapes, const int n_shapes_runtime, int &i) |
template<int dim, typename Number , typename Number2 , bool do_renumber = true, int stride = 1> | |
ProductTypeNoPoint< Number, Number2 >::type | evaluate_tensor_product_value_shapes (const ::ndarray< Number2, 2, dim > *shapes, const int n_shapes, const Number *values, const std::vector< unsigned int > &renumber={}) |
template<int dim, typename Number , typename Number2 , int stride = 1> | |
ProductTypeNoPoint< Number, Number2 >::type | evaluate_tensor_product_value_linear (const Number *values, const Point< dim, Number2 > &p) |
template<int dim, typename Number , typename Number2 > | |
ProductTypeNoPoint< Number, Number2 >::type | evaluate_tensor_product_value (const std::vector< Polynomials::Polynomial< double > > &poly, const ArrayView< const Number > &values, const Point< dim, Number2 > &p, const bool d_linear=false, const std::vector< unsigned int > &renumber={}) |
template<int derivative_order, typename Number , typename Number2 > | |
Tensor< 1, 1, typename ProductTypeNoPoint< Number, Number2 >::type > | evaluate_tensor_product_higher_derivatives (const std::vector< Polynomials::Polynomial< double > > &poly, const ArrayView< const Number > &values, const Point< 1, Number2 > &p, const std::vector< unsigned int > &renumber={}) |
template<int derivative_order, typename Number , typename Number2 > | |
Tensor< 1, derivative_order+1, typename ProductTypeNoPoint< Number, Number2 >::type > | evaluate_tensor_product_higher_derivatives (const std::vector< Polynomials::Polynomial< double > > &poly, const ArrayView< const Number > &values, const Point< 2, Number2 > &p, const std::vector< unsigned int > &renumber={}) |
template<int derivative_order, typename Number , typename Number2 > | |
Tensor< 1,((derivative_order+1) *(derivative_order+2))/2, typename ProductTypeNoPoint< Number, Number2 >::type > | evaluate_tensor_product_higher_derivatives (const std::vector< Polynomials::Polynomial< double > > &poly, const ArrayView< const Number > &values, const Point< 3, Number2 > &p, const std::vector< unsigned int > &renumber={}) |
template<int dim, typename Number , typename Number2 > | |
SymmetricTensor< 2, dim, typename ProductTypeNoPoint< Number, Number2 >::type > | evaluate_tensor_product_hessian (const std::vector< Polynomials::Polynomial< double > > &poly, const ArrayView< const Number > &values, const Point< dim, Number2 > &p, const std::vector< unsigned int > &renumber={}) |
template<int dim, int length, typename Number2 , typename Number , bool add, int n_values = 1> | |
void | do_apply_test_functions_xy (Number2 *values, const ::ndarray< Number, 2, dim > *shapes, const std::array< Number2, 2+n_values > &test_grads_value, const int n_shapes_runtime, int &i) |
template<int dim, typename Number , typename Number2 , bool add, int n_values = 1> | |
void | integrate_add_tensor_product_value_and_gradient_shapes (const ::ndarray< Number, 2, dim > *shapes, const int n_shapes, const Number2 *value, const Tensor< 1, dim, Number2 > &gradient, Number2 *values) |
template<int dim, typename Number , typename Number2 , bool add, int n_values = 1> | |
void | integrate_add_tensor_product_value_and_gradient_linear (const Number2 *value, const Tensor< 1, dim, Number2 > &gradient, Number2 *values, const Point< dim, Number > &p) |
template<bool is_linear, int dim, typename Number , typename Number2 , int n_values = 1> | |
void | integrate_tensor_product_value_and_gradient (const ::ndarray< Number, 2, dim > *shapes, const unsigned int n_shapes, const Number2 *value, const Tensor< 1, dim, Number2 > &gradient, Number2 *values, const Point< dim, Number > &p, const bool do_add) |
template<int dim, int length, typename Number2 , typename Number , bool add> | |
void | do_apply_test_functions_xy_value (Number2 *values, const ::ndarray< Number, 2, dim > *shapes, const Number2 &test_value, const int n_shapes_runtime, int &i) |
template<int dim, typename Number , typename Number2 , bool add> | |
void | integrate_add_tensor_product_value_shapes (const ::ndarray< Number, 2, dim > *shapes, const int n_shapes, const Number2 &value, Number2 *values) |
template<int dim, typename Number , typename Number2 , bool add> | |
void | integrate_add_tensor_product_value_linear (const Number2 &value, Number2 *values, const Point< dim, Number > &p) |
template<bool is_linear, int dim, typename Number , typename Number2 > | |
void | integrate_tensor_product_value (const ::ndarray< Number, 2, dim > *shapes, const unsigned int n_shapes, const Number2 &value, Number2 *values, const Point< dim, Number > &p, const bool do_add) |
template<typename VectorType , std::enable_if_t< is_serial_vector_or_array< VectorType >::value, VectorType > * = nullptr> | |
VectorType::value_type | vector_access (const VectorType &vec, const unsigned int entry) |
template<typename VectorType , std::enable_if_t< is_serial_vector_or_array< VectorType >::value, VectorType > * = nullptr> | |
VectorType::value_type & | vector_access (VectorType &vec, const unsigned int entry) |
template<typename VectorType , std::enable_if_t< has_add_local_element< VectorType >, VectorType > * = nullptr> | |
void | vector_access_add (VectorType &vec, const unsigned int entry, const typename VectorType::value_type &val) |
template<typename VectorType , std::enable_if_t< has_add_local_element< VectorType >, VectorType > * = nullptr> | |
void | vector_access_add_global (VectorType &vec, const types::global_dof_index entry, const typename VectorType::value_type &val) |
template<typename VectorType , std::enable_if_t< has_set_local_element< VectorType >, VectorType > * = nullptr> | |
void | vector_access_set (VectorType &vec, const unsigned int entry, const typename VectorType::value_type &val) |
template<int dim, typename Number , typename VectorizedArrayType , typename VectorType , std::enable_if_t<!has_partitioners_are_compatible< VectorType >, VectorType > * = nullptr> | |
void | check_vector_compatibility (const VectorType &vec, const MatrixFree< dim, Number, VectorizedArrayType > &matrix_free, const internal::MatrixFreeFunctions::DoFInfo &dof_info) |
template<class DI > | |
bool | is_active_iterator (const DI &) |
template<typename AccessorType > | |
bool | is_active_iterator (const TriaActiveIterator< AccessorType > &) |
template<typename AccessorType > | |
bool | is_active_iterator (const ::FilteredIterator< TriaActiveIterator< AccessorType > > &) |
template<int dim, class DOFINFO , class A > | |
void | assemble (const MeshWorker::DoFInfoBox< dim, DOFINFO > &dinfo, A *assembler) |
template<int dim> | |
unsigned int | get_degree (const std::vector< typename BarycentricPolynomials< dim >::PolyType > &polys) |
template<typename Number > | |
std::enable_if_t<!std::is_unsigned_v< Number >, typename numbers::NumberTraits< Number >::real_type > | get_abs (const Number a) |
template<typename Number > | |
std::enable_if_t< std::is_unsigned_v< Number >, Number > | get_abs (const Number a) |
template<typename VectorType , std::enable_if_t< has_set_ghost_state< VectorType >, VectorType > * = nullptr> | |
void | set_ghost_state (VectorType &vector, const bool ghosted) |
template<int dim, int spacedim, bool lda, class OutputVector , typename number > | |
void | set_dof_values (const DoFCellAccessor< dim, spacedim, lda > &cell, const Vector< number > &local_values, OutputVector &values, const bool perform_check) |
template<int dim, int spacedim, bool lda, class OutputVector , typename number > | |
void | process_by_interpolation (const DoFCellAccessor< dim, spacedim, lda > &cell, const Vector< number > &local_values, OutputVector &values, const types::fe_index fe_index_, const std::function< void(const DoFCellAccessor< dim, spacedim, lda > &cell, const Vector< number > &local_values, OutputVector &values)> &processor) |
template<int dim, int spacedim> | |
std::string | policy_to_string (const ::internal::DoFHandlerImplementation::Policy::PolicyBase< dim, spacedim > &policy) |
unsigned int | number_unique_entries (const std::vector< unsigned int > &vector) |
unsigned int | get_regularity_from_degree (const unsigned int fe_degree) |
std::vector< unsigned int > | get_hermite_dpo_vector (const unsigned int dim, const unsigned int regularity) |
template<int dim> | |
void | hermite_hierarchic_to_lexicographic_numbering (const unsigned int regularity, std::vector< unsigned int > &h2l) |
template<> | |
void | hermite_hierarchic_to_lexicographic_numbering< 1 > (const unsigned int regularity, std::vector< unsigned int > &h2l) |
template<> | |
void | hermite_hierarchic_to_lexicographic_numbering< 2 > (const unsigned int regularity, std::vector< unsigned int > &h2l) |
template<> | |
void | hermite_hierarchic_to_lexicographic_numbering< 3 > (const unsigned int regularity, std::vector< unsigned int > &h2l) |
template<int dim> | |
std::vector< unsigned int > | hermite_hierarchic_to_lexicographic_numbering (const unsigned int regularity) |
template<int dim> | |
std::vector< unsigned int > | hermite_lexicographic_to_hierarchic_numbering (const unsigned int regularity) |
template<int dim> | |
std::vector< unsigned int > | hermite_face_lexicographic_to_hierarchic_numbering (const unsigned int regularity) |
template<int dim> | |
TensorProductPolynomials< dim > | get_hermite_polynomials (const unsigned int fe_degree) |
template<int dim, int spacedim = dim> | |
Table< 2, unsigned int > | setup_primitive_offset_table (const FESystem< dim, spacedim > &fe, const unsigned int base_no) |
template<int dim, int spacedim = dim> | |
std::vector< typename FESystem< dim, spacedim >::BaseOffsets > | setup_nonprimitive_offset_table (const FESystem< dim, spacedim > &fe, const unsigned int base_no) |
template<int dim, int spacedim = dim> | |
void | copy_primitive_base_element_values (const FESystem< dim, spacedim > &fe, const unsigned int base_no, const UpdateFlags base_flags, const Table< 2, unsigned int > &base_to_system_table, const FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &base_data, FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) |
template<int dim, int spacedim = dim> | |
void | copy_nonprimitive_base_element_values (const FESystem< dim, spacedim > &fe, const unsigned int base_no, const unsigned int n_q_points, const UpdateFlags base_flags, const std::vector< typename FESystem< dim, spacedim >::BaseOffsets > &offsets, const FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &base_data, FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) |
template<int dim, int spacedim> | |
std::vector< unsigned int > | make_shape_function_to_row_table (const FiniteElement< dim, spacedim > &fe) |
template<typename Number , typename Number2 > | |
void | do_function_values (const ArrayView< Number2 > &dof_values, const ::Table< 2, double > &shape_values, std::vector< Number > &values) |
template<int dim, int spacedim, typename VectorType > | |
void | do_function_values (const ArrayView< typename VectorType::value_type > &dof_values, const ::Table< 2, double > &shape_values, const FiniteElement< dim, spacedim > &fe, const std::vector< unsigned int > &shape_function_to_row_table, ArrayView< VectorType > values, const bool quadrature_points_fastest=false, const unsigned int component_multiple=1) |
template<int order, int spacedim, typename Number > | |
void | do_function_derivatives (const ArrayView< Number > &dof_values, const ::Table< 2, Tensor< order, spacedim > > &shape_derivatives, std::vector< Tensor< order, spacedim, Number > > &derivatives) |
template<int order, int dim, int spacedim, typename Number > | |
void | do_function_derivatives (const ArrayView< Number > &dof_values, const ::Table< 2, Tensor< order, spacedim > > &shape_derivatives, const FiniteElement< dim, spacedim > &fe, const std::vector< unsigned int > &shape_function_to_row_table, ArrayView< std::vector< Tensor< order, spacedim, Number > > > derivatives, const bool quadrature_points_fastest=false, const unsigned int component_multiple=1) |
template<int spacedim, typename Number , typename Number2 > | |
void | do_function_laplacians (const ArrayView< Number2 > &dof_values, const ::Table< 2, Tensor< 2, spacedim > > &shape_hessians, std::vector< Number > &laplacians) |
template<int dim, int spacedim, typename VectorType , typename Number > | |
void | do_function_laplacians (const ArrayView< Number > &dof_values, const ::Table< 2, Tensor< 2, spacedim > > &shape_hessians, const FiniteElement< dim, spacedim > &fe, const std::vector< unsigned int > &shape_function_to_row_table, std::vector< VectorType > &laplacians, const bool quadrature_points_fastest=false, const unsigned int component_multiple=1) |
Tensor< 1, 3 > | apply_exponential_map (const Tensor< 1, 3 > &u, const Tensor< 1, 3 > &dir) |
Tensor< 1, 3 > | projected_direction (const Tensor< 1, 3 > &u, const Tensor< 1, 3 > &v) |
template<int spacedim> | |
Point< spacedim > | compute_normal (const Tensor< 1, spacedim > &, bool=false) |
Point< 3 > | compute_normal (const Tensor< 1, 3 > &vector, bool normalize=false) |
Variables | |
bool | dealii_initialized_kokkos = false |
static const constexpr ::ndarray< unsigned int, 6, 2 > | wedge_table_1 |
static const constexpr ::ndarray< unsigned int, 18, 2 > | wedge_table_2 |
template<template< class... > class Op, class... Args> | |
constexpr bool | is_supported_operation |
template<typename T > | |
constexpr bool | has_block = internal::is_supported_operation<has_block_t, T> |
template<typename T > | |
constexpr bool | has_n_blocks |
template<typename T > | |
constexpr bool | is_block_vector = has_block<T> && has_n_blocks<T> |
template<typename VectorType > | |
constexpr bool | is_dealii_vector |
template<typename T > | |
constexpr bool | has_set_ghost_state |
static constexpr double | invalid_pull_back_coordinate = 20.0 |
This namespace defines the copy and set functions used in AlignedVector. These functions operate in parallel when there are enough elements in the vector.
using internal::argument_type_t = typedef typename argument_type<F>::type |
Definition at line 2093 of file exceptions.h.
using internal::has_block_t = typedef decltype(std::declval<const T>().block(0)) |
Definition at line 48 of file block_vector_base.h.
using internal::has_n_blocks_t = typedef decltype(std::declval<const T>().n_blocks()) |
Definition at line 54 of file block_vector_base.h.
using internal::set_ghost_state_t = typedef decltype(std::declval<const T>().set_ghost_state(std::declval<bool>())) |
Helper functions that call set_ghost_state() if the vector supports this operation.
Definition at line 94 of file dof_accessor_set.cc.
|
strong |
An enum to define the available types of eigenvalue estimation algorithms.
Definition at line 67 of file precondition.h.
|
strong |
Enumerator | |
---|---|
scalar | |
vectorized |
Definition at line 40 of file evaluation_kernels_hanging_nodes.h.
|
strong |
Helper enum to specify the type of vectorization for FEEvaluationImplHangingNodesRunnerTypes::scalar.
Definition at line 52 of file evaluation_kernels_hanging_nodes.h.
|
strong |
Helper enum to specify which Helper implementation should be used.
Definition at line 1109 of file evaluation_kernels_hanging_nodes.h.
In this namespace, the evaluator routines that evaluate the tensor products are implemented.
Enumerator | |
---|---|
evaluate_general | Do not use anything more than the tensor product structure of the finite element. |
evaluate_symmetric | Perform evaluation by exploiting symmetry in the finite element: i.e., skip some computations by utilizing the symmetry in the shape functions and quadrature points. |
evaluate_evenodd | Use symmetry to apply the operator to even and odd parts of the input vector separately: see the documentation of the EvaluatorTensorProduct specialization for more information. |
evaluate_symmetric_hierarchical | Use symmetry in Legendre and similar polynomial spaces where the shape functions with even number are symmetric about the center of the quadrature points (think about even polynomial degrees) and the shape functions with odd number are anti-symmetric about the center of the quadrature points (think about odd polynomial degrees). This allows to use a strategy similar to the even-odd technique but without separate coefficient arrays. See the documentation of the EvaluatorTensorProduct specialization for more information. |
Definition at line 37 of file tensor_product_kernels.h.
|
strong |
Determine which quantity should be computed via the tensor product kernels.
Enumerator | |
---|---|
value | Evaluate/integrate by shape functions. |
gradient | Evaluate/integrate by gradients of the shape functions. |
hessian | Evaluate/integrate by hessians of the shape functions. |
Definition at line 74 of file tensor_product_kernels.h.
|
private |
Creates a (dim + 1
)-dimensional point by copying over the coordinates of the incoming dim
-dimensional point and setting the "missing" (dim + 1
)-dimensional component to the incoming coordinate value.
For example, given the input \(\{(x, y), 2, z \}\) this function creates the point \((x, y, z)\).
The coordinates of the dim
-dimensional point are written to the coordinates of the (dim + 1
)-dimensional point in the order of the convention given by the function coordinate_to_one_dim_higher. Thus, the order of coordinates on the lower-dimensional point are not preserved: \(\{(z, x), 1, y \}\) creates the point \((x, y, z)\).
Definition at line 23 of file function_restriction.cc.
void internal::ensure_kokkos_initialized | ( | ) |
internal::GenericDoFsPerObject internal::expand | ( | const unsigned int | dim, |
const std::vector< unsigned int > & | dofs_per_object, | ||
const ReferenceCell | reference_cell | ||
) |
Utility function to convert "dofs per object" information of a dim
dimensional reference cell reference_cell
.
Definition at line 24 of file fe_data.cc.
|
inlineconstexpr |
A helper function to create a ReferenceCell object from an integer. ReferenceCell objects are "singletons" (actually, "multitons" – there are multiple, but they are only a handful and these are all that can be used). What is then necessary is to have a way to create these with their internal id to distinguish the few possible ones in existence. We could do this via a public constructor of ReferenceCell, but that would allow users to create ones outside the range we envision, and we don't want to do that. Rather, the constructor that takes an integer is made private
but we have this one function in an internal namespace that is a friend of the class and can be used to create the objects.
Definition at line 1056 of file reference_cell.h.
|
inline |
Combine orientation flags.
Definition at line 32 of file tria_orientation.h.
|
inline |
Split up a combined orientation flag: orientation flag, rotation flag, flip flag.
Definition at line 45 of file tria_orientation.h.
void internal::reinit | ( | MatrixBlock< MatrixType > & | v, |
const BlockSparsityPattern & | p | ||
) |
Definition at line 599 of file matrix_block.h.
void internal::reinit | ( | MatrixBlock<::SparseMatrix< number > > & | v, |
const BlockSparsityPattern & | p | ||
) |
Definition at line 608 of file matrix_block.h.
|
inline |
Internal function that evaluates the gradients of finite element functions represented by bases in the collocation space, used by FEEvaluationImplCollocation and FEEvaluationImplTransformToCollocation. The evaluation strategy uses sum factorization with the even-odd optimization and fixed loop bounds.
Definition at line 1313 of file evaluation_kernels.h.
|
inline |
Internal function that multiplies by the gradients of test functions and sums over quadrature points for function representations in the collocation space, used by FEEvaluationImplCollocation and FEEvaluationImplTransformToCollocation. The evaluation strategy uses sum factorization with the even-odd optimization and fixed loop bounds.
Definition at line 1367 of file evaluation_kernels.h.
|
inline |
Internal function that evaluates the Hessians of finite element functions represented by bases in the collocation space, used by FEEvaluationImplSelector. The evaluation strategy uses sum factorization with fixed loop bounds.
Definition at line 1430 of file evaluation_kernels.h.
|
inline |
Internal function that multiplies by the Hessians of test functions and sums over quadrature points for function representations in the collocation space, used by FEEvaluationImplSelector. The evaluation strategy uses sum factorization with fixed loop bounds.
Definition at line 1503 of file evaluation_kernels.h.
void internal::evaluate_hessians_slow | ( | const unsigned int | n_components, |
const Number * | values_dofs, | ||
FEEvaluationData< dim, Number, false > & | fe_eval | ||
) |
Internal function to evaluate the Hessians of finite element functions in the non-collocation setting as a fall-back. The evaluation strategy uses sum factorization with run-time loop bounds and is thus slower than the collocation case, but it is not as widely used and thus uncritical.
Definition at line 1580 of file evaluation_kernels.h.
void internal::integrate_hessians_slow | ( | const unsigned int | n_components, |
const FEEvaluationData< dim, Number, false > & | fe_eval, | ||
Number * | values_dofs, | ||
const bool | add_into_values_array | ||
) |
Internal function to multiply by the Hessians of the test functions and integrate in the non-collocation setting as a fall-back. The evaluation strategy uses sum factorization with run-time loop bounds and is thus slower than the collocation case, but it is not as widely used and thus uncritical.
Definition at line 1674 of file evaluation_kernels.h.
void internal::do_vectorized_read | ( | const Number2 * | src_ptr, |
VectorizedArrayType & | dst | ||
) |
Definition at line 1212 of file evaluation_kernels_face.h.
void internal::do_vectorized_read | ( | const Number * | src_ptr, |
VectorizedArray< Number, width > & | dst | ||
) |
Definition at line 1224 of file evaluation_kernels_face.h.
void internal::do_vectorized_gather | ( | const Number2 * | src_ptr, |
const unsigned int * | indices, | ||
VectorizedArrayType & | dst | ||
) |
Definition at line 1234 of file evaluation_kernels_face.h.
void internal::do_vectorized_gather | ( | const Number * | src_ptr, |
const unsigned int * | indices, | ||
VectorizedArray< Number, width > & | dst | ||
) |
Definition at line 1248 of file evaluation_kernels_face.h.
void internal::do_vectorized_add | ( | const VectorizedArrayType | src, |
Number2 * | dst_ptr | ||
) |
Definition at line 1260 of file evaluation_kernels_face.h.
void internal::do_vectorized_add | ( | const VectorizedArray< Number, width > | src, |
Number * | dst_ptr | ||
) |
Definition at line 1272 of file evaluation_kernels_face.h.
void internal::do_vectorized_scatter_add | ( | const VectorizedArrayType | src, |
const unsigned int * | indices, | ||
Number2 * | dst_ptr | ||
) |
Definition at line 1284 of file evaluation_kernels_face.h.
void internal::do_vectorized_scatter_add | ( | const VectorizedArray< Number, width > | src, |
const unsigned int * | indices, | ||
Number * | dst_ptr | ||
) |
Definition at line 1298 of file evaluation_kernels_face.h.
void internal::adjust_for_face_orientation | ( | const unsigned int | dim, |
const unsigned int | n_components, | ||
const EvaluationFlags::EvaluationFlags | flag, | ||
const unsigned int * | orientation, | ||
const bool | integrate, | ||
const std::size_t | n_q_points, | ||
Number * | tmp_values, | ||
Number * | values_quad, | ||
Number * | gradients_quad, | ||
Number * | hessians_quad | ||
) |
Definition at line 1316 of file evaluation_kernels_face.h.
void internal::adjust_for_face_orientation_per_lane | ( | const unsigned int | dim, |
const unsigned int | n_components, | ||
const unsigned int | v, | ||
const EvaluationFlags::EvaluationFlags | flag, | ||
const unsigned int * | orientation, | ||
const bool | integrate, | ||
const std::size_t | n_q_points, | ||
Number * | tmp_values, | ||
VectorizedArrayType * | values_quad, | ||
VectorizedArrayType * | gradients_quad = nullptr , |
||
VectorizedArrayType * | hessians_quad = nullptr |
||
) |
Definition at line 1379 of file evaluation_kernels_face.h.
void internal::fe_face_evaluation_process_and_io | ( | Processor & | proc, |
const unsigned int | n_components, | ||
const EvaluationFlags::EvaluationFlags | evaluation_flag, | ||
typename Processor::Number2_ * | global_vector_ptr, | ||
const std::vector< ArrayView< const typename Processor::Number2_ > > * | sm_ptr, | ||
const EvaluationData & | fe_eval, | ||
typename Processor::VectorizedArrayType_ * | temp1 | ||
) |
Definition at line 2456 of file evaluation_kernels_face.h.
bool internal::instantiation_helper_run | ( | const unsigned int | given_degree, |
const unsigned int | n_q_points_1d, | ||
Args &... | args | ||
) |
Definition at line 47 of file evaluation_template_factory_internal.h.
bool internal::instantiation_helper_degree_run | ( | const unsigned int | given_degree, |
Args &... | args | ||
) |
Definition at line 79 of file evaluation_template_factory_internal.h.
std::enable_if_t<(variant==evaluate_general), void > internal::apply_matrix_vector_product | ( | const Number2 * | matrix, |
const Number * | in, | ||
Number * | out | ||
) |
One-dimensional kernel for use by the generic tensor product interpolation as provided by the class EvaluatorTensorProduct, implementing a matrix-vector product along this dimension, controlled by the number of rows and columns and the stride in the input and output arrays, which are embedded into some lexicographic ordering of unknowns in a tensor-product arrangement.
Besides this generic function for templated loop lengths, there are several specializations of this class to account for run-time matrix sizes as well as some symmetries that reduce the data access or arithmetic operations. The specializations are technically realized by conditional function overloading with std::enable_if_t based on the first template parameter.
Definition at line 118 of file tensor_product_kernels.h.
std::enable_if_t<(variant==evaluate_general), void > internal::apply_matrix_vector_product | ( | const Number2 * | matrix, |
const Number * | in, | ||
Number * | out, | ||
const int | n_rows, | ||
const int | n_columns, | ||
const int | stride_in_given, | ||
const int | stride_out_given | ||
) |
Specialization of the matrix-vector kernel for run-time loop bounds in the generic evaluator.
Definition at line 201 of file tensor_product_kernels.h.
std::enable_if_t<(variant==evaluate_symmetric), void > internal::apply_matrix_vector_product | ( | const Number2 * | matrix, |
const Number * | in, | ||
Number * | out | ||
) |
Internal evaluator specialized for "symmetric" finite elements, i.e., when the shape functions and quadrature points are symmetric about the middle point, making the matrix entries the same when starting to read in the (1,1) entry forward compared to the (N,N) entry backward.
Definition at line 760 of file tensor_product_kernels.h.
std::enable_if_t<(variant==evaluate_evenodd), void > internal::apply_matrix_vector_product | ( | const Number2 *DEAL_II_RESTRICT | matrix, |
const Number * | in, | ||
Number * | out, | ||
int | n_rows_runtime = 0 , |
||
int | n_columns_runtime = 0 , |
||
int | stride_in_runtime = 0 , |
||
int | stride_out_runtime = 0 |
||
) |
Internal evaluator specialized for "symmetric" finite elements in the evenodd matrix format.
This function implements a different approach to the symmetric case for values, gradients, and Hessians as in the above matrices: It is possible to reduce the cost per dimension from N^2 to N^2/2, where N is the number of 1d dofs (there are only N^2/2 different entries in the shape matrix, so this is plausible). The approach is based on the idea of applying the operator on the even and odd part of the input vectors separately, given that the basis of shape functions evaluated at quadrature points is symmetric. This method is presented e.g. in the book "Implementing Spectral Methods for Partial Differential Equations" by David A. Kopriva, Springer, 2009, section 3.5.3 (Even-Odd-Decomposition). Even though the experiments in the book say that the method is not efficient for N<20, it is more efficient in the context where the loop bounds are compile-time constants (templates).
Definition at line 1163 of file tensor_product_kernels.h.
std::enable_if_t<(variant==evaluate_evenodd), void > internal::apply_matrix_vector_product | ( | const Number2 * | matrix, |
const Number * | in, | ||
Number * | out, | ||
int | n_rows, | ||
int | n_columns, | ||
int | stride_in, | ||
int | stride_out | ||
) |
Internal evaluator specialized for "symmetric" finite elements in the evenodd matrix format with run-time bounds.
Definition at line 1350 of file tensor_product_kernels.h.
std::enable_if_t<(variant==evaluate_symmetric_hierarchical), void > internal::apply_matrix_vector_product | ( | const Number2 * | matrix, |
const Number * | in, | ||
Number * | out | ||
) |
Internal evaluator specialized for "symmetric" finite elements in the symmetric_hierarchical matrix format.
This class implements an approach similar to the even-odd decomposition but with a different type of symmetry. In this case, we assume that a single shape function already shows the symmetry over the quadrature points, rather than the complete basis that is considered in the even-odd case. In particular, we assume that the shape functions are ordered as in the Legendre basis, with symmetric shape functions in the even slots (rows of the values array) and point-symmetric in the odd slots. Like the even-odd decomposition, the number of operations are N^2/2 rather than N^2 FMAs (fused multiply-add), where N is the number of 1d dofs. The difference is in the way the input and output quantities are symmetrized.
Definition at line 1397 of file tensor_product_kernels.h.
|
inline |
This function applies the tensor product operation to produce face values from cell values. The algorithm involved here can be interpreted as the first sweep in sum factorization, reducing the dimensionality of the data set from dim-dimensional cell values to (dim-1)-dimensional face values. This step is always done before we evaluate within the face, as it reduces the length of the loops for the successive steps.
n_rows_template | The number of entries within the interpolation, typically equal to the polynomial degree plus one, if known at compile time, otherwise n_rows_runtime is used. |
stride_template | The stride between successive entries in the one-dimensional operation of sum factorization, if known at compile time, otherwise stride_runtime is used. |
contract_onto_face | If true, the input vector is of size n_rows^dim and interpolation into n_rows^(dim-1) points is performed. This is a typical scenario in FEFaceEvaluation::evaluate() calls. If false, data from n_rows^(dim-1) points is expanded into the n_rows^dim points of the higher-dimensional data array. Derivatives in the case contract_onto_face==false are summed together. |
add | If true, the result is added to the output vector, else the computed values overwrite the content in the output. |
max_derivative | Sets the number of derivatives that should be computed. 0 means only values, 1 means values and first derivatives, 2 up to second derivates. Note that all the derivatives access the data in shape_values passed to the constructor of the class. |
shape_values | Address of the interpolation matrix. |
n_blocks | Number of interpolation layers used along the up to two dimensions tangential to the interpolation direction. |
steps | Increments in the input array from one step to the next, varied in conjunction with the stride_template variable: We increment by stride_template along the 1d interpolation, and then increment by steps when passing from one line to the next. |
input | Address of the input data vector. |
output | Address of the output data vector. |
n_rows_runtime | Alternative number of rows to be used if the variable n_rows_template is 0, enabling a run-time path. |
stride_runtime | Alternative number for the stride to be used if the variable n_rows_template is 0. |
Definition at line 2365 of file tensor_product_kernels.h.
|
constexpr |
Helper function to specify whether a transformation to collocation should be used: It should give correct results (first condition), we need to be able to initialize the fields in shape_info.templates.h from the polynomials (second condition), and it should be the most efficient choice in terms of operation counts (third condition).
Definition at line 2433 of file tensor_product_kernels.h.
|
inline |
This function performs the opposite operation to the interpolate_to_face function, done as the last step in sum factorization to embed face values and gradients back to values on all degrees of freedom of the cell.
Definition at line 2455 of file tensor_product_kernels.h.
|
inline |
Definition at line 2503 of file tensor_product_kernels.h.
|
inline |
Definition at line 2541 of file tensor_product_kernels.h.
|
inline |
Definition at line 2588 of file tensor_product_kernels.h.
|
inline |
Definition at line 2649 of file tensor_product_kernels.h.
|
inline |
Compute the values and derivatives of the 1d polynomials poly
at the specified point p
and store them in shapes
.
Definition at line 60 of file tensor_product_point_kernels.h.
|
inline |
Specialization of above function for dim = 0. Should not be called.
Definition at line 83 of file tensor_product_point_kernels.h.
|
inline |
Evaluate the 1d polynomials poly
at the two specified points p0
and p1
and store them in shapes
. This function can be used as a more efficient alternative to the compute_values_of_array() function, because of reduced overhead when querying the polynomials (which usually have loop bounds that are not known at compile time).
Definition at line 102 of file tensor_product_point_kernels.h.
|
inline |
Interpolate inner dimensions of tensor product shape functions.
Definition at line 146 of file tensor_product_point_kernels.h.
|
inline |
Interpolates the values and gradients into the points specified in compute_values_of_array()
with help of the precomputed shapes
.
Definition at line 238 of file tensor_product_point_kernels.h.
|
inline |
Specializes evaluate_tensor_product_value_and_gradient()
for linear polynomials which massively reduces the necessary instructions.
Definition at line 372 of file tensor_product_point_kernels.h.
|
inline |
Compute the polynomial interpolation of a tensor product shape function \(\varphi_i\) given a vector of coefficients \(u_i\) in the form \(u_h(\mathbf{x}) = \sum_{i=1}^{k^d} \varphi_i(\mathbf{x}) u_i\). The shape functions \(\varphi_i(\mathbf{x}) =
\prod_{d=1}^{\text{dim}}\varphi_{i_d}^\text{1d}(x_d)\) represent a tensor product. The function returns a pair with the value of the interpolation as the first component and the gradient in reference coordinates as the second component. Note that for compound types (e.g. the values
field begin a Point<spacedim> argument), the components of the gradient are sorted as Tensor<1, dim, Tensor<1, spacedim>> with the derivatives as the first index; this is a consequence of the generic arguments in the function.
poly | The underlying one-dimensional polynomial basis \(\{\varphi^{1d}_{i_1}\}\) given as a vector of polynomials. |
values | The expansion coefficients \(u_i\) of type Number in the polynomial interpolation. The coefficients can be simply double variables but e.g. also Point<spacedim> in case they define arithmetic operations with the type Number2 . |
p | The position in reference coordinates where the interpolation should be evaluated. |
d_linear | Flag to specify whether a d-linear (linear in 1d, bi-linear in 2d, tri-linear in 3d) interpolation should be made, which allows to unroll loops and considerably speed up evaluation. |
renumber | Optional parameter to specify a renumbering in the coefficient vector, assuming that values[renumber[i]] returns the lexicographic (tensor product) entry of the coefficients. If the vector is entry, the values are assumed to be sorted lexicographically. |
Definition at line 499 of file tensor_product_point_kernels.h.
|
inline |
Definition at line 542 of file tensor_product_point_kernels.h.
|
inline |
Definition at line 581 of file tensor_product_point_kernels.h.
|
inline |
Definition at line 671 of file tensor_product_point_kernels.h.
|
inline |
Definition at line 720 of file tensor_product_point_kernels.h.
|
inline |
This function computes derivatives of arbitrary orders in 1d, returning a Tensor with the respective derivative
Definition at line 756 of file tensor_product_point_kernels.h.
|
inline |
This function computes derivatives of arbitrary orders in 2d, returning a Tensor with the respective derivatives
Definition at line 796 of file tensor_product_point_kernels.h.
|
inline |
This function computes derivatives of arbitrary orders in 3d, returning a Tensor with the respective derivatives
Definition at line 848 of file tensor_product_point_kernels.h.
SymmetricTensor< 2, dim, typename ProductTypeNoPoint< Number, Number2 >::type > internal::evaluate_tensor_product_hessian | ( | const std::vector< Polynomials::Polynomial< double > > & | poly, |
const ArrayView< const Number > & | values, | ||
const Point< dim, Number2 > & | p, | ||
const std::vector< unsigned int > & | renumber = {} |
||
) |
Definition at line 912 of file tensor_product_point_kernels.h.
|
inline |
Test inner dimensions of tensor product shape functions and accumulate.
Definition at line 961 of file tensor_product_point_kernels.h.
|
inline |
Same as evaluate_tensor_product_value_and_gradient_shapes() but for integration.
Definition at line 1074 of file tensor_product_point_kernels.h.
|
inline |
Specializes integrate_add_tensor_product_value_and_gradient_shapes()
for linear polynomials which massively reduces the necessary instructions.
Definition at line 1158 of file tensor_product_point_kernels.h.
|
inline |
Calls the correct integrate_add_tensor_product_value_and_gradient_
...() function depending on if values should be added to or set and if polynomials are linear.
Definition at line 1322 of file tensor_product_point_kernels.h.
|
inline |
Test inner dimensions of tensor product shape functions and accumulate.
Definition at line 1378 of file tensor_product_point_kernels.h.
|
inline |
Same as evaluate_tensor_product_value_shapes() but for integration.
Definition at line 1434 of file tensor_product_point_kernels.h.
|
inline |
Specializes integrate_tensor_product_value_shapes()
for linear polynomials which massively reduces the necessary instructions.
Definition at line 1491 of file tensor_product_point_kernels.h.
|
inline |
Calls the correct integrate_add_tensor_product_value_
...() function depending on if values should be added to or set and if polynomials are linear.
Definition at line 1588 of file tensor_product_point_kernels.h.
|
inline |
Definition at line 45 of file vector_access_internal.h.
|
inline |
Definition at line 57 of file vector_access_internal.h.
|
inline |
Definition at line 94 of file vector_access_internal.h.
|
inline |
Definition at line 120 of file vector_access_internal.h.
|
inline |
Definition at line 146 of file vector_access_internal.h.
|
inline |
Definition at line 179 of file vector_access_internal.h.
|
inline |
|
inline |
|
inline |
void internal::assemble | ( | const MeshWorker::DoFInfoBox< dim, DOFINFO > & | dinfo, |
A * | assembler | ||
) |
unsigned int internal::get_degree | ( | const std::vector< typename BarycentricPolynomials< dim >::PolyType > & | polys | ) |
Get the highest degree of the barycentric polynomial (in Cartesian coordinates).
Definition at line 29 of file polynomials_barycentric.cc.
std::enable_if_t<!std::is_unsigned_v< Number >, typename numbers::NumberTraits< Number >::real_type > internal::get_abs | ( | const Number | a | ) |
In the set_dof_values(), we need to invoke abs() also on unsigned data types, which is ill-formed on newer C++ standards. To avoid this, we use std::abs on default types, but simply return the number on unsigned types.
Definition at line 61 of file dof_accessor_set.cc.
std::enable_if_t< std::is_unsigned_v< Number >, Number > internal::get_abs | ( | const Number | a | ) |
Definition at line 68 of file dof_accessor_set.cc.
void internal::set_ghost_state | ( | VectorType & | vector, |
const bool | ghosted | ||
) |
Definition at line 105 of file dof_accessor_set.cc.
void internal::set_dof_values | ( | const DoFCellAccessor< dim, spacedim, lda > & | cell, |
const Vector< number > & | local_values, | ||
OutputVector & | values, | ||
const bool | perform_check | ||
) |
Helper function that sets the values on a cell, but also checks if the new values are similar to the old values.
Definition at line 130 of file dof_accessor_set.cc.
void internal::process_by_interpolation | ( | const DoFCellAccessor< dim, spacedim, lda > & | cell, |
const Vector< number > & | local_values, | ||
OutputVector & | values, | ||
const types::fe_index | fe_index_, | ||
const std::function< void(const DoFCellAccessor< dim, spacedim, lda > &cell, const Vector< number > &local_values, OutputVector &values)> & | processor | ||
) |
Definition at line 174 of file dof_accessor_set.cc.
std::string internal::policy_to_string | ( | const ::internal::DoFHandlerImplementation::Policy::PolicyBase< dim, spacedim > & | policy | ) |
Definition at line 54 of file dof_handler.cc.
Definition at line 98 of file fe_data.cc.
Definition at line 65 of file fe_hermite.cc.
|
inline |
Definition at line 75 of file fe_hermite.cc.
void internal::hermite_hierarchic_to_lexicographic_numbering | ( | const unsigned int | regularity, |
std::vector< unsigned int > & | h2l | ||
) |
void internal::hermite_hierarchic_to_lexicographic_numbering< 1 > | ( | const unsigned int | regularity, |
std::vector< unsigned int > & | h2l | ||
) |
Definition at line 98 of file fe_hermite.cc.
void internal::hermite_hierarchic_to_lexicographic_numbering< 2 > | ( | const unsigned int | regularity, |
std::vector< unsigned int > & | h2l | ||
) |
Definition at line 116 of file fe_hermite.cc.
void internal::hermite_hierarchic_to_lexicographic_numbering< 3 > | ( | const unsigned int | regularity, |
std::vector< unsigned int > & | h2l | ||
) |
Definition at line 143 of file fe_hermite.cc.
|
inline |
Definition at line 178 of file fe_hermite.cc.
std::vector< unsigned int > internal::hermite_lexicographic_to_hierarchic_numbering | ( | const unsigned int | regularity | ) |
Definition at line 194 of file fe_hermite.cc.
|
inline |
Definition at line 204 of file fe_hermite.cc.
TensorProductPolynomials< dim > internal::get_hermite_polynomials | ( | const unsigned int | fe_degree | ) |
Definition at line 218 of file fe_hermite.cc.
Table< 2, unsigned int > internal::setup_primitive_offset_table | ( | const FESystem< dim, spacedim > & | fe, |
const unsigned int | base_no | ||
) |
Setup a table of offsets for a primitive FE. Unlike the nonprimitive case, here the number of nonzero components per shape function is always 1 and the number of components in the FE is always the multiplicity.
Definition at line 56 of file fe_system.cc.
std::vector< typename FESystem< dim, spacedim >::BaseOffsets > internal::setup_nonprimitive_offset_table | ( | const FESystem< dim, spacedim > & | fe, |
const unsigned int | base_no | ||
) |
Setup a table of offsets for a nonprimitive FE.
Definition at line 93 of file fe_system.cc.
void internal::copy_primitive_base_element_values | ( | const FESystem< dim, spacedim > & | fe, |
const unsigned int | base_no, | ||
const UpdateFlags | base_flags, | ||
const Table< 2, unsigned int > & | base_to_system_table, | ||
const FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > & | base_data, | ||
FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > & | output_data | ||
) |
Copy data between internal FEValues objects from a primitive FE to the current FE.
Definition at line 134 of file fe_system.cc.
void internal::copy_nonprimitive_base_element_values | ( | const FESystem< dim, spacedim > & | fe, |
const unsigned int | base_no, | ||
const unsigned int | n_q_points, | ||
const UpdateFlags | base_flags, | ||
const std::vector< typename FESystem< dim, spacedim >::BaseOffsets > & | offsets, | ||
const FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > & | base_data, | ||
FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > & | output_data | ||
) |
Copy data between internal FEValues objects from a nonprimitive FE to the current FE.
Definition at line 189 of file fe_system.cc.
|
inline |
Definition at line 49 of file fe_values.cc.
void internal::do_function_values | ( | const ArrayView< Number2 > & | dof_values, |
const ::Table< 2, double > & | shape_values, | ||
std::vector< Number > & | values | ||
) |
Definition at line 266 of file fe_values_base.cc.
void internal::do_function_values | ( | const ArrayView< typename VectorType::value_type > & | dof_values, |
const ::Table< 2, double > & | shape_values, | ||
const FiniteElement< dim, spacedim > & | fe, | ||
const std::vector< unsigned int > & | shape_function_to_row_table, | ||
ArrayView< VectorType > | values, | ||
const bool | quadrature_points_fastest = false , |
||
const unsigned int | component_multiple = 1 |
||
) |
Definition at line 306 of file fe_values_base.cc.
void internal::do_function_derivatives | ( | const ArrayView< Number > & | dof_values, |
const ::Table< 2, Tensor< order, spacedim > > & | shape_derivatives, | ||
std::vector< Tensor< order, spacedim, Number > > & | derivatives | ||
) |
Definition at line 417 of file fe_values_base.cc.
void internal::do_function_derivatives | ( | const ArrayView< Number > & | dof_values, |
const ::Table< 2, Tensor< order, spacedim > > & | shape_derivatives, | ||
const FiniteElement< dim, spacedim > & | fe, | ||
const std::vector< unsigned int > & | shape_function_to_row_table, | ||
ArrayView< std::vector< Tensor< order, spacedim, Number > > > | derivatives, | ||
const bool | quadrature_points_fastest = false , |
||
const unsigned int | component_multiple = 1 |
||
) |
Definition at line 457 of file fe_values_base.cc.
void internal::do_function_laplacians | ( | const ArrayView< Number2 > & | dof_values, |
const ::Table< 2, Tensor< 2, spacedim > > & | shape_hessians, | ||
std::vector< Number > & | laplacians | ||
) |
Definition at line 564 of file fe_values_base.cc.
void internal::do_function_laplacians | ( | const ArrayView< Number > & | dof_values, |
const ::Table< 2, Tensor< 2, spacedim > > & | shape_hessians, | ||
const FiniteElement< dim, spacedim > & | fe, | ||
const std::vector< unsigned int > & | shape_function_to_row_table, | ||
std::vector< VectorType > & | laplacians, | ||
const bool | quadrature_points_fastest = false , |
||
const unsigned int | component_multiple = 1 |
||
) |
Definition at line 601 of file fe_values_base.cc.
Tensor< 1, 3 > internal::apply_exponential_map | ( | const Tensor< 1, 3 > & | u, |
const Tensor< 1, 3 > & | dir | ||
) |
Definition at line 51 of file manifold_lib.cc.
Definition at line 71 of file manifold_lib.cc.
Point< spacedim > internal::compute_normal | ( | const Tensor< 1, spacedim > & | , |
bool | = false |
||
) |
Definition at line 82 of file manifold_lib.cc.
Definition at line 89 of file manifold_lib.cc.
bool internal::dealii_initialized_kokkos = false |
Records if Kokkos has been initialized by deal.II. The value stored is only meaningful after ensure_kokkos_initialized() has been called.
Decompose the shape-function index of a linear wedge into an index to access the right shape function within the triangle and within the line.
Definition at line 35 of file polynomials_wedge.h.
Decompose the shape-function index of a quadratic wedge into an index to access the right shape function within the triangle and within the line.
Definition at line 43 of file polynomials_wedge.h.
|
constexpr |
A constexpr
variable that describes whether or not Op<Args...>
is a valid expression.
The way this is used is to define an Op
operation template that describes the operation we want to perform, and Args
is a template pack that describes the arguments to the operation. This variable then states whether the operation, with these arguments, leads to a valid C++ expression.
An example is if one wanted to find out whether a type T
has a get_mpi_communicator()
member function. In that case, one would write the operation as
and could define a variable like
The trick used here is that get_mpi_communicator_op
is a general template, but when used with a type that does not have a get_mpi_communicator()
member variable, the decltype(...)
operation will fail because its argument does not represent a valid expression for such a type. In other words, for such types T
that do not have such a member function, the general template get_mpi_communicator_op
represents a valid declaration, but the instantiation get_mpi_communicator_op<T>
is not, and the variable declared here detects and reports this.
Definition at line 158 of file template_constraints.h.
|
constexpr |
Definition at line 51 of file block_vector_base.h.
|
constexpr |
Definition at line 57 of file block_vector_base.h.
|
constexpr |
Definition at line 61 of file block_vector_base.h.
|
constexpr |
Check if a vector is a deal.II vector.
Definition at line 77 of file dof_accessor_set.cc.
|
constexpr |
Definition at line 98 of file dof_accessor_set.cc.
|
staticconstexpr |
Definition at line 45 of file manifold_lib.cc.