Reference documentation for deal.II version GIT 7bd1c95dbb 2022-06-29 20:50:01+00:00
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Public Types | Public Member Functions | Static Public Attributes | Protected Types | Protected Member Functions | Protected Attributes | Private Types | Private Member Functions | Private Attributes | Friends | List of all members
parallel::distributed::Triangulation< dim, spacedim > Class Template Reference

#include <deal.II/distributed/tria.h>

Inheritance diagram for parallel::distributed::Triangulation< dim, spacedim >:
[legend]

Public Types

enum  Settings {
  default_setting = 0x0 , mesh_reconstruction_after_repartitioning = 0x1 , construct_multigrid_hierarchy = 0x2 , no_automatic_repartitioning = 0x4 ,
  communicate_vertices_to_p4est = 0x8
}
 
using cell_iterator = typename ::Triangulation< dim, spacedim >::cell_iterator
 
using active_cell_iterator = typename ::Triangulation< dim, spacedim >::active_cell_iterator
 
using CellStatus = typename ::Triangulation< dim, spacedim >::CellStatus
 
enum  MeshSmoothing
 
using level_cell_iterator = cell_iterator
 
using face_iterator = TriaIterator< TriaAccessor< dim - 1, dim, spacedim > >
 
using active_face_iterator = TriaActiveIterator< TriaAccessor< dim - 1, dim, spacedim > >
 
using vertex_iterator = TriaIterator<::TriaAccessor< 0, dim, spacedim > >
 
using active_vertex_iterator = TriaActiveIterator<::TriaAccessor< 0, dim, spacedim > >
 
using line_iterator = typename IteratorSelector::line_iterator
 
using active_line_iterator = typename IteratorSelector::active_line_iterator
 
using quad_iterator = typename IteratorSelector::quad_iterator
 
using active_quad_iterator = typename IteratorSelector::active_quad_iterator
 
using hex_iterator = typename IteratorSelector::hex_iterator
 
using active_hex_iterator = typename IteratorSelector::active_hex_iterator
 

Public Member Functions

 Triangulation (const MPI_Comm &mpi_communicator, const typename ::Triangulation< dim, spacedim >::MeshSmoothing smooth_grid=(::Triangulation< dim, spacedim >::none), const Settings settings=default_setting)
 
virtual ~Triangulation () override
 
virtual void clear () override
 
bool is_multilevel_hierarchy_constructed () const override
 
bool are_vertices_communicated_to_p4est () const
 
void execute_transfer (const typename ::internal::p4est::types< dim >::forest *parallel_forest, const typename ::internal::p4est::types< dim >::gloidx *previous_global_first_quadrant)
 
virtual void copy_triangulation (const ::Triangulation< dim, spacedim > &other_tria) override
 
virtual void create_triangulation (const std::vector< Point< spacedim >> &vertices, const std::vector< CellData< dim >> &cells, const SubCellData &subcelldata) override
 
virtual void create_triangulation (const TriangulationDescription::Description< dim, spacedim > &construction_data) override
 
types::subdomain_id find_point_owner_rank (const Point< dim > &p)
 
std::vector< types::subdomain_idfind_point_owner_rank (const std::vector< Point< dim >> &points)
 
virtual void execute_coarsening_and_refinement () override
 
virtual bool prepare_coarsening_and_refinement () override
 
void repartition ()
 
virtual std::size_t memory_consumption () const override
 
virtual std::size_t memory_consumption_p4est () const
 
void write_mesh_vtk (const std::string &file_basename) const
 
unsigned int get_checksum () const
 
virtual void save (const std::string &filename) const override
 
virtual void load (const std::string &filename) override
 
virtual void load (const std::string &filename, const bool autopartition) override
 
void load (const typename ::internal::p4est::types< dim >::forest *forest)
 
const std::vector< types::global_dof_index > & get_p4est_tree_to_coarse_cell_permutation () const
 
const std::vector< types::global_dof_index > & get_coarse_cell_to_p4est_tree_permutation () const
 
const ::internal::p4est::types< dim >::forest * get_p4est () const
 
virtual void add_periodicity (const std::vector<::GridTools::PeriodicFacePair< cell_iterator >> &) override
 
virtual bool has_hanging_nodes () const override
 
unsigned int register_data_attach (const std::function< std::vector< char >(const cell_iterator &, const CellStatus)> &pack_callback, const bool returns_variable_size_data)
 
void notify_ready_to_unpack (const unsigned int handle, const std::function< void(const cell_iterator &, const CellStatus, const boost::iterator_range< std::vector< char >::const_iterator > &)> &unpack_callback)
 
virtual MPI_Comm get_communicator () const override
 
virtual void copy_triangulation (const Triangulation< dim, spacedim > &other_tria)
 
unsigned int n_locally_owned_active_cells () const
 
virtual types::global_cell_index n_global_active_cells () const override
 
virtual unsigned int n_global_levels () const override
 
types::subdomain_id locally_owned_subdomain () const override
 
const std::set< types::subdomain_id > & ghost_owners () const
 
const std::set< types::subdomain_id > & level_ghost_owners () const
 
const std::weak_ptr< const Utilities::MPI::Partitionerglobal_active_cell_index_partitioner () const
 
const std::weak_ptr< const Utilities::MPI::Partitionerglobal_level_cell_index_partitioner (const unsigned int level) const
 
virtual std::vector< types::boundary_idget_boundary_ids () const override
 
virtual std::vector< types::manifold_idget_manifold_ids () const override
 
void communicate_locally_moved_vertices (const std::vector< bool > &vertex_locally_moved)
 
virtual types::coarse_cell_id n_global_coarse_cells () const override
 
virtual void set_mesh_smoothing (const MeshSmoothing mesh_smoothing)
 
virtual const MeshSmoothingget_mesh_smoothing () const
 
void set_manifold (const types::manifold_id number, const Manifold< dim, spacedim > &manifold_object)
 
void reset_manifold (const types::manifold_id manifold_number)
 
void reset_all_manifolds ()
 
void set_all_manifold_ids (const types::manifold_id number)
 
void set_all_manifold_ids_on_boundary (const types::manifold_id number)
 
void set_all_manifold_ids_on_boundary (const types::boundary_id b_id, const types::manifold_id number)
 
const Manifold< dim, spacedim > & get_manifold (const types::manifold_id number) const
 
virtual void create_triangulation_compatibility (const std::vector< Point< spacedim >> &vertices, const std::vector< CellData< dim >> &cells, const SubCellData &subcelldata)
 
void flip_all_direction_flags ()
 
unsigned int n_quads () const
 
unsigned int n_quads (const unsigned int) const
 
unsigned int n_quads () const
 
unsigned int n_quads (const unsigned int) const
 
unsigned int n_quads () const
 
unsigned int n_quads (const unsigned int) const
 
unsigned int n_active_quads (const unsigned int) const
 
unsigned int n_active_quads () const
 
unsigned int n_active_quads (const unsigned int) const
 
unsigned int n_active_quads () const
 
unsigned int n_active_quads (const unsigned int) const
 
unsigned int n_active_quads () const
 
unsigned int n_hexs () const
 
unsigned int n_hexs (const unsigned int level) const
 
unsigned int n_active_hexs () const
 
unsigned int n_active_hexs (const unsigned int level) const
 
unsigned int max_adjacent_cells () const
 
unsigned int max_adjacent_cells () const
 
unsigned int max_adjacent_cells () const
 
unsigned int n_raw_quads (const unsigned int) const
 
unsigned int n_raw_quads (const unsigned int) const
 
unsigned int n_raw_quads (const unsigned int) const
 
unsigned int n_raw_quads (const unsigned int level) const
 
unsigned int n_raw_quads (const unsigned int level) const
 
unsigned int n_raw_quads (const unsigned int) const
 
unsigned int n_raw_quads () const
 
unsigned int n_raw_hexs (const unsigned int) const
 
unsigned int n_raw_hexs (const unsigned int) const
 
unsigned int n_raw_hexs (const unsigned int) const
 
unsigned int n_raw_hexs (const unsigned int level) const
 
Internal information about the number of objects
void save (Archive &ar, const unsigned int version) const
 
void load (Archive &ar, const unsigned int version)
 
unsigned int n_raw_lines () const
 
unsigned int n_raw_lines (const unsigned int level) const
 
unsigned int n_raw_quads () const
 
unsigned int n_raw_quads (const unsigned int level) const
 
unsigned int n_raw_hexs (const unsigned int level) const
 
unsigned int n_raw_cells (const unsigned int level) const
 
unsigned int n_raw_faces () const
 
virtual void add_periodicity (const std::vector< GridTools::PeriodicFacePair< cell_iterator >> &)
 
const std::map< std::pair< cell_iterator, unsigned int >, std::pair< std::pair< cell_iterator, unsigned int >, std::bitset< 3 > > > & get_periodic_face_map () const
 
const std::vector< ReferenceCell > & get_reference_cells () const
 
bool all_reference_cells_are_hyper_cube () const
 
bool all_reference_cells_are_simplex () const
 
bool is_mixed_mesh () const
 
void serialize (Archive &archive, const unsigned int version)
 
Mesh refinement
void set_all_refine_flags ()
 
void refine_global (const unsigned int times=1)
 
void coarsen_global (const unsigned int times=1)
 
History of a triangulation
void save_refine_flags (std::ostream &out) const
 
void save_refine_flags (std::vector< bool > &v) const
 
void load_refine_flags (std::istream &in)
 
void load_refine_flags (const std::vector< bool > &v)
 
void save_coarsen_flags (std::ostream &out) const
 
void save_coarsen_flags (std::vector< bool > &v) const
 
void load_coarsen_flags (std::istream &out)
 
void load_coarsen_flags (const std::vector< bool > &v)
 
bool get_anisotropic_refinement_flag () const
 
User data
void clear_user_flags ()
 
void save_user_flags (std::ostream &out) const
 
void save_user_flags (std::vector< bool > &v) const
 
void load_user_flags (std::istream &in)
 
void load_user_flags (const std::vector< bool > &v)
 
void clear_user_flags_line ()
 
void save_user_flags_line (std::ostream &out) const
 
void save_user_flags_line (std::vector< bool > &v) const
 
void load_user_flags_line (std::istream &in)
 
void load_user_flags_line (const std::vector< bool > &v)
 
void clear_user_flags_quad ()
 
void save_user_flags_quad (std::ostream &out) const
 
void save_user_flags_quad (std::vector< bool > &v) const
 
void load_user_flags_quad (std::istream &in)
 
void load_user_flags_quad (const std::vector< bool > &v)
 
void clear_user_flags_hex ()
 
void save_user_flags_hex (std::ostream &out) const
 
void save_user_flags_hex (std::vector< bool > &v) const
 
void load_user_flags_hex (std::istream &in)
 
void load_user_flags_hex (const std::vector< bool > &v)
 
void clear_user_data ()
 
void save_user_indices (std::vector< unsigned int > &v) const
 
void load_user_indices (const std::vector< unsigned int > &v)
 
void save_user_pointers (std::vector< void * > &v) const
 
void load_user_pointers (const std::vector< void * > &v)
 
void save_user_indices_line (std::vector< unsigned int > &v) const
 
void load_user_indices_line (const std::vector< unsigned int > &v)
 
void save_user_indices_quad (std::vector< unsigned int > &v) const
 
void load_user_indices_quad (const std::vector< unsigned int > &v)
 
void save_user_indices_hex (std::vector< unsigned int > &v) const
 
void load_user_indices_hex (const std::vector< unsigned int > &v)
 
void save_user_pointers_line (std::vector< void * > &v) const
 
void load_user_pointers_line (const std::vector< void * > &v)
 
void save_user_pointers_quad (std::vector< void * > &v) const
 
void load_user_pointers_quad (const std::vector< void * > &v)
 
void save_user_pointers_hex (std::vector< void * > &v) const
 
void load_user_pointers_hex (const std::vector< void * > &v)
 
Cell iterator functions
cell_iterator begin (const unsigned int level=0) const
 
active_cell_iterator begin_active (const unsigned int level=0) const
 
cell_iterator end () const
 
cell_iterator end (const unsigned int level) const
 
active_cell_iterator end_active (const unsigned int level) const
 
cell_iterator last () const
 
active_cell_iterator last_active () const
 
cell_iterator create_cell_iterator (const CellId &cell_id) const
 
Cell iterator functions returning ranges of iterators
IteratorRange< cell_iteratorcell_iterators () const
 
IteratorRange< active_cell_iteratoractive_cell_iterators () const
 
IteratorRange< cell_iteratorcell_iterators_on_level (const unsigned int level) const
 
IteratorRange< active_cell_iteratoractive_cell_iterators_on_level (const unsigned int level) const
 
Face iterator functions
face_iterator begin_face () const
 
active_face_iterator begin_active_face () const
 
face_iterator end_face () const
 
IteratorRange< active_face_iteratoractive_face_iterators () const
 
Vertex iterator functions
vertex_iterator begin_vertex () const
 
active_vertex_iterator begin_active_vertex () const
 
vertex_iterator end_vertex () const
 
Information about the triangulation
unsigned int n_lines () const
 
unsigned int n_lines (const unsigned int level) const
 
unsigned int n_active_lines () const
 
unsigned int n_active_lines (const unsigned int level) const
 
unsigned int n_quads () const
 
unsigned int n_quads (const unsigned int level) const
 
unsigned int n_active_quads () const
 
unsigned int n_active_quads (const unsigned int level) const
 
unsigned int n_hexs () const
 
unsigned int n_hexs (const unsigned int level) const
 
unsigned int n_active_hexs () const
 
unsigned int n_active_hexs (const unsigned int level) const
 
unsigned int n_cells () const
 
unsigned int n_cells (const unsigned int level) const
 
unsigned int n_active_cells () const
 
unsigned int n_active_cells (const unsigned int level) const
 
unsigned int n_faces () const
 
unsigned int n_active_faces () const
 
unsigned int n_levels () const
 
unsigned int n_vertices () const
 
const std::vector< Point< spacedim > > & get_vertices () const
 
unsigned int n_used_vertices () const
 
bool vertex_used (const unsigned int index) const
 
const std::vector< bool > & get_used_vertices () const
 
unsigned int max_adjacent_cells () const
 
Triangulation< dim, spacedim > & get_triangulation ()
 
const Triangulation< dim, spacedim > & get_triangulation () const
 

Public Attributes

Keeping up with what happens to a triangulation
Signals signals
 

Static Public Attributes

static constexpr unsigned int dimension
 
static constexpr unsigned int space_dimension
 

Protected Types

using cell_relation_t = typename std::pair< cell_iterator, CellStatus >
 

Protected Member Functions

void save_attached_data (const unsigned int global_first_cell, const unsigned int global_num_cells, const std::string &filename) const
 
void load_attached_data (const unsigned int global_first_cell, const unsigned int global_num_cells, const unsigned int local_num_cells, const std::string &filename, const unsigned int n_attached_deserialize_fixed, const unsigned int n_attached_deserialize_variable)
 
virtual void update_number_cache ()
 
void update_reference_cells () override
 
void reset_global_cell_indices ()
 

Protected Attributes

std::vector< cell_relation_tlocal_cell_relations
 
CellAttachedData cell_attached_data
 
DataTransfer data_transfer
 
const MPI_Comm mpi_communicator
 
types::subdomain_id my_subdomain
 
types::subdomain_id n_subdomains
 
NumberCache number_cache
 

Private Types

using IteratorSelector = ::internal::TriangulationImplementation::Iterators< dim, spacedim >
 

Private Member Functions

virtual void update_cell_relations () override
 
typename ::internal::p4est::types< dim >::tree * init_tree (const int dealii_coarse_cell_index) const
 
void setup_coarse_cell_to_p4est_tree_permutation ()
 
void copy_new_triangulation_to_p4est (std::integral_constant< int, 2 >)
 
void copy_new_triangulation_to_p4est (std::integral_constant< int, 3 >)
 
void copy_local_forest_to_triangulation ()
 
std::vector< unsigned int > get_cell_weights () const
 
std::vector< boolmark_locally_active_vertices_on_level (const int level) const
 
virtual unsigned int coarse_cell_id_to_coarse_cell_index (const types::coarse_cell_id coarse_cell_id) const override
 
virtual types::coarse_cell_id coarse_cell_index_to_coarse_cell_id (const unsigned int coarse_cell_index) const override
 
Line iterator functions for internal use
raw_line_iterator begin_raw_line (const unsigned int level=0) const
 
line_iterator begin_line (const unsigned int level=0) const
 
active_line_iterator begin_active_line (const unsigned int level=0) const
 
line_iterator end_line () const
 
Quad iterator functions for internal use
raw_quad_iterator begin_raw_quad (const unsigned int level=0) const
 
quad_iterator begin_quad (const unsigned int level=0) const
 
active_quad_iterator begin_active_quad (const unsigned int level=0) const
 
quad_iterator end_quad () const
 

Private Attributes

Settings settings
 
bool triangulation_has_content
 
typename ::internal::p4est::types< dim >::connectivity * connectivity
 
typename ::internal::p4est::types< dim >::forest * parallel_forest
 
typename ::internal::p4est::types< dim >::ghost * parallel_ghost
 
std::vector< types::global_dof_indexcoarse_cell_to_p4est_tree_permutation
 
std::vector< types::global_dof_indexp4est_tree_to_coarse_cell_permutation
 

Friends

template<int , int , class >
class ::FETools::internal::ExtrapolateImplementation
 
template<int , int >
class TemporarilyMatchRefineFlags
 

Exceptions

std::unique_ptr< ::internal::TriangulationImplementation::Policy< dim, spacedim > > policy
 
std::vector< GridTools::PeriodicFacePair< cell_iterator > > periodic_face_pairs_level_0
 
std::map< std::pair< cell_iterator, unsigned int >, std::pair< std::pair< cell_iterator, unsigned int >, std::bitset< 3 > > > periodic_face_map
 
MeshSmoothing smooth_grid
 
std::vector< ReferenceCellreference_cells
 
void update_periodic_face_map ()
 
static ::ExceptionBaseExcInvalidLevel (int arg1, int arg2)
 
static ::ExceptionBaseExcTriangulationNotEmpty (int arg1, int arg2)
 
static ::ExceptionBaseExcGridReadError ()
 
static ::ExceptionBaseExcFacesHaveNoLevel ()
 
static ::ExceptionBaseExcEmptyLevel (int arg1)
 
static ::ExceptionBaseExcNonOrientableTriangulation ()
 
static ::ExceptionBaseExcBoundaryIdNotFound (types::boundary_id arg1)
 
static ::ExceptionBaseExcInconsistentCoarseningFlags ()
 
static void write_bool_vector (const unsigned int magic_number1, const std::vector< bool > &v, const unsigned int magic_number2, std::ostream &out)
 
static void read_bool_vector (const unsigned int magic_number1, std::vector< bool > &v, const unsigned int magic_number2, std::istream &in)
 

Hex iterator functions for internal use

std::vector< std::unique_ptr<::internal::TriangulationImplementation::TriaLevel > > levels
 
std::unique_ptr<::internal::TriangulationImplementation::TriaFacesfaces
 
std::vector< Point< spacedim > > vertices
 
std::vector< boolvertices_used
 
std::map< types::manifold_id, std::unique_ptr< const Manifold< dim, spacedim > > > manifolds
 
bool anisotropic_refinement
 
const bool check_for_distorted_cells
 
std::unique_ptr< std::map< unsigned int, types::boundary_id > > vertex_to_boundary_id_map_1d
 
std::unique_ptr< std::map< unsigned int, types::manifold_id > > vertex_to_manifold_id_map_1d
 
raw_hex_iterator begin_raw_hex (const unsigned int level=0) const
 
hex_iterator begin_hex (const unsigned int level=0) const
 
active_hex_iterator begin_active_hex (const unsigned int level=0) const
 
hex_iterator end_hex () const
 
void clear_despite_subscriptions ()
 
void reset_policy ()
 
void reset_active_cell_indices ()
 
void reset_cell_vertex_indices_cache ()
 
DistortedCellList execute_refinement ()
 
void execute_coarsening ()
 
void fix_coarsen_flags ()
 

Subscriptor functionality

Classes derived from Subscriptor provide a facility to subscribe to this object. This is mostly used by the SmartPointer class.

std::atomic< unsigned int > counter
 
std::map< std::string, unsigned int > counter_map
 
std::vector< std::atomic< bool > * > validity_pointers
 
const std::type_info * object_info
 
void subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
void unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
unsigned int n_subscriptions () const
 
template<typename StreamType >
void list_subscribers (StreamType &stream) const
 
void list_subscribers () const
 
void check_no_subscribers () const noexcept
 
using map_value_type = decltype(counter_map)::value_type
 
using map_iterator = decltype(counter_map)::iterator
 
static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 
static std::mutex mutex
 

Cell iterator functions for internal use

raw_cell_iterator begin_raw (const unsigned int level=0) const
 
raw_cell_iterator end_raw (const unsigned int level) const
 
using raw_cell_iterator = TriaRawIterator< CellAccessor< dim, spacedim > >
 
using raw_face_iterator = TriaRawIterator< TriaAccessor< dim - 1, dim, spacedim > >
 
using raw_vertex_iterator = TriaRawIterator<::TriaAccessor< 0, dim, spacedim > >
 
using raw_line_iterator = typename IteratorSelector::raw_line_iterator
 
using raw_quad_iterator = typename IteratorSelector::raw_quad_iterator
 
using raw_hex_iterator = typename IteratorSelector::raw_hex_iterator
 

Detailed Description

template<int dim, int spacedim = dim>
class parallel::distributed::Triangulation< dim, spacedim >

This class acts like the Triangulation class, but it distributes the mesh across a number of different processors when using MPI. The class's interface does not add a lot to the Triangulation class but there are a number of difficult algorithms under the hood that ensure we always have a load-balanced, fully distributed mesh. Use of this class is explained in step-40, step-32, the Parallel computing with multiple processors using distributed memory documentation module, as well as the distributed_paper. See there for more information. This class satisfies the MeshType concept.

Note
This class does not support anisotropic refinement, because it relies on the p4est library that does not support this. Attempts to refine cells anisotropically will result in errors.
There is currently no support for distributing 1d triangulations.

Interaction with boundary description

Refining and coarsening a distributed triangulation is a complicated process because cells may have to be migrated from one processor to another. On a single processor, materializing that part of the global mesh that we want to store here from what we have stored before therefore may involve several cycles of refining and coarsening the locally stored set of cells until we have finally gotten from the previous to the next triangulation. This process is described in more detail in the distributed_paper. Unfortunately, in this process, some information can get lost relating to flags that are set by user code and that are inherited from mother to child cell but that are not moved along with a cell if that cell is migrated from one processor to another.

An example are boundary indicators. Assume, for example, that you start with a single cell that is refined once globally, yielding four children. If you have four processors, each one owns one cell. Assume now that processor 1 sets the boundary indicators of the external boundaries of the cell it owns to 42. Since processor 0 does not own this cell, it doesn't set the boundary indicators of its ghost cell copy of this cell. Now, assume we do several mesh refinement cycles and end up with a configuration where this processor suddenly finds itself as the owner of this cell. If boundary indicator 42 means that we need to integrate Neumann boundary conditions along this boundary, then processor 0 will forget to do so because it has never set the boundary indicator along this cell's boundary to 42.

The way to avoid this dilemma is to make sure that things like setting boundary indicators or material ids is done immediately every time a parallel triangulation is refined. This is not necessary for sequential triangulations because, there, these flags are inherited from mother to child cell and remain with a cell even if it is refined and the children are later coarsened again, but this does not hold for distributed triangulations. It is made even more difficult by the fact that in the process of refining a parallel distributed triangulation, the triangulation may call Triangulation::execute_coarsening_and_refinement multiple times and this function needs to know about boundaries. In other words, it is not enough to just set boundary indicators on newly created faces only after calling distributed::parallel::TriangulationBase::execute_coarsening_and_refinement: it actually has to happen while that function is still running.

The way to do this is by writing a function that sets boundary indicators and that will be called by the Triangulation class. The triangulation does not provide a pointer to itself to the function being called, nor any other information, so the trick is to get this information into the function. C++ provides a nice mechanism for this that is best explained using an example:

#include <functional>
template <int dim>
void set_boundary_ids (
{
... set boundary indicators on the triangulation object ...
}
template <int dim>
void
MyClass<dim>::create_coarse_mesh (
{
... create the coarse mesh ...
coarse_grid.signals.post_refinement.connect(
[&coarse_grid](){
set_boundary_ids<dim>(coarse_grid);
});
}
Signals signals
Definition: tria.h:2448
__global__ void set(Number *val, const Number s, const size_type N)
const ::parallel::distributed::Triangulation< dim, spacedim > * triangulation

The object passed as argument to connect is an object that can be called like a function with no arguments. It does so by wrapping a function that does, in fact, take an argument but this one argument is stored as a reference to the coarse grid triangulation when the lambda function is created. After each refinement step, the triangulation will then call the object so created which will in turn call set_boundary_ids<dim> with the reference to the coarse grid as argument.

This approach can be generalized. In the example above, we have used a global function that will be called. However, sometimes it is necessary that this function is in fact a member function of the class that generates the mesh, for example because it needs to access run-time parameters. This can be achieved as follows: assuming the set_boundary_ids() function has been declared as a (non- static, but possibly private) member function of the MyClass class, then the following will work:

#include <functional>
template <int dim>
void
MyClass<dim>::set_boundary_ids (
{
... set boundary indicators on the triangulation object ...
}
template <int dim>
void
MyClass<dim>::create_coarse_mesh (
{
... create the coarse mesh ...
coarse_grid.signals.post_refinement.connect(
[this, &coarse_grid]()
{
this->set_boundary_ids(coarse_grid);
});
}

The lambda function above again is an object that can be called like a global function with no arguments, and this object in turn calls the current object's member function set_boundary_ids with a reference to the triangulation to work on. Note that because the create_coarse_mesh function is declared as const, it is necessary that the set_boundary_ids function is also declared const.

Note:For reasons that have to do with the way the parallel::distributed::Triangulation is implemented, functions that have been attached to the post-refinement signal of the triangulation are called more than once, sometimes several times, every time the triangulation is actually refined.

Definition at line 248 of file tria.h.

Member Typedef Documentation

◆ CellStatus

template<int dim, int spacedim = dim>
using parallel::distributed::Triangulation< dim, spacedim >::CellStatus = typename ::Triangulation<dim, spacedim>::CellStatus

Definition at line 293 of file tria.h.

◆ cell_relation_t

using parallel::DistributedTriangulationBase< dim, spacedim >::cell_relation_t = typename std::pair<cell_iterator, CellStatus>
protectedinherited

Auxiliary data structure for assigning a CellStatus to a deal.II cell iterator. For an extensive description of the former, see the documentation for the member function register_data_attach().

Definition at line 731 of file tria_base.h.

◆ IteratorSelector

using Triangulation< dim, spacedim >::IteratorSelector = ::internal::TriangulationImplementation::Iterators<dim, spacedim>
privateinherited

An internal alias to make the definition of the iterator classes simpler.

Definition at line 1128 of file tria.h.

◆ level_cell_iterator

using Triangulation< dim, spacedim >::level_cell_iterator = cell_iterator
inherited

The same as above to allow the usage of the "MeshType concept" also on the refinement levels.

Definition at line 1361 of file tria.h.

◆ face_iterator

using Triangulation< dim, spacedim >::face_iterator = TriaIterator<TriaAccessor<dim - 1, dim, spacedim> >
inherited

An alias that is used to identify iterators that point to faces. The concept of iterators is discussed at length in the iterators documentation module.

The current alias identifies faces in a triangulation. The TriaIterator class works like a pointer to objects that when you dereference it yields an object of type TriaAccessor, i.e., class that can be used to query geometric properties of faces such as their vertices, their area, etc.

Definition at line 1394 of file tria.h.

◆ active_face_iterator

using Triangulation< dim, spacedim >::active_face_iterator = TriaActiveIterator<TriaAccessor<dim - 1, dim, spacedim> >
inherited

An alias that is used to identify iterators that point to active faces, i.e., to faces that have no children. Active faces must be faces of at least one active cell.

Other than the "active" qualification, this alias is identical to the face_iterator alias. In particular, dereferencing either yields the same kind of object.

Definition at line 1407 of file tria.h.

◆ vertex_iterator

using Triangulation< dim, spacedim >::vertex_iterator = TriaIterator<::TriaAccessor<0, dim, spacedim> >
inherited

An alias that defines an iterator type to iterate over vertices of a mesh. The concept of iterators is discussed at length in the iterators documentation module.

Definition at line 1418 of file tria.h.

◆ active_vertex_iterator

using Triangulation< dim, spacedim >::active_vertex_iterator = TriaActiveIterator<::TriaAccessor<0, dim, spacedim> >
inherited

An alias that defines an iterator type to iterate over vertices of a mesh. The concept of iterators is discussed at length in the iterators documentation module.

This alias is in fact identical to the vertex_iterator alias above since all vertices in a mesh are active (i.e., are a vertex of an active cell).

Definition at line 1432 of file tria.h.

◆ line_iterator

using Triangulation< dim, spacedim >::line_iterator = typename IteratorSelector::line_iterator
inherited

An alias that defines an iterator over the (one-dimensional) lines of a mesh. In one-dimensional meshes, these are the cells of the mesh, whereas in two-dimensional meshes the lines are the faces of cells.

Definition at line 1442 of file tria.h.

◆ active_line_iterator

using Triangulation< dim, spacedim >::active_line_iterator = typename IteratorSelector::active_line_iterator
inherited

An alias that allows iterating over the active lines, i.e., that subset of lines that have no children. In one-dimensional meshes, these are the cells of the mesh, whereas in two-dimensional meshes the lines are the faces of cells.

In two- or three-dimensional meshes, lines without children (i.e., the active lines) are part of at least one active cell. Each such line may additionally be a child of a line of a coarser cell adjacent to a cell that is active. (This coarser neighbor would then also be active.)

Definition at line 1457 of file tria.h.

◆ quad_iterator

using Triangulation< dim, spacedim >::quad_iterator = typename IteratorSelector::quad_iterator
inherited

An alias that defines an iterator over the (two-dimensional) quads of a mesh. In two-dimensional meshes, these are the cells of the mesh, whereas in three-dimensional meshes the quads are the faces of cells.

Definition at line 1466 of file tria.h.

◆ active_quad_iterator

using Triangulation< dim, spacedim >::active_quad_iterator = typename IteratorSelector::active_quad_iterator
inherited

An alias that allows iterating over the active quads, i.e., that subset of quads that have no children. In two-dimensional meshes, these are the cells of the mesh, whereas in three-dimensional meshes the quads are the faces of cells.

In three-dimensional meshes, quads without children (i.e., the active quads) are faces of at least one active cell. Each such quad may additionally be a child of a quad face of a coarser cell adjacent to a cell that is active. (This coarser neighbor would then also be active.)

Definition at line 1481 of file tria.h.

◆ hex_iterator

using Triangulation< dim, spacedim >::hex_iterator = typename IteratorSelector::hex_iterator
inherited

An alias that defines an iterator over the (three-dimensional) hexes of a mesh. This iterator only makes sense in three-dimensional meshes, where hexes are the cells of the mesh.

Definition at line 1490 of file tria.h.

◆ active_hex_iterator

using Triangulation< dim, spacedim >::active_hex_iterator = typename IteratorSelector::active_hex_iterator
inherited

An alias that allows iterating over the active hexes of a mesh. This iterator only makes sense in three-dimensional meshes, where hexes are the cells of the mesh. Consequently, in these three-dimensional meshes, this iterator is equivalent to the active_cell_iterator alias.

Definition at line 1501 of file tria.h.

◆ raw_cell_iterator

using Triangulation< dim, spacedim >::raw_cell_iterator = TriaRawIterator<CellAccessor<dim, spacedim> >
privateinherited

Declare a number of iterator types for raw iterators, i.e., iterators that also iterate over holes in the list of cells left by cells that have been coarsened away in previous mesh refinement cycles.

Since users should never have to access these internal properties of how we store data, these iterator types are made private.

Definition at line 3790 of file tria.h.

◆ raw_face_iterator

using Triangulation< dim, spacedim >::raw_face_iterator = TriaRawIterator<TriaAccessor<dim - 1, dim, spacedim> >
privateinherited

Definition at line 3791 of file tria.h.

◆ raw_vertex_iterator

using Triangulation< dim, spacedim >::raw_vertex_iterator = TriaRawIterator<::TriaAccessor<0, dim, spacedim> >
privateinherited

Definition at line 3793 of file tria.h.

◆ raw_line_iterator

using Triangulation< dim, spacedim >::raw_line_iterator = typename IteratorSelector::raw_line_iterator
privateinherited

Definition at line 3795 of file tria.h.

◆ raw_quad_iterator

using Triangulation< dim, spacedim >::raw_quad_iterator = typename IteratorSelector::raw_quad_iterator
privateinherited

Definition at line 3796 of file tria.h.

◆ raw_hex_iterator

using Triangulation< dim, spacedim >::raw_hex_iterator = typename IteratorSelector::raw_hex_iterator
privateinherited

Definition at line 3797 of file tria.h.

Member Enumeration Documentation

◆ Settings

template<int dim, int spacedim = dim>
enum parallel::distributed::Triangulation::Settings

Configuration flags for distributed Triangulations to be set in the constructor. Settings can be combined using bitwise OR.

Enumerator
default_setting 

Default settings, other options are disabled.

mesh_reconstruction_after_repartitioning 

If set, the deal.II mesh will be reconstructed from the coarse mesh every time a repartitioning in p4est happens. This can be a bit more expensive, but guarantees the same memory layout and therefore cell ordering in the deal.II mesh. As assembly is done in the deal.II cell ordering, this flag is required to get reproducible behavior after snapshot/resume.

construct_multigrid_hierarchy 

This flags needs to be set to use the geometric multigrid functionality. This option requires additional computation and communication.

no_automatic_repartitioning 

Setting this flag will disable automatic repartitioning of the cells after a refinement cycle. It can be executed manually by calling repartition().

communicate_vertices_to_p4est 

Setting this flag will communicate vertices to p4est. This way one can use the 'find_point_owner_rank()' to find the MPI rank of the active cell that owns an arbitrary point in case all attached manifolds are flat.

Definition at line 300 of file tria.h.

◆ MeshSmoothing

Declare some symbolic names for mesh smoothing algorithms. The meaning of these flags is documented in the Triangulation class.

Definition at line 1136 of file tria.h.

Constructor & Destructor Documentation

◆ Triangulation()

template<int dim, int spacedim>
Triangulation< dim, spacedim >::Triangulation ( const MPI_Comm &  mpi_communicator,
const typename ::Triangulation< dim, spacedim >::MeshSmoothing  smooth_grid = (::Triangulation<dim, spacedim>::none),
const Settings  settings = default_setting 
)
explicit

Constructor.

Parameters
mpi_communicatorThe MPI communicator to be used for the triangulation.
smooth_gridDegree and kind of mesh smoothing to be applied to the mesh. See the Triangulation class for a description of the kinds of smoothing operations that can be applied.
settingsSee the description of the Settings enumerator. Providing construct_multigrid_hierarchy enforces Triangulation::limit_level_difference_at_vertices for smooth_grid.
Note
This class does not currently support the check_for_distorted_cells argument provided by the base class.
While it is possible to pass all of the mesh smoothing flags listed in the base class to objects of this type, it is not always possible to honor all of these smoothing options if they would require knowledge of refinement/coarsening flags on cells not locally owned by this processor. As a consequence, for some of these flags, the ultimate number of cells of the parallel triangulation may depend on the number of processors into which it is partitioned. On the other hand, if no smoothing flags are passed, if you always mark the same cells of the mesh, you will always get the exact same refined mesh independent of the number of processors into which the triangulation is partitioned.

Definition at line 1701 of file tria.cc.

◆ ~Triangulation()

template<int dim, int spacedim>
Triangulation< dim, spacedim >::~Triangulation
overridevirtual

Destructor.

Reimplemented from Triangulation< dim, spacedim >.

Definition at line 1729 of file tria.cc.

Member Function Documentation

◆ clear()

template<int dim, int spacedim>
void Triangulation< dim, spacedim >::clear
overridevirtual

Reset this triangulation into a virgin state by deleting all data.

Note that this operation is only allowed if no subscriptions to this object exist any more, such as DoFHandler objects using it.

Reimplemented from parallel::DistributedTriangulationBase< dim, dim >.

Definition at line 1816 of file tria.cc.

◆ is_multilevel_hierarchy_constructed()

template<int dim, int spacedim>
bool Triangulation< dim, spacedim >::is_multilevel_hierarchy_constructed
overridevirtual

Return if multilevel hierarchy is supported and has been constructed.

Implements parallel::TriangulationBase< dim, spacedim >.

Definition at line 1852 of file tria.cc.

◆ are_vertices_communicated_to_p4est()

template<int dim, int spacedim>
bool Triangulation< dim, spacedim >::are_vertices_communicated_to_p4est

Return if vertices will be communicated to p4est.

Definition at line 1862 of file tria.cc.

◆ execute_transfer()

template<int dim, int spacedim>
void Triangulation< dim, spacedim >::execute_transfer ( const typename ::internal::p4est::types< dim >::forest *  parallel_forest,
const typename ::internal::p4est::types< dim >::gloidx *  previous_global_first_quadrant 
)

Transfer data across forests.

Besides the actual parallel_forest, which has been already refined and repartitioned, this function also needs information about its previous state, i.e. the locally owned intervals in p4est's sc_array of each processor. This information needs to be memcopyied out of the old p4est object and has to be provided via the parameter previous_global_first_quadrant.

Data has to be previously packed with DistributedTriangulationBase::DataTransfer::pack_data().

Definition at line 1872 of file tria.cc.

◆ copy_triangulation() [1/2]

template<int dim, int spacedim>
void Triangulation< dim, spacedim >::copy_triangulation ( const ::Triangulation< dim, spacedim > &  other_tria)
overridevirtual

Implementation of the same function as in the base class.

Note
This function can be used to copy a serial Triangulation to a parallel::distributed::Triangulation but only if the serial Triangulation has never been refined.

Reimplemented from parallel::TriangulationBase< dim, spacedim >.

Definition at line 3911 of file tria.cc.

◆ create_triangulation() [1/2]

template<int dim, int spacedim>
void Triangulation< dim, spacedim >::create_triangulation ( const std::vector< Point< spacedim >> &  vertices,
const std::vector< CellData< dim >> &  cells,
const SubCellData subcelldata 
)
overridevirtual

Create a triangulation as documented in the base class.

This function also sets up the various data structures necessary to distribute a mesh across a number of processors. This will be necessary once the mesh is being refined, though we will always keep the entire coarse mesh that is generated by this function on all processors.

Reimplemented from Triangulation< dim, spacedim >.

Definition at line 1750 of file tria.cc.

◆ create_triangulation() [2/2]

template<int dim, int spacedim>
void Triangulation< dim, spacedim >::create_triangulation ( const TriangulationDescription::Description< dim, spacedim > &  construction_data)
overridevirtual

Create a triangulation as documented in the base class.

This function also sets up the various data structures necessary to distribute a mesh across a number of processors. This will be necessary once the mesh is being refined, though we will always keep the entire coarse mesh that is generated by this function on all processors.

Note
Not implemented yet.

Reimplemented from Triangulation< dim, spacedim >.

Definition at line 1803 of file tria.cc.

◆ find_point_owner_rank() [1/2]

template<int dim, int spacedim>
types::subdomain_id Triangulation< dim, spacedim >::find_point_owner_rank ( const Point< dim > &  p)

Find the MPI rank of the cell that contains this point in a distributed mesh.

Note
This function calls find_point_owner_rank(const std::vector<Point<dim>> &points) (requires p4est v2.2 and higher). Please see the documentation of find_point_owner_rank(const std::vector<Point<dim>> &points).

Definition at line 3114 of file tria.cc.

◆ find_point_owner_rank() [2/2]

template<int dim, int spacedim>
std::vector< types::subdomain_id > Triangulation< dim, spacedim >::find_point_owner_rank ( const std::vector< Point< dim >> &  points)

Find the MPI rank of the cells that contain the input points in a distributed mesh. If any point is not owned by any mesh cell its return value will be numbers::invalid_subdomain_id.

Note
The query points do not need to be owned locally or in the ghost layer.
This function can only be used with p4est v2.2 and higher, flat manifolds and requires the settings flag Settings::communicate_vertices_to_p4est to be set.
The algorithm is free of communication.
Parameters
[in]pointsa list of query points
Returns
list of owner ranks

Definition at line 3127 of file tria.cc.

◆ execute_coarsening_and_refinement()

template<int dim, int spacedim>
void Triangulation< dim, spacedim >::execute_coarsening_and_refinement
overridevirtual

Coarsen and refine the mesh according to refinement and coarsening flags set.

Since the current processor only has control over those cells it owns (i.e. the ones for which cell->subdomain_id() == this->locally_owned_subdomain()), refinement and coarsening flags are only respected for those locally owned cells. Flags may be set on other cells as well (and may often, in fact, if you call Triangulation::prepare_coarsening_and_refinement()) but will be largely ignored: the decision to refine the global mesh will only be affected by flags set on locally owned cells.

Note
This function by default partitions the mesh in such a way that the number of cells on all processors is roughly equal. If you want to set weights for partitioning, e.g. because some cells are more expensive to compute than others, you can use the signal weight as documented in the Triangulation class. This function will check whether a function is connected to the signal and if so use it. If you prefer to repartition the mesh yourself at user-defined intervals only, you can create your triangulation object by passing the parallel::distributed::Triangulation::no_automatic_repartitioning flag to the constructor, which ensures that calling the current function only refines and coarsens the triangulation, but doesn't partition it. You can then call the repartition() function manually. The usage of the weight signal is identical in both cases, if a function is connected to the signal it will be used to balance the calculated weights, otherwise the number of cells is balanced.

Reimplemented from Triangulation< dim, spacedim >.

Definition at line 3227 of file tria.cc.

◆ prepare_coarsening_and_refinement()

template<int dim, int spacedim>
bool Triangulation< dim, spacedim >::prepare_coarsening_and_refinement
overridevirtual

Override the implementation of prepare_coarsening_and_refinement from the base class. This is necessary if periodic boundaries are enabled and the level difference over vertices over the periodic boundary must not be more than 2:1.

Reimplemented from Triangulation< dim, spacedim >.

Definition at line 2739 of file tria.cc.

◆ repartition()

template<int dim, int spacedim>
void Triangulation< dim, spacedim >::repartition

Manually repartition the active cells between processors. Normally this repartitioning will happen automatically when calling execute_coarsening_and_refinement() (or refine_global()) unless the no_automatic_repartitioning is set in the constructor. Setting the flag and then calling repartition() gives the same result.

If you want to transfer data (using SolutionTransfer or manually with register_data_attach() and notify_ready_to_unpack()), you need to set it up twice: once when calling execute_coarsening_and_refinement(), which will handle coarsening and refinement but obviously won't ship any data between processors, and a second time when calling repartition(). Here, no coarsening and refinement will be done but information will be packed and shipped to different processors. In other words, you probably want to treat a call to repartition() in the same way as execute_coarsening_and_refinement() with respect to dealing with data movement (SolutionTransfer, etc.).

Note
If no function is connected to the weight signal described in the Triangulation class, this function will balance the number of cells on each processor. If one or more functions are connected, it will calculate the sum of the weights and balance the weights across processors. The only requirement on the weights is that every cell's weight is positive and that the sum over all weights on all processors can be formed using a 64-bit integer. Beyond that, it is your choice how you want to interpret the weights. A common approach is to consider the weights proportional to the cost of doing computations on a cell, e.g., by summing the time for assembly and solving. In practice, determining this cost is of course not trivial since we don't solve on isolated cells, but on the entire mesh. In such cases, one could, for example, choose the weight equal to the number of unknowns per cell (in the context of hp-finite element methods), or using a heuristic that estimates the cost on each cell depending on whether, for example, one has to run some expensive algorithm on some cells but not others (such as forming boundary integrals during the assembly only on cells that are actually at the boundary, or computing expensive nonlinear terms only on some cells but not others, e.g., in the elasto-plastic problem in step-42).

Definition at line 3491 of file tria.cc.

◆ memory_consumption()

template<int dim, int spacedim>
std::size_t Triangulation< dim, spacedim >::memory_consumption
overridevirtual

Return the local memory consumption in bytes.

Reimplemented from parallel::TriangulationBase< dim, spacedim >.

Definition at line 3871 of file tria.cc.

◆ memory_consumption_p4est()

template<int dim, int spacedim>
std::size_t Triangulation< dim, spacedim >::memory_consumption_p4est
virtual

Return the local memory consumption contained in the p4est data structures alone. This is already contained in memory_consumption() but made available separately for debugging purposes.

Definition at line 3899 of file tria.cc.

◆ write_mesh_vtk()

template<int dim, int spacedim>
void Triangulation< dim, spacedim >::write_mesh_vtk ( const std::string &  file_basename) const

A collective operation that produces a sequence of output files with the given file base name that contain the mesh in VTK format.

More than anything else, this function is useful for debugging the interface between deal.II and p4est.

Note
To use the function the flag Settings::communicate_vertices_to_p4est must be set.

Definition at line 1984 of file tria.cc.

◆ get_checksum()

template<int dim, int spacedim>
unsigned int Triangulation< dim, spacedim >::get_checksum

Produce a check sum of the triangulation. This is a collective operation and is mostly useful for debugging purposes.

Definition at line 2222 of file tria.cc.

◆ save() [1/2]

template<int dim, int spacedim>
void Triangulation< dim, spacedim >::save ( const std::string &  filename) const
overridevirtual

Save the refinement information from the coarse mesh into the given file. This file needs to be reachable from all nodes in the computation on a shared network file system. See the SolutionTransfer class on how to store solution vectors into this file. Additional cell-based data can be saved using DistributedTriangulationBase::DataTransfer::register_data_attach().

Implements parallel::DistributedTriangulationBase< dim, dim >.

Definition at line 2003 of file tria.cc.

◆ load() [1/4]

template<int dim, int spacedim>
void Triangulation< dim, spacedim >::load ( const std::string &  filename)
overridevirtual

Load the refinement information saved with save() back in. The mesh must contain the same coarse mesh that was used in save() before calling this function.

You do not need to load with the same number of MPI processes that you saved with. Rather, if a mesh is loaded with a different number of MPI processes than used at the time of saving, the mesh is repartitioned that the number of cells is balanced among all processes. Individual repartitioning, e.g., based on the number of dofs or particles per cell, needs to be invoked manually by calling repartition() afterwards.

Cell-based data that was saved with DistributedTriangulationBase::DataTransfer::register_data_attach() can be read in with DistributedTriangulationBase::DataTransfer::notify_ready_to_unpack() after calling load().

Implements parallel::DistributedTriangulationBase< dim, dim >.

Definition at line 2058 of file tria.cc.

◆ load() [2/4]

template<int dim, int spacedim>
void Triangulation< dim, spacedim >::load ( const std::string &  filename,
const bool  autopartition 
)
overridevirtual

Load the refinement information saved with save() back in. The mesh must contain the same coarse mesh that was used in save() before calling this function.

You do not need to load with the same number of MPI processes that you saved with. Rather, if a mesh is loaded with a different number of MPI processes than used at the time of saving, the mesh is repartitioned that the number of cells is balanced among all processes. Individual repartitioning, e.g., based on the number of dofs or particles per cell, needs to be invoked manually by calling repartition() afterwards.

Cell-based data that was saved with DistributedTriangulationBase::DataTransfer::register_data_attach() can be read in with DistributedTriangulationBase::DataTransfer::notify_ready_to_unpack() after calling load().

Deprecated:
The autopartition parameter has been removed.

Implements parallel::DistributedTriangulationBase< dim, dim >.

Definition at line 2158 of file tria.cc.

◆ load() [3/4]

template<int dim, int spacedim>
void Triangulation< dim, spacedim >::load ( const typename ::internal::p4est::types< dim >::forest *  forest)

Load the refinement information from a given parallel forest. This forest might be obtained from the function call to parallel::distributed::Triangulation::get_p4est().

Definition at line 2169 of file tria.cc.

◆ get_p4est_tree_to_coarse_cell_permutation()

template<int dim, int spacedim>
const std::vector< types::global_dof_index > & Triangulation< dim, spacedim >::get_p4est_tree_to_coarse_cell_permutation

Return a permutation vector for the order the coarse cells are handed off to p4est. For example the value of the \(i\)th element in this vector is the index of the deal.II coarse cell (counting from begin(0)) that corresponds to the \(i\)th tree managed by p4est.

Definition at line 3600 of file tria.cc.

◆ get_coarse_cell_to_p4est_tree_permutation()

template<int dim, int spacedim>
const std::vector< types::global_dof_index > & Triangulation< dim, spacedim >::get_coarse_cell_to_p4est_tree_permutation

Return a permutation vector for the mapping from the coarse deal cells to the p4est trees. This is the inverse of get_p4est_tree_to_coarse_cell_permutation.

Definition at line 3610 of file tria.cc.

◆ get_p4est()

template<int dim, int spacedim>
const ::internal::p4est::types< dim >::forest * Triangulation< dim, spacedim >::get_p4est

This returns a pointer to the internally stored p4est object (of type p4est_t or p8est_t depending on dim).

Warning
If you modify the p4est object, internal data structures can become inconsistent.

Definition at line 2234 of file tria.cc.

◆ add_periodicity() [1/2]

template<int dim, int spacedim>
void Triangulation< dim, spacedim >::add_periodicity ( const std::vector<::GridTools::PeriodicFacePair< cell_iterator >> &  periodicity_vector)
overridevirtual

In addition to the action in the base class Triangulation, this function joins faces in the p4est forest for periodic boundary conditions. As a result, each pair of faces will differ by at most one refinement level and ghost neighbors will be available across these faces.

The vector can be filled by the function GridTools::collect_periodic_faces.

For more information on periodic boundary conditions see GridTools::collect_periodic_faces, DoFTools::make_periodicity_constraints and step-45.

Note
Before this function can be used the Triangulation has to be initialized and must not be refined. Calling this function more than once is possible, but not recommended: The function destroys and rebuilds the p4est forest each time it is called.

Definition at line 3708 of file tria.cc.

◆ update_cell_relations()

template<int dim, int spacedim>
void Triangulation< dim, spacedim >::update_cell_relations
overrideprivatevirtual

Go through all p4est trees and record the relations between locally owned p4est quadrants and active deal.II cells in the private member vector local_cell_relations.

The vector contains an active cell iterator for every locally owned p4est quadrant, as well as a CellStatus flag to describe their relation.

The stored vector will be ordered by the occurrence of quadrants in the corresponding local sc_array of the parallel_forest. p4est requires this specific ordering for its transfer functions. Therefore, the size of this vector will be equal to the number of locally owned quadrants in the parallel_forest object.

These relations will be established for example in the mesh refinement process: after adapting the parallel_forest, but before applying these changes to this triangulation, we will record how cells will change in the refinement process. With this information, we can prepare all buffers for data transfer accordingly.

Implements parallel::DistributedTriangulationBase< dim, dim >.

Definition at line 3995 of file tria.cc.

◆ init_tree()

template<int dim, int spacedim>
typename::internal::p4est::types< dim >::tree * Triangulation< dim, spacedim >::init_tree ( const int  dealii_coarse_cell_index) const
private

Return a pointer to the p4est tree that belongs to the given dealii_coarse_cell_index()

Definition at line 2245 of file tria.cc.

◆ setup_coarse_cell_to_p4est_tree_permutation()

template<int dim, int spacedim>
void Triangulation< dim, spacedim >::setup_coarse_cell_to_p4est_tree_permutation
private

The function that computes the permutation between the two data storage schemes.

Definition at line 1967 of file tria.cc.

◆ copy_new_triangulation_to_p4est() [1/2]

template<int dim, int spacedim = dim>
void parallel::distributed::Triangulation< dim, spacedim >::copy_new_triangulation_to_p4est ( std::integral_constant< int, 2 >  )
private

Take the contents of a newly created triangulation we are attached to and copy it to p4est data structures.

This function exists in 2d and 3d variants.

◆ copy_new_triangulation_to_p4est() [2/2]

template<int dim, int spacedim = dim>
void parallel::distributed::Triangulation< dim, spacedim >::copy_new_triangulation_to_p4est ( std::integral_constant< int, 3 >  )
private

◆ copy_local_forest_to_triangulation()

template<int dim, int spacedim>
void Triangulation< dim, spacedim >::copy_local_forest_to_triangulation
private

Copy the local part of the refined forest from p4est into the attached triangulation.

Definition at line 2775 of file tria.cc.

◆ get_cell_weights()

template<int dim, int spacedim>
std::vector< unsigned int > Triangulation< dim, spacedim >::get_cell_weights
private

Internal function notifying all registered slots to provide their weights before repartitioning occurs. Called from execute_coarsening_and_refinement() and repartition().

Returns
A vector of unsigned integers representing the weight or computational load of every cell after the refinement/coarsening/ repartition cycle. Note that the number of entries does not need to be equal to either n_active_cells() or n_locally_owned_active_cells(), because the triangulation is not updated yet. The weights are sorted in the order that p4est will encounter them while iterating over them.

Definition at line 4028 of file tria.cc.

◆ mark_locally_active_vertices_on_level()

template<int dim, int spacedim>
std::vector< bool > Triangulation< dim, spacedim >::mark_locally_active_vertices_on_level ( const int  level) const
private

This method returns a bit vector of length tria.n_vertices() indicating the locally active vertices on a level, i.e., the vertices touched by the locally owned level cells for use in geometric multigrid (possibly including the vertices due to periodic boundary conditions) are marked by true.

Used by DoFHandler::Policy::ParallelDistributed.

ensure that if one of the two vertices on a periodic face is marked as active (i.e., belonging to an owned level cell), also the other one is active

Definition at line 3620 of file tria.cc.

◆ coarse_cell_id_to_coarse_cell_index()

template<int dim, int spacedim>
unsigned int Triangulation< dim, spacedim >::coarse_cell_id_to_coarse_cell_index ( const types::coarse_cell_id  coarse_cell_id) const
overrideprivatevirtual

Translate the unique id of a coarse cell to its index. See the glossary entry on coarse cell IDs for more information.

Note
For serial and shared triangulation both id and index are the same. For distributed triangulations setting both might differ, since the id might correspond to a global id and the index to a local id.
Parameters
coarse_cell_idUnique id of the coarse cell.
Returns
Index of the coarse cell within the current triangulation.

Reimplemented from Triangulation< dim, spacedim >.

Definition at line 3688 of file tria.cc.

◆ coarse_cell_index_to_coarse_cell_id()

template<int dim, int spacedim>
types::coarse_cell_id Triangulation< dim, spacedim >::coarse_cell_index_to_coarse_cell_id ( const unsigned int  coarse_cell_index) const
overrideprivatevirtual

Translate the index of coarse cell to its unique id. See the glossary entry on coarse cell IDs for more information.

Note
See the note of the method coarse_cell_id_to_coarse_cell_index().
Parameters
coarse_cell_indexIndex of the coarse cell.
Returns
Id of the coarse cell.

Reimplemented from Triangulation< dim, spacedim >.

Definition at line 3698 of file tria.cc.

◆ has_hanging_nodes()

bool parallel::DistributedTriangulationBase< dim, spacedim >::has_hanging_nodes
overridevirtualinherited

Return true if the triangulation has hanging nodes.

In the context of parallel distributed triangulations, every processor stores only that part of the triangulation it owns locally. However, it also stores coarser levels, and to guarantee the 2:1 relationship between cells, this may mean that there are hanging nodes between cells that are not locally owned or ghost cells (i.e., between ghost cells and artificial cells, or between artificial and artificial cells; see the glossary). One is not typically interested in this case, so the function returns whether there are hanging nodes between any two cells of the "global" mesh, i.e., the union of locally owned cells on all processors.

Reimplemented from Triangulation< dim, spacedim >.

Definition at line 484 of file tria_base.cc.

◆ save() [2/2]

void Triangulation< dim, spacedim >::save ( Archive &  ar,
const unsigned int  version 
) const
inherited

Write the data of this object to a stream for the purpose of serialization using the BOOST serialization library.

Note
This function does not save all member variables of the current triangulation. Rather, only certain kinds of information are stored. For more information see the general documentation of this class.

◆ load() [4/4]

void Triangulation< dim, spacedim >::load ( Archive &  ar,
const unsigned int  version 
)
inherited

Read the data of this object from a stream for the purpose of serialization using the BOOST serialization library. Throw away the previous content.

Note
This function does not reset all member variables of the current triangulation to the ones of the triangulation that was previously stored to an archive. Rather, only certain kinds of information are loaded. For more information see the general documentation of this class.
This function calls the Triangulation::clear() function and consequently triggers the "clear" signal. After loading all data from the archive, it then triggers the "create" signal. For more information on signals, see the general documentation of this class.

◆ register_data_attach()

unsigned int parallel::DistributedTriangulationBase< dim, spacedim >::register_data_attach ( const std::function< std::vector< char >(const cell_iterator &, const CellStatus)> &  pack_callback,
const bool  returns_variable_size_data 
)
inherited

Register a function that can be used to attach data of fixed size to cells. This is useful for two purposes: (i) Upon refinement and coarsening of a triangulation (e.g. in parallel::distributed::Triangulation::execute_coarsening_and_refinement()), one needs to be able to store one or more data vectors per cell that characterizes the solution values on the cell so that this data can then be transferred to the new owning processor of the cell (or its parent/children) when the mesh is re-partitioned; (ii) when serializing a computation to a file, it is necessary to attach data to cells so that it can be saved (e.g. in parallel::distributed::Triangulation::save()) along with the cell's other information and, if necessary, later be reloaded from disk with a different subdivision of cells among the processors.

The way this function works is that it allows any number of interest parties to register their intent to attach data to cells. One example of classes that do this is parallel::distributed::SolutionTransfer where each parallel::distributed::SolutionTransfer object that works on the current Triangulation object then needs to register its intent. Each of these parties registers a callback function (the first argument here, pack_callback) that will be called whenever the triangulation's execute_coarsening_and_refinement() or save() functions are called.

The current function then returns an integer handle that corresponds to the number of data set that the callback provided here will attach. While this number could be given a precise meaning, this is not important: You will never actually have to do anything with this number except return it to the notify_ready_to_unpack() function. In other words, each interested party (i.e., the caller of the current function) needs to store their respective returned handle for later use when unpacking data in the callback provided to notify_ready_to_unpack().

Whenever pack_callback is then called by execute_coarsening_and_refinement() or load() on a given cell, it receives a number of arguments. In particular, the first argument passed to the callback indicates the cell for which it is supposed to attach data. This is always an active cell.

The second, CellStatus, argument provided to the callback function will tell you if the given cell will be coarsened, refined, or will persist as is. (This status may be different than the refinement or coarsening flags set on that cell, to accommodate things such as the "one hanging node per edge" rule.). These flags need to be read in context with the p4est quadrant they belong to, as their relations are gathered in local_cell_relations.

Specifically, the values for this argument mean the following:

  • CELL_PERSIST: The cell won't be refined/coarsened, but might be moved to a different processor. If this is the case, the callback will want to pack up the data on this cell into an array and store it at the provided address for later unpacking wherever this cell may land.
  • CELL_REFINE: This cell will be refined into 4 or 8 cells (in 2d and 3d, respectively). However, because these children don't exist yet, you cannot access them at the time when the callback is called. Thus, in local_cell_relations, the corresponding p4est quadrants of the children cells are linked to the deal.II cell which is going to be refined. To be specific, only the very first child is marked with CELL_REFINE, whereas the others will be marked with CELL_INVALID, which indicates that these cells will be ignored by default during the packing or unpacking process. This ensures that data is only transferred once onto or from the parent cell. If the callback is called with CELL_REFINE, the callback will want to pack up the data on this cell into an array and store it at the provided address for later unpacking in a way so that it can then be transferred to the children of the cell that will then be available. In other words, if the data the callback will want to pack up corresponds to a finite element field, then the prolongation from parent to (new) children will have to happen during unpacking.
  • CELL_COARSEN: The children of this cell will be coarsened into the given cell. These children still exist, so if this is the value given to the callback as second argument, the callback will want to transfer data from the children to the current parent cell and pack it up so that it can later be unpacked again on a cell that then no longer has any children (and may also be located on a different processor). In other words, if the data the callback will want to pack up corresponds to a finite element field, then it will need to do the restriction from children to parent at this point.
  • CELL_INVALID: See CELL_REFINE.
Note
If this function is used for serialization of data using save() and load(), then the cell status argument with which the callback is called will always be CELL_PERSIST.

The callback function is expected to return a memory chunk of the format std::vector<char>, representing the packed data on a certain cell.

The second parameter returns_variable_size_data indicates whether the returned size of the memory region from the callback function varies by cell (=true) or stays constant on each one throughout the whole domain (=false).

Note
The purpose of this function is to register intent to attach data for a single, subsequent call to execute_coarsening_and_refinement() and notify_ready_to_unpack(), save(), load(). Consequently, notify_ready_to_unpack(), save(), and load() all forget the registered callbacks once these callbacks have been called, and you will have to re-register them with a triangulation if you want them to be active for another call to these functions.

Definition at line 622 of file tria_base.cc.

◆ notify_ready_to_unpack()

void parallel::DistributedTriangulationBase< dim, spacedim >::notify_ready_to_unpack ( const unsigned int  handle,
const std::function< void(const cell_iterator &, const CellStatus, const boost::iterator_range< std::vector< char >::const_iterator > &)> &  unpack_callback 
)
inherited

This function is the opposite of register_data_attach(). It is called after the execute_coarsening_and_refinement() or save()/load() functions are done when classes and functions that have previously attached data to a triangulation for either transfer to other processors, across mesh refinement, or serialization of data to a file are ready to receive that data back. The important part about this process is that the triangulation cannot do this right away from the end of execute_coarsening_and_refinement() or load() via a previously attached callback function (as the register_data_attach() function does) because the classes that eventually want the data back may need to do some setup between the point in time where the mesh has been recreated and when the data can actually be received. An example is the parallel::distributed::SolutionTransfer class that can really only receive the data once not only the mesh is completely available again on the current processor, but only after a DoFHandler has been reinitialized and distributed degrees of freedom. In other words, there is typically a significant amount of set up that needs to happen in user space before the classes that can receive data attached to cell are ready to actually do so. When they are, they use the current function to tell the triangulation object that now is the time when they are ready by calling the current function.

The supplied callback function is then called for each newly locally owned cell. The first argument to the callback is an iterator that designates the cell; the second argument indicates the status of the cell in question; and the third argument localizes a memory area by two iterators that contains the data that was previously saved from the callback provided to register_data_attach().

The CellStatus will indicate if the cell was refined, coarsened, or persisted unchanged. The cell_iterator argument to the callback will then either be an active, locally owned cell (if the cell was not refined), or the immediate parent if it was refined during execute_coarsening_and_refinement(). Therefore, contrary to during register_data_attach(), you can now access the children if the status is CELL_REFINE but no longer for callbacks with status CELL_COARSEN.

The first argument to this function, handle, corresponds to the return value of register_data_attach(). (The precise meaning of what the numeric value of this handle is supposed to represent is neither important, nor should you try to use it for anything other than transmit information between a call to register_data_attach() to the corresponding call to notify_ready_to_unpack().)

Definition at line 676 of file tria_base.cc.

◆ save_attached_data()

void parallel::DistributedTriangulationBase< dim, spacedim >::save_attached_data ( const unsigned int  global_first_cell,
const unsigned int  global_num_cells,
const std::string &  filename 
) const
protectedinherited

Save additional cell-attached data into the given file. The first arguments are used to determine the offsets where to write buffers to.

Called by save.

Definition at line 693 of file tria_base.cc.

◆ load_attached_data()

void parallel::DistributedTriangulationBase< dim, spacedim >::load_attached_data ( const unsigned int  global_first_cell,
const unsigned int  global_num_cells,
const unsigned int  local_num_cells,
const std::string &  filename,
const unsigned int  n_attached_deserialize_fixed,
const unsigned int  n_attached_deserialize_variable 
)
protectedinherited

Load additional cell-attached data from the given file, if any was saved. The first arguments are used to determine the offsets where to read buffers from.

Called by load.

Definition at line 706 of file tria_base.cc.

◆ get_communicator()

MPI_Comm parallel::TriangulationBase< dim, spacedim >::get_communicator
overridevirtualinherited

Return MPI communicator used by this triangulation.

Reimplemented from Triangulation< dim, spacedim >.

Definition at line 100 of file tria_base.cc.

◆ copy_triangulation() [2/2]

virtual void Triangulation< dim, spacedim >::copy_triangulation ( const Triangulation< dim, spacedim > &  other_tria)
virtualinherited

Copy other_tria to this triangulation. This operation is not cheap, so you should be careful with using this. We do not implement this function as a copy constructor, since it makes it easier to maintain collections of triangulations if you can assign them values later on.

Keep in mind that this function also copies the pointer to the boundary descriptor previously set by the set_manifold function. You must therefore also guarantee that the Manifold objects describing the boundary have a lifetime at least as long as the copied triangulation.

This triangulation must be empty beforehand.

The function is made virtual since some derived classes might want to disable or extend the functionality of this function.

Note
Calling this function triggers the 'copy' signal on other_tria, i.e. the triangulation being copied from. It also triggers the 'create' signal of the current triangulation. See the section on signals in the general documentation for more information.
The list of connections to signals is not copied from the old to the new triangulation since these connections were established to monitor how the old triangulation changes, not how any triangulation it may be copied to changes.

◆ n_locally_owned_active_cells()

unsigned int parallel::TriangulationBase< dim, spacedim >::n_locally_owned_active_cells
inherited

Return the number of active cells in the triangulation that are locally owned, i.e. that have a subdomain_id equal to locally_owned_subdomain(). Note that there may be more active cells in the triangulation stored on the present processor, such as for example ghost cells, or cells further away from the locally owned block of cells but that are needed to ensure that the triangulation that stores this processor's set of active cells still remains balanced with respect to the 2:1 size ratio of adjacent cells.

As a consequence of the remark above, the result of this function is always smaller or equal to the result of the function with the same name in the Triangulation base class, which includes the active ghost and artificial cells (see also GlossArtificialCell and GlossGhostCell).

Definition at line 139 of file tria_base.cc.

◆ n_global_active_cells()

types::global_cell_index parallel::TriangulationBase< dim, spacedim >::n_global_active_cells
overridevirtualinherited

Return the sum over all processors of the number of active cells owned by each processor. This equals the overall number of active cells in the triangulation.

Reimplemented from Triangulation< dim, spacedim >.

Definition at line 147 of file tria_base.cc.

◆ n_global_levels()

unsigned int parallel::TriangulationBase< dim, spacedim >::n_global_levels
overridevirtualinherited

Return the global maximum level. This may be bigger than the number Triangulation::n_levels() (a function in this class's base class) returns if the current processor only stores cells in parts of the domain that are not very refined, but if other processors store cells in more deeply refined parts of the domain.

Reimplemented from Triangulation< dim, spacedim >.

Definition at line 164 of file tria_base.cc.

◆ locally_owned_subdomain()

types::subdomain_id parallel::TriangulationBase< dim, spacedim >::locally_owned_subdomain
overridevirtualinherited

Return the subdomain id of those cells that are owned by the current processor. All cells in the triangulation that do not have this subdomain id are either owned by another processor or have children that only exist on other processors.

Reimplemented from Triangulation< dim, spacedim >.

Definition at line 173 of file tria_base.cc.

◆ ghost_owners()

const std::set< types::subdomain_id > & parallel::TriangulationBase< dim, spacedim >::ghost_owners
inherited

Return a set of MPI ranks of the processors that have at least one ghost cell adjacent to the cells of the local processor. In other words, this is the set of subdomain_id() for all ghost cells.

The returned sets are symmetric, that is if i is contained in the list of processor j, then j will also be contained in the list of processor i.

Definition at line 185 of file tria_base.cc.

◆ level_ghost_owners()

const std::set< types::subdomain_id > & parallel::TriangulationBase< dim, spacedim >::level_ghost_owners
inherited

Return a set of MPI ranks of the processors that have at least one level ghost cell adjacent to our cells used in geometric multigrid. In other words, this is the set of level_subdomain_id() for all level ghost cells.

The returned sets are symmetric, that is if i is contained in the list of processor j, then j will also be contained in the list of processor i.

Note
The level ghost owners can only be determined if the multigrid ownership has been assigned (by setting the construct_multigrid_hierarchy flag at construction time), otherwise the returned set will be empty.

Definition at line 203 of file tria_base.cc.

◆ global_active_cell_index_partitioner()

const std::weak_ptr< const Utilities::MPI::Partitioner > parallel::TriangulationBase< dim, spacedim >::global_active_cell_index_partitioner
inherited

Return partitioner for the global indices of the cells on the active level of the triangulation.

Definition at line 210 of file tria_base.cc.

◆ global_level_cell_index_partitioner()

const std::weak_ptr< const Utilities::MPI::Partitioner > parallel::TriangulationBase< dim, spacedim >::global_level_cell_index_partitioner ( const unsigned int  level) const
inherited

Return partitioner for the global indices of the cells on the given level of the triangulation.

Definition at line 217 of file tria_base.cc.

◆ get_boundary_ids()

std::vector< types::boundary_id > parallel::TriangulationBase< dim, spacedim >::get_boundary_ids
overridevirtualinherited

Return a vector containing all boundary indicators assigned to boundary faces of active cells of this Triangulation object. Note, that each boundary indicator is reported only once. The size of the return vector will represent the number of different indicators (which is greater or equal one).

See also
Glossary entry on boundary indicators
Note
This function involves a global communication gathering all current IDs from all processes.

Reimplemented from Triangulation< dim, spacedim >.

Definition at line 226 of file tria_base.cc.

◆ get_manifold_ids()

std::vector< types::manifold_id > parallel::TriangulationBase< dim, spacedim >::get_manifold_ids
overridevirtualinherited

Return a vector containing all manifold indicators assigned to the objects of the active cells of this Triangulation. Note, that each manifold indicator is reported only once. The size of the return vector will represent the number of different indicators (which is greater or equal one).

See also
Glossary entry on manifold indicators
Note
This function involves a global communication gathering all current IDs from all processes.

Reimplemented from Triangulation< dim, spacedim >.

Definition at line 235 of file tria_base.cc.

◆ communicate_locally_moved_vertices()

void parallel::TriangulationBase< dim, spacedim >::communicate_locally_moved_vertices ( const std::vector< bool > &  vertex_locally_moved)
inherited

When vertices have been moved locally, for example using code like

cell->vertex(0) = new_location;

then this function can be used to update the location of vertices between MPI processes.

All the vertices that have been moved and might be in the ghost layer of a process have to be reported in the vertex_locally_moved argument. This ensures that that part of the information that has to be send between processes is actually sent. Additionally, it is quite important that vertices on the boundary between processes are reported on exactly one process (e.g. the one with the highest id). Otherwise we could expect undesirable results if multiple processes move a vertex differently. A typical strategy is to let processor \(i\) move those vertices that are adjacent to cells whose owners include processor \(i\) but no other processor \(j\) with \(j<i\); in other words, for vertices at the boundary of a subdomain, the processor with the lowest subdomain id "owns" a vertex.

Note
It only makes sense to move vertices that are either located on locally owned cells or on cells in the ghost layer. This is because you can be sure that these vertices indeed exist on the finest mesh aggregated over all processors, whereas vertices on artificial cells but not at least in the ghost layer may or may not exist on the globally finest mesh. Consequently, the vertex_locally_moved argument may not contain vertices that aren't at least on ghost cells.
This function moves vertices in such a way that on every processor, the vertices of every locally owned and ghost cell is consistent with the corresponding location of these cells on other processors. On the other hand, the locations of artificial cells will in general be wrong since artificial cells may or may not exist on other processors and consequently it is not possible to determine their location in any way. This is not usually a problem since one never does anything on artificial cells. However, it may lead to problems if the mesh with moved vertices is refined in a later step. If that's what you want to do, the right way to do it is to save the offset applied to every vertex, call this function, and before refining or coarsening the mesh apply the opposite offset and call this function again.
Parameters
vertex_locally_movedA bitmap indicating which vertices have been moved. The size of this array must be equal to Triangulation::n_vertices() and must be a subset of those vertices flagged by GridTools::get_locally_owned_vertices().
See also
This function is used, for example, in GridTools::distort_random().

Definition at line 290 of file tria_base.cc.

◆ n_global_coarse_cells()

types::coarse_cell_id parallel::TriangulationBase< dim, spacedim >::n_global_coarse_cells
overridevirtualinherited

Return the total number of coarse cells. If the coarse mesh is replicated on each process, this simply returns n_cells(0).

Reimplemented from Triangulation< dim, spacedim >.

Definition at line 294 of file tria_base.cc.

◆ update_number_cache()

void parallel::TriangulationBase< dim, spacedim >::update_number_cache
protectedvirtualinherited

Update the number_cache variable after mesh creation or refinement.

Reimplemented in parallel::fullydistributed::Triangulation< dim, spacedim >.

Definition at line 377 of file tria_base.cc.

◆ update_reference_cells()

void parallel::TriangulationBase< dim, spacedim >::update_reference_cells
overrideprotectedvirtualinherited

Update the internal reference_cells vector.

Reimplemented from Triangulation< dim, spacedim >.

Definition at line 383 of file tria_base.cc.

◆ reset_global_cell_indices()

void parallel::TriangulationBase< dim, spacedim >::reset_global_cell_indices
protectedinherited

Reset global active cell indices and global level cell indices.

Definition at line 389 of file tria_base.cc.

◆ set_mesh_smoothing()

virtual void Triangulation< dim, spacedim >::set_mesh_smoothing ( const MeshSmoothing  mesh_smoothing)
virtualinherited

Set the mesh smoothing to mesh_smoothing. This overrides the MeshSmoothing given to the constructor. It is allowed to call this function only if the triangulation is empty.

◆ get_mesh_smoothing()

virtual const MeshSmoothing& Triangulation< dim, spacedim >::get_mesh_smoothing ( ) const
virtualinherited

Return the mesh smoothing requirements that are obeyed.

◆ set_manifold()

void Triangulation< dim, spacedim >::set_manifold ( const types::manifold_id  number,
const Manifold< dim, spacedim > &  manifold_object 
)
inherited

Assign a manifold object to a certain part of the triangulation. If an object with manifold number number is refined, this object is used to find the location of new vertices (see the results section of step-49 for a more in-depth discussion of this, with examples). It is also used for non-linear (i.e.: non-Q1) transformations of cells to the unit cell in shape function calculations.

A copy of manifold_object is created using Manifold<dim, spacedim>::clone() and stored internally.

It is possible to remove or replace a Manifold object during the lifetime of a non-empty triangulation. Usually, this is done before the first refinement and is dangerous afterwards. Removal of a manifold object is done by reset_manifold(). This operation then replaces the manifold object given before by a straight manifold approximation.

See also
Glossary entry on manifold indicators

◆ reset_manifold()

void Triangulation< dim, spacedim >::reset_manifold ( const types::manifold_id  manifold_number)
inherited

Reset those parts of the triangulation with the given manifold_number to use a FlatManifold object. This is the default state of a non-curved triangulation, and undoes assignment of a different Manifold object by the function Triangulation::set_manifold().

See also
Glossary entry on manifold indicators

◆ reset_all_manifolds()

void Triangulation< dim, spacedim >::reset_all_manifolds ( )
inherited

Reset all parts of the triangulation, regardless of their manifold_id, to use a FlatManifold object. This undoes assignment of all Manifold objects by the function Triangulation::set_manifold().

See also
Glossary entry on manifold indicators

◆ set_all_manifold_ids()

void Triangulation< dim, spacedim >::set_all_manifold_ids ( const types::manifold_id  number)
inherited

Set the manifold_id of all cells and faces to the given argument.

See also
Glossary entry on manifold indicators

◆ set_all_manifold_ids_on_boundary() [1/2]

void Triangulation< dim, spacedim >::set_all_manifold_ids_on_boundary ( const types::manifold_id  number)
inherited

Set the manifold_id of all boundary faces to the given argument.

See also
Glossary entry on manifold indicators

◆ set_all_manifold_ids_on_boundary() [2/2]

void Triangulation< dim, spacedim >::set_all_manifold_ids_on_boundary ( const types::boundary_id  b_id,
const types::manifold_id  number 
)
inherited

Set the manifold_id of all boundary faces and edges with given boundary_id b_id to the given manifold_id number.

See also
Glossary entry on manifold indicators

◆ get_manifold()

const Manifold<dim, spacedim>& Triangulation< dim, spacedim >::get_manifold ( const types::manifold_id  number) const
inherited

Return a constant reference to a Manifold object used for this triangulation. number is the same as in set_manifold().

Note
If no manifold could be found, the default flat manifold is returned.
See also
Glossary entry on manifold indicators

◆ create_triangulation_compatibility()

virtual void Triangulation< dim, spacedim >::create_triangulation_compatibility ( const std::vector< Point< spacedim >> &  vertices,
const std::vector< CellData< dim >> &  cells,
const SubCellData subcelldata 
)
virtualinherited

For backward compatibility, only. This function takes the cell data in the ordering as requested by deal.II versions up to 5.2, converts it to the new (lexicographic) ordering and calls create_triangulation().

Note
This function internally calls create_triangulation and therefore can throw the same exception as the other function.

◆ flip_all_direction_flags()

void Triangulation< dim, spacedim >::flip_all_direction_flags ( )
inherited

Revert or flip the direction_flags of a dim<spacedim triangulation, see GlossDirectionFlag.

This function throws an exception if dim equals spacedim.

◆ set_all_refine_flags()

void Triangulation< dim, spacedim >::set_all_refine_flags ( )
inherited

Flag all active cells for refinement. This will refine all cells of all levels which are not already refined (i.e. only cells are refined which do not yet have children). The cells are only flagged, not refined, thus you have the chance to save the refinement flags.

◆ refine_global()

void Triangulation< dim, spacedim >::refine_global ( const unsigned int  times = 1)
inherited

Refine all cells times times. In other words, in each one of the times iterations, loop over all cells and refine each cell uniformly into \(2^\text{dim}\) children. In practice, this function repeats the following operations times times: call set_all_refine_flags() followed by execute_coarsening_and_refinement(). The end result is that the number of cells increases by a factor of \((2^\text{dim})^\text{times}=2^{\text{dim} \times \text{times}}\).

The execute_coarsening_and_refinement() function called in this loop may throw an exception if it creates cells that are distorted (see its documentation for an explanation). This exception will be propagated through this function if that happens, and you may not get the actual number of refinement steps in that case.

Note
This function triggers the pre- and post-refinement signals before and after doing each individual refinement cycle (i.e. more than once if times > 1) . See the section on signals in the general documentation of this class.

◆ coarsen_global()

void Triangulation< dim, spacedim >::coarsen_global ( const unsigned int  times = 1)
inherited

Coarsen all cells the given number of times.

In each of one of the times iterations, all cells will be marked for coarsening. If an active cell is already on the coarsest level, it will be ignored.

Note
This function triggers the pre- and post-refinement signals before and after doing each individual coarsening cycle (i.e. more than once if times > 1) . See the section on signals in the general documentation of this class.

◆ save_refine_flags() [1/2]

void Triangulation< dim, spacedim >::save_refine_flags ( std::ostream &  out) const
inherited

Save the addresses of the cells which are flagged for refinement to out. For usage, read the general documentation for this class.

◆ save_refine_flags() [2/2]

void Triangulation< dim, spacedim >::save_refine_flags ( std::vector< bool > &  v) const
inherited

Same as above, but store the flags to a bitvector rather than to a file.

◆ load_refine_flags() [1/2]

void Triangulation< dim, spacedim >::load_refine_flags ( std::istream &  in)
inherited

Read the information stored by save_refine_flags.

◆ load_refine_flags() [2/2]

void Triangulation< dim, spacedim >::load_refine_flags ( const std::vector< bool > &  v)
inherited

Read the information stored by save_refine_flags.

◆ save_coarsen_flags() [1/2]

void Triangulation< dim, spacedim >::save_coarsen_flags ( std::ostream &  out) const
inherited

Analogue to save_refine_flags.

◆ save_coarsen_flags() [2/2]

void Triangulation< dim, spacedim >::save_coarsen_flags ( std::vector< bool > &  v) const
inherited

Same as above, but store the flags to a bitvector rather than to a file.

◆ load_coarsen_flags() [1/2]

void Triangulation< dim, spacedim >::load_coarsen_flags ( std::istream &  out)
inherited

Analogue to load_refine_flags.

◆ load_coarsen_flags() [2/2]

void Triangulation< dim, spacedim >::load_coarsen_flags ( const std::vector< bool > &  v)
inherited

Analogue to load_refine_flags.

◆ get_anisotropic_refinement_flag()

bool Triangulation< dim, spacedim >::get_anisotropic_refinement_flag ( ) const
inherited

Return whether this triangulation has ever undergone anisotropic (as opposed to only isotropic) refinement.

◆ clear_user_flags()

void Triangulation< dim, spacedim >::clear_user_flags ( )
inherited

Clear all user flags. See also GlossUserFlags.

◆ save_user_flags() [1/2]

void Triangulation< dim, spacedim >::save_user_flags ( std::ostream &  out) const
inherited

Save all user flags. See the general documentation for this class and the documentation for the save_refine_flags for more details. See also GlossUserFlags.

◆ save_user_flags() [2/2]

void Triangulation< dim, spacedim >::save_user_flags ( std::vector< bool > &  v) const
inherited

Same as above, but store the flags to a bitvector rather than to a file. The output vector is resized if necessary. See also GlossUserFlags.

◆ load_user_flags() [1/2]

void Triangulation< dim, spacedim >::load_user_flags ( std::istream &  in)
inherited

Read the information stored by save_user_flags. See also GlossUserFlags.

◆ load_user_flags() [2/2]

void Triangulation< dim, spacedim >::load_user_flags ( const std::vector< bool > &  v)
inherited

Read the information stored by save_user_flags. See also GlossUserFlags.

◆ clear_user_flags_line()

void Triangulation< dim, spacedim >::clear_user_flags_line ( )
inherited

Clear all user flags on lines. See also GlossUserFlags.

◆ save_user_flags_line() [1/2]

void Triangulation< dim, spacedim >::save_user_flags_line ( std::ostream &  out) const
inherited

Save the user flags on lines. See also GlossUserFlags.

◆ save_user_flags_line() [2/2]

void Triangulation< dim, spacedim >::save_user_flags_line ( std::vector< bool > &  v) const
inherited

Same as above, but store the flags to a bitvector rather than to a file. The output vector is resized if necessary. See also GlossUserFlags.

◆ load_user_flags_line() [1/2]

void Triangulation< dim, spacedim >::load_user_flags_line ( std::istream &  in)
inherited

Load the user flags located on lines. See also GlossUserFlags.

◆ load_user_flags_line() [2/2]

void Triangulation< dim, spacedim >::load_user_flags_line ( const std::vector< bool > &  v)
inherited

Load the user flags located on lines. See also GlossUserFlags.

◆ clear_user_flags_quad()

void Triangulation< dim, spacedim >::clear_user_flags_quad ( )
inherited

Clear all user flags on quads. See also GlossUserFlags.

◆ save_user_flags_quad() [1/2]

void Triangulation< dim, spacedim >::save_user_flags_quad ( std::ostream &  out) const
inherited

Save the user flags on quads. See also GlossUserFlags.

◆ save_user_flags_quad() [2/2]

void Triangulation< dim, spacedim >::save_user_flags_quad ( std::vector< bool > &  v) const
inherited

Same as above, but store the flags to a bitvector rather than to a file. The output vector is resized if necessary. See also GlossUserFlags.

◆ load_user_flags_quad() [1/2]

void Triangulation< dim, spacedim >::load_user_flags_quad ( std::istream &  in)
inherited

Load the user flags located on quads. See also GlossUserFlags.

◆ load_user_flags_quad() [2/2]

void Triangulation< dim, spacedim >::load_user_flags_quad ( const std::vector< bool > &  v)
inherited

Load the user flags located on quads. See also GlossUserFlags.

◆ clear_user_flags_hex()

void Triangulation< dim, spacedim >::clear_user_flags_hex ( )
inherited

Clear all user flags on quads. See also GlossUserFlags.

◆ save_user_flags_hex() [1/2]

void Triangulation< dim, spacedim >::save_user_flags_hex ( std::ostream &  out) const
inherited

Save the user flags on hexs. See also GlossUserFlags.

◆ save_user_flags_hex() [2/2]

void Triangulation< dim, spacedim >::save_user_flags_hex ( std::vector< bool > &  v) const
inherited

Same as above, but store the flags to a bitvector rather than to a file. The output vector is resized if necessary. See also GlossUserFlags.

◆ load_user_flags_hex() [1/2]

void Triangulation< dim, spacedim >::load_user_flags_hex ( std::istream &  in)
inherited

Load the user flags located on hexs. See also GlossUserFlags.

◆ load_user_flags_hex() [2/2]

void Triangulation< dim, spacedim >::load_user_flags_hex ( const std::vector< bool > &  v)
inherited

Load the user flags located on hexs. See also GlossUserFlags.

◆ clear_user_data()

void Triangulation< dim, spacedim >::clear_user_data ( )
inherited

Clear all user pointers and indices and allow the use of both for next access. See also GlossUserData.

◆ save_user_indices()

void Triangulation< dim, spacedim >::save_user_indices ( std::vector< unsigned int > &  v) const
inherited

Save all user indices. The output vector is resized if necessary. See also GlossUserData.

◆ load_user_indices()

void Triangulation< dim, spacedim >::load_user_indices ( const std::vector< unsigned int > &  v)
inherited

Read the information stored by save_user_indices(). See also GlossUserData.

◆ save_user_pointers()

void Triangulation< dim, spacedim >::save_user_pointers ( std::vector< void * > &  v) const
inherited

Save all user pointers. The output vector is resized if necessary. See also GlossUserData.

◆ load_user_pointers()

void Triangulation< dim, spacedim >::load_user_pointers ( const std::vector< void * > &  v)
inherited

Read the information stored by save_user_pointers(). See also GlossUserData.

◆ save_user_indices_line()

void Triangulation< dim, spacedim >::save_user_indices_line ( std::vector< unsigned int > &  v) const
inherited

Save the user indices on lines. The output vector is resized if necessary. See also GlossUserData.

◆ load_user_indices_line()

void Triangulation< dim, spacedim >::load_user_indices_line ( const std::vector< unsigned int > &  v)
inherited

Load the user indices located on lines. See also GlossUserData.

◆ save_user_indices_quad()

void Triangulation< dim, spacedim >::save_user_indices_quad ( std::vector< unsigned int > &  v) const
inherited

Save the user indices on quads. The output vector is resized if necessary. See also GlossUserData.

◆ load_user_indices_quad()

void Triangulation< dim, spacedim >::load_user_indices_quad ( const std::vector< unsigned int > &  v)
inherited

Load the user indices located on quads. See also GlossUserData.

◆ save_user_indices_hex()

void Triangulation< dim, spacedim >::save_user_indices_hex ( std::vector< unsigned int > &  v) const
inherited

Save the user indices on hexes. The output vector is resized if necessary. See also GlossUserData.

◆ load_user_indices_hex()

void Triangulation< dim, spacedim >::load_user_indices_hex ( const std::vector< unsigned int > &  v)
inherited

Load the user indices located on hexs. See also GlossUserData.

◆ save_user_pointers_line()

void Triangulation< dim, spacedim >::save_user_pointers_line ( std::vector< void * > &  v) const
inherited

Save the user indices on lines. The output vector is resized if necessary. See also GlossUserData.

◆ load_user_pointers_line()

void Triangulation< dim, spacedim >::load_user_pointers_line ( const std::vector< void * > &  v)
inherited

Load the user pointers located on lines. See also GlossUserData.

◆ save_user_pointers_quad()

void Triangulation< dim, spacedim >::save_user_pointers_quad ( std::vector< void * > &  v) const
inherited

Save the user pointers on quads. The output vector is resized if necessary. See also GlossUserData.

◆ load_user_pointers_quad()

void Triangulation< dim, spacedim >::load_user_pointers_quad ( const std::vector< void * > &  v)
inherited

Load the user pointers located on quads. See also GlossUserData.

◆ save_user_pointers_hex()

void Triangulation< dim, spacedim >::save_user_pointers_hex ( std::vector< void * > &  v) const
inherited

Save the user pointers on hexes. The output vector is resized if necessary. See also GlossUserData.

◆ load_user_pointers_hex()

void Triangulation< dim, spacedim >::load_user_pointers_hex ( const std::vector< void * > &  v)
inherited

Load the user pointers located on hexs. See also GlossUserData.

◆ begin()

cell_iterator Triangulation< dim, spacedim >::begin ( const unsigned int  level = 0) const
inherited

Iterator to the first used cell on level level.

Note
The given level argument needs to correspond to a level of the triangulation, i.e., should be less than the value returned by n_levels(). On the other hand, for parallel computations using a parallel::distributed::Triangulation object, it is often convenient to write loops over the cells of all levels of the global mesh, even if the local portion of the triangulation does not actually have cells at one of the higher levels. In those cases, the level argument is accepted if it is less than what the n_global_levels() function returns. If the given level is between the values returned by n_levels() and n_global_levels(), then no cells exist in the local portion of the triangulation at this level, and the function simply returns what end() would return.

◆ begin_active()

active_cell_iterator Triangulation< dim, spacedim >::begin_active ( const unsigned int  level = 0) const
inherited

Iterator to the first active cell on level level. If the given level does not contain any active cells (i.e., all cells on this level are further refined, then this function returns end_active(level) so that loops of the kind

for (const auto cell=tria.begin_active(level);
++cell)
{
...
}
active_cell_iterator end_active(const unsigned int level) const
active_cell_iterator begin_active(const unsigned int level=0) const
unsigned int level
Definition: grid_out.cc:4607
const ::Triangulation< dim, spacedim > & tria

have zero iterations, as may be expected if there are no active cells on this level.

Note
The given level argument needs to correspond to a level of the triangulation, i.e., should be less than the value returned by n_levels(). On the other hand, for parallel computations using a parallel::distributed::Triangulation object, it is often convenient to write loops over the cells of all levels of the global mesh, even if the local portion of the triangulation does not actually have cells at one of the higher levels. In those cases, the level argument is accepted if it is less than what the n_global_levels() function returns. If the given level is between the values returned by n_levels() and n_global_levels(), then no cells exist in the local portion of the triangulation at this level, and the function simply returns what end() would return.

◆ end() [1/2]

cell_iterator Triangulation< dim, spacedim >::end ( ) const
inherited

Iterator past the end; this iterator serves for comparisons of iterators with past-the-end or before-the-beginning states.

◆ end() [2/2]

cell_iterator Triangulation< dim, spacedim >::end ( const unsigned int  level) const
inherited

Return an iterator which is the first iterator not on level. If level is the last level, then this returns end().

Note
The given level argument needs to correspond to a level of the triangulation, i.e., should be less than the value returned by n_levels(). On the other hand, for parallel computations using a parallel::distributed::Triangulation object, it is often convenient to write loops over the cells of all levels of the global mesh, even if the local portion of the triangulation does not actually have cells at one of the higher levels. In those cases, the level argument is accepted if it is less than what the n_global_levels() function returns. If the given level is between the values returned by n_levels() and n_global_levels(), then no cells exist in the local portion of the triangulation at this level, and the function simply returns what end() would return.

◆ end_active()

active_cell_iterator Triangulation< dim, spacedim >::end_active ( const unsigned int  level) const
inherited

Return an active iterator which is the first active iterator not on the given level. If level is the last level, then this returns end().

Note
The given level argument needs to correspond to a level of the triangulation, i.e., should be less than the value returned by n_levels(). On the other hand, for parallel computations using a parallel::distributed::Triangulation object, it is often convenient to write loops over the cells of all levels of the global mesh, even if the local portion of the triangulation does not actually have cells at one of the higher levels. In those cases, the level argument is accepted if it is less than what the n_global_levels() function returns. If the given level is between the values returned by n_levels() and n_global_levels(), then no cells exist in the local portion of the triangulation at this level, and the function simply returns what end() would return.

◆ last()

cell_iterator Triangulation< dim, spacedim >::last ( ) const
inherited

Return an iterator pointing to the last used cell.

◆ last_active()

active_cell_iterator Triangulation< dim, spacedim >::last_active ( ) const
inherited

Return an iterator pointing to the last active cell.

◆ create_cell_iterator()

cell_iterator Triangulation< dim, spacedim >::create_cell_iterator ( const CellId cell_id) const
inherited

Return an iterator to a cell of this Triangulation object constructed from an independent CellId object.

If the given argument corresponds to a valid cell in this triangulation, this operation will always succeed for sequential triangulations where the current processor stores all cells that are part of the triangulation. On the other hand, if this is a parallel triangulation, then the current processor may not actually know about this cell. In this case, this operation will succeed for locally relevant cells, but may not for artificial cells that are less refined on the current processor.

◆ cell_iterators()

IteratorRange<cell_iterator> Triangulation< dim, spacedim >::cell_iterators ( ) const
inherited

Return an iterator range that contains all cells (active or not) that make up this triangulation. Such a range is useful to initialize range- based for loops as supported by C++11. See the example in the documentation of active_cell_iterators().

Returns
The half open range [this->begin(), this->end())

◆ active_cell_iterators()

IteratorRange<active_cell_iterator> Triangulation< dim, spacedim >::active_cell_iterators ( ) const
inherited

Return an iterator range that contains all active cells that make up this triangulation. Such a range is useful to initialize range-based for loops as supported by C++11, see also C++11 standard.

Range-based for loops are useful in that they require much less code than traditional loops (see here for a discussion of how they work). An example is that without range-based for loops, one often writes code such as the following (assuming for a moment that our goal is setting the user flag on every active cell):

...
cell = triangulation.begin_active(),
endc = triangulation.end();
for (; cell!=endc; ++cell)
cell->set_user_flag();

Using C++11's range-based for loops, this is now entirely equivalent to the following:

...
for (const auto &cell : triangulation.active_cell_iterators())
cell->set_user_flag();
Returns
The half open range [this->begin_active(), this->end())

◆ cell_iterators_on_level()

IteratorRange<cell_iterator> Triangulation< dim, spacedim >::cell_iterators_on_level ( const unsigned int  level) const
inherited

Return an iterator range that contains all cells (active or not) that make up the given level of this triangulation. Such a range is useful to initialize range-based for loops as supported by C++11. See the example in the documentation of active_cell_iterators().

Parameters
[in]levelA given level in the refinement hierarchy of this triangulation.
Returns
The half open range [this->begin(level), this->end(level))
Precondition
level must be less than this->n_levels().

◆ active_cell_iterators_on_level()

IteratorRange<active_cell_iterator> Triangulation< dim, spacedim >::active_cell_iterators_on_level ( const unsigned int  level) const
inherited

Return an iterator range that contains all active cells that make up the given level of this triangulation. Such a range is useful to initialize range-based for loops as supported by C++11. See the example in the documentation of active_cell_iterators().

Parameters
[in]levelA given level in the refinement hierarchy of this triangulation.
Returns
The half open range [this->begin_active(level), this->end(level))
Precondition
level must be less than this->n_levels().

◆ begin_face()

face_iterator Triangulation< dim, spacedim >::begin_face ( ) const
inherited

Iterator to the first used face.

◆ begin_active_face()

active_face_iterator Triangulation< dim, spacedim >::begin_active_face ( ) const
inherited

Iterator to the first active face.

◆ end_face()

face_iterator Triangulation< dim, spacedim >::end_face ( ) const
inherited

Iterator past the end; this iterator serves for comparisons of iterators with past-the-end or before-the-beginning states.

◆ active_face_iterators()

IteratorRange<active_face_iterator> Triangulation< dim, spacedim >::active_face_iterators ( ) const
inherited

Return an iterator range that contains all active faces that make up this triangulation. This function is the face version of Triangulation::active_cell_iterators(), and allows one to write code like, e.g.,

...
for (auto &face : triangulation.active_face_iterators())
face->set_manifold_id(42);
Returns
The half open range [this->begin_active_face(), this->end_face())

◆ begin_vertex()

vertex_iterator Triangulation< dim, spacedim >::begin_vertex ( ) const
inherited

Iterator to the first used vertex. This function can only be used if dim is not one.

◆ begin_active_vertex()

active_vertex_iterator Triangulation< dim, spacedim >::begin_active_vertex ( ) const
inherited

Iterator to the first active vertex. Because all vertices are active, begin_vertex() and begin_active_vertex() return the same vertex. This function can only be used if dim is not one.

◆ end_vertex()

vertex_iterator Triangulation< dim, spacedim >::end_vertex ( ) const
inherited

Iterator past the end; this iterator serves for comparisons of iterators with past-the-end or before-the-beginning states. This function can only be used if dim is not one.

◆ n_lines() [1/2]

unsigned int Triangulation< dim, spacedim >::n_lines ( ) const
inherited

In the following, most functions are provided in two versions, with and without an argument describing the level. The versions with this argument are only applicable for objects describing the cells of the present triangulation. For example: in 2D n_lines(level) cannot be called, only n_lines(), as lines are faces in 2D and therefore have no level. Return the total number of used lines, active or not.

◆ n_lines() [2/2]

unsigned int Triangulation< dim, spacedim >::n_lines ( const unsigned int  level) const
inherited

Return the total number of used lines, active or not on level level.

◆ n_active_lines() [1/2]

unsigned int Triangulation< dim, spacedim >::n_active_lines ( ) const
inherited

Return the total number of active lines.

◆ n_active_lines() [2/2]

unsigned int Triangulation< dim, spacedim >::n_active_lines ( const unsigned int  level) const
inherited

Return the total number of active lines, on level level.

◆ n_quads() [1/8]

unsigned int Triangulation< dim, spacedim >::n_quads ( ) const
inherited

Return the total number of used quads, active or not.

◆ n_quads() [2/8]

unsigned int Triangulation< dim, spacedim >::n_quads ( const unsigned int  level) const
inherited

Return the total number of used quads, active or not on level level.

◆ n_quads() [3/8]

unsigned int Triangulation< 1, 1 >::n_quads ( ) const
inherited

Definition at line 14007 of file tria.cc.

◆ n_quads() [4/8]

unsigned int Triangulation< 1, 1 >::n_quads ( const unsigned int  ) const
inherited

Definition at line 14015 of file tria.cc.

◆ n_quads() [5/8]

unsigned int Triangulation< 1, 2 >::n_quads ( ) const
inherited

Definition at line 14056 of file tria.cc.

◆ n_quads() [6/8]

unsigned int Triangulation< 1, 2 >::n_quads ( const unsigned int  ) const
inherited

Definition at line 14064 of file tria.cc.

◆ n_quads() [7/8]

unsigned int Triangulation< 1, 3 >::n_quads ( ) const
inherited

Definition at line 14104 of file tria.cc.

◆ n_quads() [8/8]

unsigned int Triangulation< 1, 3 >::n_quads ( const unsigned int  ) const
inherited

Definition at line 14112 of file tria.cc.

◆ n_active_quads() [1/8]

unsigned int Triangulation< dim, spacedim >::n_active_quads ( ) const
inherited

Return the total number of active quads, active or not.

◆ n_active_quads() [2/8]

unsigned int Triangulation< dim, spacedim >::n_active_quads ( const unsigned int  level) const
inherited

Return the total number of active quads, active or not on level level.

◆ n_active_quads() [3/8]

unsigned int Triangulation< 1, 1 >::n_active_quads ( const unsigned int  ) const
inherited

Definition at line 14039 of file tria.cc.

◆ n_active_quads() [4/8]

unsigned int Triangulation< 1, 1 >::n_active_quads ( ) const
inherited

Definition at line 14047 of file tria.cc.

◆ n_active_quads() [5/8]

unsigned int Triangulation< 1, 2 >::n_active_quads ( const unsigned int  ) const
inherited

Definition at line 14088 of file tria.cc.

◆ n_active_quads() [6/8]

unsigned int Triangulation< 1, 2 >::n_active_quads ( ) const
inherited

Definition at line 14096 of file tria.cc.

◆ n_active_quads() [7/8]

unsigned int Triangulation< 1, 3 >::n_active_quads ( const unsigned int  ) const
inherited

Definition at line 14136 of file tria.cc.

◆ n_active_quads() [8/8]

unsigned int Triangulation< 1, 3 >::n_active_quads ( ) const
inherited

Definition at line 14144 of file tria.cc.

◆ n_hexs() [1/4]

unsigned int Triangulation< dim, spacedim >::n_hexs ( ) const
inherited

Return the total number of used hexahedra, active or not.

◆ n_hexs() [2/4]

unsigned int Triangulation< dim, spacedim >::n_hexs ( const unsigned int  level) const
inherited

Return the total number of used hexahedra, active or not on level level.

◆ n_hexs() [3/4]

unsigned int Triangulation< 3, 3 >::n_hexs ( ) const
inherited

Definition at line 14282 of file tria.cc.

◆ n_hexs() [4/4]

unsigned int Triangulation< 3, 3 >::n_hexs ( const unsigned int  level) const
inherited

Definition at line 14291 of file tria.cc.

◆ n_active_hexs() [1/4]

unsigned int Triangulation< dim, spacedim >::n_active_hexs ( ) const
inherited

Return the total number of active hexahedra, active or not.

◆ n_active_hexs() [2/4]

unsigned int Triangulation< dim, spacedim >::n_active_hexs ( const unsigned int  level) const
inherited

Return the total number of active hexahedra, active or not on level level.

◆ n_active_hexs() [3/4]

unsigned int Triangulation< 3, 3 >::n_active_hexs ( ) const
inherited

Definition at line 14311 of file tria.cc.

◆ n_active_hexs() [4/4]

unsigned int Triangulation< 3, 3 >::n_active_hexs ( const unsigned int  level) const
inherited

Definition at line 14320 of file tria.cc.

◆ n_cells() [1/2]

unsigned int Triangulation< dim, spacedim >::n_cells ( ) const
inherited

Return the total number of used cells, active or not. Maps to n_lines() in one space dimension and so on.

◆ n_cells() [2/2]

unsigned int Triangulation< dim, spacedim >::n_cells ( const unsigned int  level) const
inherited

Return the total number of used cells, active or not, on level level. Maps to n_lines(level) in one space dimension and so on.

◆ n_active_cells() [1/2]

unsigned int Triangulation< dim, spacedim >::n_active_cells ( ) const
inherited

Return the total number of active cells. Maps to n_active_lines() in one space dimension and so on.

◆ n_active_cells() [2/2]

unsigned int Triangulation< dim, spacedim >::n_active_cells ( const unsigned int  level) const
inherited

Return the total number of active cells on level level. Maps to n_active_lines(level) in one space dimension and so on.

◆ n_faces()

unsigned int Triangulation< dim, spacedim >::n_faces ( ) const
inherited

Return the total number of used faces, active or not. In 2D, the result equals n_lines(), in 3D it equals n_quads(), while in 1D it equals the number of used vertices.

◆ n_active_faces()

unsigned int Triangulation< dim, spacedim >::n_active_faces ( ) const
inherited

Return the total number of active faces. In 2D, the result equals n_active_lines(), in 3D it equals n_active_quads(), while in 1D it equals the number of used vertices.

◆ n_levels()

unsigned int Triangulation< dim, spacedim >::n_levels ( ) const
inherited

Return the number of levels in this triangulation.

Note
Internally, triangulations store data in levels, and there may be more levels in this data structure than one may think – for example, imagine a triangulation that we just got by coarsening the highest level so that it was completely depopulated. That level is not removed, since it will most likely be repopulated soon by the next refinement process. As a consequence, if you happened to run through raw cell iterators (which you can't do as a user of this class, but can internally), then the number of objects in the levels hierarchy is larger than the level of the most refined cell plus one. On the other hand, since this is rarely what a user of this class cares about, the function really just returns the level of the most refined active cell plus one. (The plus one is because in a coarse, unrefined mesh, all cells have level zero – making the number of levels equal to one.)

◆ n_vertices()

unsigned int Triangulation< dim, spacedim >::n_vertices ( ) const
inherited

Return the total number of vertices. Some of them may not be used, which usually happens upon coarsening of a triangulation when some vertices are discarded, but we do not want to renumber the remaining ones, leading to holes in the numbers of used vertices. You can get the number of used vertices using n_used_vertices function.

◆ get_vertices()

const std::vector<Point<spacedim> >& Triangulation< dim, spacedim >::get_vertices ( ) const
inherited

Return a constant reference to all the vertices present in this triangulation. Note that not necessarily all vertices in this array are actually used; for example, if you coarsen a mesh, then some vertices are deleted, but their positions in this array are unchanged as the indices of vertices are only allocated once. You can find out about which vertices are actually used by the function get_used_vertices().

◆ n_used_vertices()

unsigned int Triangulation< dim, spacedim >::n_used_vertices ( ) const
inherited

Return the number of vertices that are presently in use, i.e. belong to at least one used element.

◆ vertex_used()

bool Triangulation< dim, spacedim >::vertex_used ( const unsigned int  index) const
inherited

Return true if the vertex with this index is used.

◆ get_used_vertices()

const std::vector<bool>& Triangulation< dim, spacedim >::get_used_vertices ( ) const
inherited

Return a constant reference to the array of bools indicating whether an entry in the vertex array is used or not.

◆ max_adjacent_cells() [1/4]

unsigned int Triangulation< dim, spacedim >::max_adjacent_cells ( ) const
inherited

Return the maximum number of cells meeting at a common vertex. Since this number is an invariant under refinement, only the cells on the coarsest level are considered. The operation is thus reasonably fast. The invariance is only true for sufficiently many cells in the coarsest triangulation (e.g. for a single cell one would be returned), so a minimum of four is returned in two dimensions, 8 in three dimensions, etc, which is how many cells meet if the triangulation is refined.

In one space dimension, two is returned.

◆ max_adjacent_cells() [2/4]

unsigned int Triangulation< 1, 1 >::max_adjacent_cells ( ) const
inherited

Definition at line 14349 of file tria.cc.

◆ max_adjacent_cells() [3/4]

unsigned int Triangulation< 1, 2 >::max_adjacent_cells ( ) const
inherited

Definition at line 14358 of file tria.cc.

◆ max_adjacent_cells() [4/4]

unsigned int Triangulation< 1, 3 >::max_adjacent_cells ( ) const
inherited

Definition at line 14366 of file tria.cc.

◆ get_triangulation() [1/2]

Triangulation<dim, spacedim>& Triangulation< dim, spacedim >::get_triangulation ( )
inherited

Return a reference to the current object.

This doesn't seem to be very useful but allows to write code that can access the underlying triangulation for anything that satisfies the MeshType concept (which may not only be a triangulation, but also a DoFHandler, for example).

◆ get_triangulation() [2/2]

const Triangulation<dim, spacedim>& Triangulation< dim, spacedim >::get_triangulation ( ) const
inherited

Return a reference to the current object. This is the const-version of the previous function.

◆ n_raw_lines() [1/2]

unsigned int Triangulation< dim, spacedim >::n_raw_lines ( ) const
inherited

Total number of lines, used or unused.

Note
This function really exports internal information about the triangulation. It shouldn't be used in applications. The function is only part of the public interface of this class because it is used in some of the other classes that build very closely on it (in particular, the DoFHandler class).

◆ n_raw_lines() [2/2]

unsigned int Triangulation< dim, spacedim >::n_raw_lines ( const unsigned int  level) const
inherited

Number of lines, used or unused, on the given level.

Note
This function really exports internal information about the triangulation. It shouldn't be used in applications. The function is only part of the public interface of this class because it is used in some of the other classes that build very closely on it (in particular, the DoFHandler class).

◆ n_raw_quads() [1/9]

unsigned int Triangulation< dim, spacedim >::n_raw_quads ( ) const
inherited

Total number of quads, used or unused.

Note
This function really exports internal information about the triangulation. It shouldn't be used in applications. The function is only part of the public interface of this class because it is used in some of the other classes that build very closely on it (in particular, the DoFHandler class).

◆ n_raw_quads() [2/9]

unsigned int Triangulation< dim, spacedim >::n_raw_quads ( const unsigned int  level) const
inherited

Number of quads, used or unused, on the given level.

Note
This function really exports internal information about the triangulation. It shouldn't be used in applications. The function is only part of the public interface of this class because it is used in some of the other classes that build very closely on it (in particular, the DoFHandler class).

◆ n_raw_quads() [3/9]

unsigned int Triangulation< 1, 1 >::n_raw_quads ( const unsigned int  ) const
inherited

Definition at line 14023 of file tria.cc.

◆ n_raw_quads() [4/9]

unsigned int Triangulation< 1, 2 >::n_raw_quads ( const unsigned int  ) const
inherited

Definition at line 14072 of file tria.cc.

◆ n_raw_quads() [5/9]

unsigned int Triangulation< 1, 3 >::n_raw_quads ( const unsigned int  ) const
inherited

Definition at line 14120 of file tria.cc.

◆ n_raw_quads() [6/9]

unsigned int Triangulation< 2, 2 >::n_raw_quads ( const unsigned int  level) const
inherited

Definition at line 14172 of file tria.cc.

◆ n_raw_quads() [7/9]

unsigned int Triangulation< 2, 3 >::n_raw_quads ( const unsigned int  level) const
inherited

Definition at line 14182 of file tria.cc.

◆ n_raw_quads() [8/9]

unsigned int Triangulation< 3, 3 >::n_raw_quads ( const unsigned int  ) const
inherited

Definition at line 14191 of file tria.cc.

◆ n_raw_quads() [9/9]

unsigned int Triangulation< 3, 3 >::n_raw_quads ( ) const
inherited

Definition at line 14211 of file tria.cc.

◆ n_raw_hexs() [1/5]

unsigned int Triangulation< dim, spacedim >::n_raw_hexs ( const unsigned int  level) const
inherited

Number of hexs, used or unused, on the given level.

Note
This function really exports internal information about the triangulation. It shouldn't be used in applications. The function is only part of the public interface of this class because it is used in some of the other classes that build very closely on it (in particular, the DoFHandler class).

◆ n_raw_hexs() [2/5]

unsigned int Triangulation< 1, 1 >::n_raw_hexs ( const unsigned int  ) const
inherited

Definition at line 14031 of file tria.cc.

◆ n_raw_hexs() [3/5]

unsigned int Triangulation< 1, 2 >::n_raw_hexs ( const unsigned int  ) const
inherited

Definition at line 14080 of file tria.cc.

◆ n_raw_hexs() [4/5]

unsigned int Triangulation< 1, 3 >::n_raw_hexs ( const unsigned int  ) const
inherited

Definition at line 14128 of file tria.cc.

◆ n_raw_hexs() [5/5]

unsigned int Triangulation< 3, 3 >::n_raw_hexs ( const unsigned int  level) const
inherited

Definition at line 14302 of file tria.cc.

◆ n_raw_cells()

unsigned int Triangulation< dim, spacedim >::n_raw_cells ( const unsigned int  level) const
inherited

Number of cells, used or unused, on the given level.

Note
This function really exports internal information about the triangulation. It shouldn't be used in applications. The function is only part of the public interface of this class because it is used in some of the other classes that build very closely on it (in particular, the DoFHandler class).

◆ n_raw_faces()

unsigned int Triangulation< dim, spacedim >::n_raw_faces ( ) const
inherited

Return the total number of faces, used or not. In 2d, the result equals n_raw_lines(), in 3d it equals n_raw_quads(), while in 1D it equals the number of vertices.

Note
This function really exports internal information about the triangulation. It shouldn't be used in applications. The function is only part of the public interface of this class because it is used in some of the other classes that build very closely on it (in particular, the DoFHandler class).

◆ add_periodicity() [2/2]

virtual void Triangulation< dim, spacedim >::add_periodicity ( const std::vector< GridTools::PeriodicFacePair< cell_iterator >> &  )
virtualinherited

Declare the (coarse) face pairs given in the argument of this function as periodic. This way it is possible to obtain neighbors across periodic boundaries.

The vector can be filled by the function GridTools::collect_periodic_faces.

For more information on periodic boundary conditions see GridTools::collect_periodic_faces, DoFTools::make_periodicity_constraints and step-45.

Note
Before this function can be used the Triangulation has to be initialized and must not be refined.

◆ get_periodic_face_map()

const std::map< std::pair<cell_iterator, unsigned int>, std::pair<std::pair<cell_iterator, unsigned int>, std::bitset<3> > >& Triangulation< dim, spacedim >::get_periodic_face_map ( ) const
inherited

Return the periodic_face_map.

◆ get_reference_cells()

const std::vector<ReferenceCell>& Triangulation< dim, spacedim >::get_reference_cells ( ) const
inherited

Return vector filled with the used reference-cell types of this triangulation.

◆ all_reference_cells_are_hyper_cube()

bool Triangulation< dim, spacedim >::all_reference_cells_are_hyper_cube ( ) const
inherited

Indicate if the triangulation only consists of hypercube-like cells, i.e., lines, quadrilaterals, or hexahedra.

◆ all_reference_cells_are_simplex()

bool Triangulation< dim, spacedim >::all_reference_cells_are_simplex ( ) const
inherited

Indicate if the triangulation only consists of simplex-like cells, i.e., lines, triangles, or tetrahedra.

◆ is_mixed_mesh()

bool Triangulation< dim, spacedim >::is_mixed_mesh ( ) const
inherited

Indicate if the triangulation consists of different cell types (mix of simplices, hypercubes, ...) or different face types, as in the case of pyramids or wedges..

◆ serialize()

void Triangulation< dim, spacedim >::serialize ( Archive &  archive,
const unsigned int  version 
)
inherited

Write and read the data of this object from a stream for the purpose of serialization. using the BOOST serialization library.

◆ ExcInvalidLevel()

static ::ExceptionBase& Triangulation< dim, spacedim >::ExcInvalidLevel ( int  arg1,
int  arg2 
)
staticinherited

Exception

Note
The message that will be printed by this exception reads:
<< "You are requesting information from refinement level " << arg1 << " of a triangulation, but this triangulation only has " << arg2 << " refinement levels. The given level " << arg1 << " must be *less* than " << arg2 << '.'

◆ ExcTriangulationNotEmpty()

static ::ExceptionBase& Triangulation< dim, spacedim >::ExcTriangulationNotEmpty ( int  arg1,
int  arg2 
)
staticinherited

The function raising this exception can only operate on an empty Triangulation, i.e., a Triangulation without grid cells.

Note
The message that will be printed by this exception reads:
<< "You are trying to perform an operation on a triangulation " << "that is only allowed if the triangulation is currently empty. " << "However, it currently stores " << arg1 << " vertices and has " << "cells on " << arg2 << " levels."

◆ ExcGridReadError()

static ::ExceptionBase& Triangulation< dim, spacedim >::ExcGridReadError ( )
staticinherited

Trying to re-read a grid, an error occurred.

◆ ExcFacesHaveNoLevel()

static ::ExceptionBase& Triangulation< dim, spacedim >::ExcFacesHaveNoLevel ( )
staticinherited

Exception

◆ ExcEmptyLevel()

static ::ExceptionBase& Triangulation< dim, spacedim >::ExcEmptyLevel ( int  arg1)
staticinherited

The triangulation level you accessed is empty.

Note
The message that will be printed by this exception reads:
<< "You tried to do something on level " << arg1 << ", but this level is empty."

◆ ExcNonOrientableTriangulation()

static ::ExceptionBase& Triangulation< dim, spacedim >::ExcNonOrientableTriangulation ( )
staticinherited

Exception

◆ ExcBoundaryIdNotFound()

static ::ExceptionBase& Triangulation< dim, spacedim >::ExcBoundaryIdNotFound ( types::boundary_id  arg1)
staticinherited

Exception

Requested boundary_id not found

Note
The message that will be printed by this exception reads:
<< "The given boundary_id " << arg1 << " is not defined in this Triangulation!"

◆ ExcInconsistentCoarseningFlags()

static ::ExceptionBase& Triangulation< dim, spacedim >::ExcInconsistentCoarseningFlags ( )
staticinherited

Exception

Note
The message that will be printed by this exception reads:
"A cell is flagged for coarsening, but either not all of its siblings " "are active or flagged for coarsening as well. Please clean up all " "coarsen flags on your triangulation via " "Triangulation::prepare_coarsening_and_refinement() beforehand!"

◆ write_bool_vector()

static void Triangulation< dim, spacedim >::write_bool_vector ( const unsigned int  magic_number1,
const std::vector< bool > &  v,
const unsigned int  magic_number2,
std::ostream &  out 
)
staticprotectedinherited

Write a bool vector to the given stream, writing a pre- and a postfix magic number. The vector is written in an almost binary format, i.e. the bool flags are packed but the data is written as ASCII text.

The flags are stored in a binary format: for each true, a 1 bit is stored, a 0 bit otherwise. The bits are stored as unsigned char, thus avoiding endianness. They are written to out in plain text, thus amounting to 3.6 bits in the output per bits in the input on the average. Other information (magic numbers and number of elements of the input vector) is stored as plain text as well. The format should therefore be interplatform compatible.

◆ read_bool_vector()

static void Triangulation< dim, spacedim >::read_bool_vector ( const unsigned int  magic_number1,
std::vector< bool > &  v,
const unsigned int  magic_number2,
std::istream &  in 
)
staticprotectedinherited

Re-read a vector of bools previously written by write_bool_vector and compare with the magic numbers.

◆ update_periodic_face_map()

void Triangulation< dim, spacedim >::update_periodic_face_map ( )
protectedinherited

Recreate information about periodic neighbors from periodic_face_pairs_level_0.

◆ begin_raw()

raw_cell_iterator Triangulation< dim, spacedim >::begin_raw ( const unsigned int  level = 0) const
privateinherited

Iterator to the first cell, used or not, on level level. If a level has no cells, a past-the-end iterator is returned.

◆ end_raw()

raw_cell_iterator Triangulation< dim, spacedim >::end_raw ( const unsigned int  level) const
privateinherited

Return a raw iterator which is the first iterator not on level. If level is the last level, then this returns end().

◆ begin_raw_line()

raw_line_iterator Triangulation< dim, spacedim >::begin_raw_line ( const unsigned int  level = 0) const
privateinherited

Iterator to the first line, used or not, on level level. If a level has no lines, a past-the-end iterator is returned. If lines are no cells, i.e. for dim>1 no level argument must be given. The same applies for all the other functions above, of course.

◆ begin_line()

line_iterator Triangulation< dim, spacedim >::begin_line ( const unsigned int  level = 0) const
privateinherited

Iterator to the first used line on level level.

Note
The given level argument needs to correspond to a level of the triangulation, i.e., should be less than the value returned by n_levels(). On the other hand, for parallel computations using a parallel::distributed::Triangulation object, it is often convenient to write loops over the cells of all levels of the global mesh, even if the local portion of the triangulation does not actually have cells at one of the higher levels. In those cases, the level argument is accepted if it is less than what the n_global_levels() function returns. If the given level is between the values returned by n_levels() and n_global_levels(), then no cells exist in the local portion of the triangulation at this level, and the function simply returns what end() would return.

◆ begin_active_line()

active_line_iterator Triangulation< dim, spacedim >::begin_active_line ( const unsigned int  level = 0) const
privateinherited

Iterator to the first active line on level level.

Note
The given level argument needs to correspond to a level of the triangulation, i.e., should be less than the value returned by n_levels(). On the other hand, for parallel computations using a parallel::distributed::Triangulation object, it is often convenient to write loops over the cells of all levels of the global mesh, even if the local portion of the triangulation does not actually have cells at one of the higher levels. In those cases, the level argument is accepted if it is less than what the n_global_levels() function returns. If the given level is between the values returned by n_levels() and n_global_levels(), then no cells exist in the local portion of the triangulation at this level, and the function simply returns what end() would return.

◆ end_line()

line_iterator Triangulation< dim, spacedim >::end_line ( ) const
privateinherited

Iterator past the end; this iterator serves for comparisons of iterators with past-the-end or before-the-beginning states.

◆ begin_raw_quad()

raw_quad_iterator Triangulation< dim, spacedim >::begin_raw_quad ( const unsigned int  level = 0) const
privateinherited

Iterator to the first quad, used or not, on the given level. If a level has no quads, a past-the-end iterator is returned. If quads are no cells, i.e. for \(dim>2\) no level argument must be given.

Note
The given level argument needs to correspond to a level of the triangulation, i.e., should be less than the value returned by n_levels(). On the other hand, for parallel computations using a parallel::distributed::Triangulation object, it is often convenient to write loops over the cells of all levels of the global mesh, even if the local portion of the triangulation does not actually have cells at one of the higher levels. In those cases, the level argument is accepted if it is less than what the n_global_levels() function returns. If the given level is between the values returned by n_levels() and n_global_levels(), then no cells exist in the local portion of the triangulation at this level, and the function simply returns what end() would return.

◆ begin_quad()

quad_iterator Triangulation< dim, spacedim >::begin_quad ( const unsigned int  level = 0) const
privateinherited

Iterator to the first used quad on level level.

Note
The given level argument needs to correspond to a level of the triangulation, i.e., should be less than the value returned by n_levels(). On the other hand, for parallel computations using a parallel::distributed::Triangulation object, it is often convenient to write loops over the cells of all levels of the global mesh, even if the local portion of the triangulation does not actually have cells at one of the higher levels. In those cases, the level argument is accepted if it is less than what the n_global_levels() function returns. If the given level is between the values returned by n_levels() and n_global_levels(), then no cells exist in the local portion of the triangulation at this level, and the function simply returns what end() would return.

◆ begin_active_quad()

active_quad_iterator Triangulation< dim, spacedim >::begin_active_quad ( const unsigned int  level = 0) const
privateinherited

Iterator to the first active quad on level level.

Note
The given level argument needs to correspond to a level of the triangulation, i.e., should be less than the value returned by n_levels(). On the other hand, for parallel computations using a parallel::distributed::Triangulation object, it is often convenient to write loops over the cells of all levels of the global mesh, even if the local portion of the triangulation does not actually have cells at one of the higher levels. In those cases, the level argument is accepted if it is less than what the n_global_levels() function returns. If the given level is between the values returned by n_levels() and n_global_levels(), then no cells exist in the local portion of the triangulation at this level, and the function simply returns what end() would return.

◆ end_quad()

quad_iterator Triangulation< dim, spacedim >::end_quad ( ) const
privateinherited

Iterator past the end; this iterator serves for comparisons of iterators with past-the-end or before-the-beginning states.

◆ begin_raw_hex()

raw_hex_iterator Triangulation< dim, spacedim >::begin_raw_hex ( const unsigned int  level = 0) const
privateinherited

Iterator to the first hex, used or not, on level level. If a level has no hexes, a past-the-end iterator is returned.

Note
The given level argument needs to correspond to a level of the triangulation, i.e., should be less than the value returned by n_levels(). On the other hand, for parallel computations using a parallel::distributed::Triangulation object, it is often convenient to write loops over the cells of all levels of the global mesh, even if the local portion of the triangulation does not actually have cells at one of the higher levels. In those cases, the level argument is accepted if it is less than what the n_global_levels() function returns. If the given level is between the values returned by n_levels() and n_global_levels(), then no cells exist in the local portion of the triangulation at this level, and the function simply returns what end() would return.

◆ begin_hex()

hex_iterator Triangulation< dim, spacedim >::begin_hex ( const unsigned int  level = 0) const
privateinherited

Iterator to the first used hex on level level.

Note
The given level argument needs to correspond to a level of the triangulation, i.e., should be less than the value returned by n_levels(). On the other hand, for parallel computations using a parallel::distributed::Triangulation object, it is often convenient to write loops over the cells of all levels of the global mesh, even if the local portion of the triangulation does not actually have cells at one of the higher levels. In those cases, the level argument is accepted if it is less than what the n_global_levels() function returns. If the given level is between the values returned by n_levels() and n_global_levels(), then no cells exist in the local portion of the triangulation at this level, and the function simply returns what end() would return.

◆ begin_active_hex()

active_hex_iterator Triangulation< dim, spacedim >::begin_active_hex ( const unsigned int  level = 0) const
privateinherited

Iterator to the first active hex on level level.

Note
The given level argument needs to correspond to a level of the triangulation, i.e., should be less than the value returned by n_levels(). On the other hand, for parallel computations using a parallel::distributed::Triangulation object, it is often convenient to write loops over the cells of all levels of the global mesh, even if the local portion of the triangulation does not actually have cells at one of the higher levels. In those cases, the level argument is accepted if it is less than what the n_global_levels() function returns. If the given level is between the values returned by n_levels() and n_global_levels(), then no cells exist in the local portion of the triangulation at this level, and the function simply returns what end() would return.

◆ end_hex()

hex_iterator Triangulation< dim, spacedim >::end_hex ( ) const
privateinherited

Iterator past the end; this iterator serves for comparisons of iterators with past-the-end or before-the-beginning states.

◆ clear_despite_subscriptions()

void Triangulation< dim, spacedim >::clear_despite_subscriptions ( )
privateinherited

The (public) function clear() will only work when the triangulation is not subscribed to by other users. The clear_despite_subscriptions() function now allows the triangulation being cleared even when there are subscriptions.

Make sure, you know what you do, when calling this function, as its use is reasonable in very rare cases, only. For example, when the subscriptions were for the initially empty Triangulation and the Triangulation object wants to release its memory before throwing an assertion due to input errors (e.g. in the create_triangulation() function).

◆ reset_policy()

void Triangulation< dim, spacedim >::reset_policy ( )
privateinherited

Reset triangulation policy.

◆ reset_active_cell_indices()

void Triangulation< dim, spacedim >::reset_active_cell_indices ( )
privateinherited

For all cells, set the active cell indices so that active cells know the how many-th active cell they are, and all other cells have an invalid value. This function is called after mesh creation, refinement, and serialization.

◆ reset_cell_vertex_indices_cache()

void Triangulation< dim, spacedim >::reset_cell_vertex_indices_cache ( )
privateinherited

Reset cache for the cells' vertex indices.

◆ execute_refinement()

DistortedCellList Triangulation< dim, spacedim >::execute_refinement ( )
privateinherited

Refine all cells on all levels which were previously flagged for refinement.

Note, that this function uses the line->user_flags for dim=2,3 and the quad->user_flags for dim=3.

The function returns a list of cells that have produced children that satisfy the criteria of distorted cells if the check_for_distorted_cells flag was specified upon creation of this object, at

◆ execute_coarsening()

void Triangulation< dim, spacedim >::execute_coarsening ( )
privateinherited

Coarsen all cells which were flagged for coarsening, or rather: delete all children of those cells of which all child cells are flagged for coarsening and several other constraints hold (see the general doc of this class).

◆ fix_coarsen_flags()

void Triangulation< dim, spacedim >::fix_coarsen_flags ( )
privateinherited

Make sure that either all or none of the children of a cell are tagged for coarsening.

Friends And Related Function Documentation

◆ ::FETools::internal::ExtrapolateImplementation

template<int dim, int spacedim = dim>
template<int , int , class >
friend class ::FETools::internal::ExtrapolateImplementation
friend

Definition at line 845 of file tria.h.

◆ TemporarilyMatchRefineFlags

template<int dim, int spacedim = dim>
template<int , int >
friend class TemporarilyMatchRefineFlags
friend

Definition at line 848 of file tria.h.

Member Data Documentation

◆ settings

template<int dim, int spacedim = dim>
Settings parallel::distributed::Triangulation< dim, spacedim >::settings
private

store the Settings.

Definition at line 710 of file tria.h.

◆ triangulation_has_content

template<int dim, int spacedim = dim>
bool parallel::distributed::Triangulation< dim, spacedim >::triangulation_has_content
private

A flag that indicates whether the triangulation has actual content.

Definition at line 715 of file tria.h.

◆ connectivity

template<int dim, int spacedim = dim>
typename ::internal::p4est::types<dim>::connectivity* parallel::distributed::Triangulation< dim, spacedim >::connectivity
private

A data structure that holds the connectivity between trees. Since each tree is rooted in a coarse grid cell, this data structure holds the connectivity between the cells of the coarse grid.

Definition at line 722 of file tria.h.

◆ parallel_forest

template<int dim, int spacedim = dim>
typename ::internal::p4est::types<dim>::forest* parallel::distributed::Triangulation< dim, spacedim >::parallel_forest
private

A data structure that holds the local part of the global triangulation.

Definition at line 728 of file tria.h.

◆ parallel_ghost

template<int dim, int spacedim = dim>
typename ::internal::p4est::types<dim>::ghost* parallel::distributed::Triangulation< dim, spacedim >::parallel_ghost
private

A data structure that holds some information about the ghost cells of the triangulation.

Definition at line 734 of file tria.h.

◆ coarse_cell_to_p4est_tree_permutation

template<int dim, int spacedim = dim>
std::vector<types::global_dof_index> parallel::distributed::Triangulation< dim, spacedim >::coarse_cell_to_p4est_tree_permutation
private

Two arrays that store which p4est tree corresponds to which coarse grid cell and vice versa. We need these arrays because p4est goes with the original order of coarse cells when it sets up its forest, and then applies the Morton ordering within each tree. But if coarse grid cells are badly ordered this may mean that individual parts of the forest stored on a local machine may be split across coarse grid cells that are not geometrically close. Consequently, we apply a hierarchical preordering according to SparsityTools::reorder_hierarchical() to ensure that the part of the forest stored by p4est is located on geometrically close coarse grid cells.

Definition at line 774 of file tria.h.

◆ p4est_tree_to_coarse_cell_permutation

template<int dim, int spacedim = dim>
std::vector<types::global_dof_index> parallel::distributed::Triangulation< dim, spacedim >::p4est_tree_to_coarse_cell_permutation
private

Definition at line 776 of file tria.h.

◆ local_cell_relations

std::vector<cell_relation_t> parallel::DistributedTriangulationBase< dim, spacedim >::local_cell_relations
protectedinherited

Vector of pairs, each containing a deal.II cell iterator and its respective CellStatus. To update its contents, use the update_cell_relations() member function.

Definition at line 738 of file tria_base.h.

◆ cell_attached_data

CellAttachedData parallel::DistributedTriangulationBase< dim, spacedim >::cell_attached_data
protectedinherited

Definition at line 771 of file tria_base.h.

◆ data_transfer

DataTransfer parallel::DistributedTriangulationBase< dim, spacedim >::data_transfer
protectedinherited

Definition at line 926 of file tria_base.h.

◆ mpi_communicator

const MPI_Comm parallel::TriangulationBase< dim, spacedim >::mpi_communicator
protectedinherited

MPI communicator to be used for the triangulation. We create a unique communicator for this class, which is a duplicate of the one passed to the constructor.

Definition at line 302 of file tria_base.h.

◆ my_subdomain

types::subdomain_id parallel::TriangulationBase< dim, spacedim >::my_subdomain
protectedinherited

The subdomain id to be used for the current processor. This is the MPI rank.

Definition at line 308 of file tria_base.h.

◆ n_subdomains

types::subdomain_id parallel::TriangulationBase< dim, spacedim >::n_subdomains
protectedinherited

The total number of subdomains (or the size of the MPI communicator).

Definition at line 313 of file tria_base.h.

◆ number_cache

NumberCache parallel::TriangulationBase< dim, spacedim >::number_cache
protectedinherited

Definition at line 371 of file tria_base.h.

◆ dimension

constexpr unsigned int Triangulation< dim, spacedim >::dimension
staticconstexprinherited

Make the dimension available in function templates.

Definition at line 1542 of file tria.h.

◆ space_dimension

constexpr unsigned int Triangulation< dim, spacedim >::space_dimension
staticconstexprinherited

Make the space-dimension available in function templates.

Definition at line 1547 of file tria.h.

◆ signals

Signals Triangulation< dim, spacedim >::signals
mutableinherited

Signals for the various actions that a triangulation can do to itself.

Definition at line 2448 of file tria.h.

◆ smooth_grid

MeshSmoothing Triangulation< dim, spacedim >::smooth_grid
protectedinherited

Do some smoothing in the process of refining the triangulation. See the general doc of this class for more information about this.

Definition at line 3700 of file tria.h.

◆ reference_cells

std::vector<ReferenceCell> Triangulation< dim, spacedim >::reference_cells
protectedinherited

Vector caching all reference-cell types of the given triangulation (also in the distributed case).

Definition at line 3706 of file tria.h.

◆ policy

std::unique_ptr< ::internal::TriangulationImplementation::Policy<dim, spacedim> > Triangulation< dim, spacedim >::policy
privateinherited

Policy with the Triangulation-specific tasks related to creation, refinement, and coarsening.

Definition at line 3758 of file tria.h.

◆ periodic_face_pairs_level_0

std::vector<GridTools::PeriodicFacePair<cell_iterator> > Triangulation< dim, spacedim >::periodic_face_pairs_level_0
privateinherited

If add_periodicity() is called, this variable stores the given periodic face pairs on level 0 for later access during the identification of ghost cells for the multigrid hierarchy and for setting up the periodic_face_map.

Definition at line 3767 of file tria.h.

◆ periodic_face_map

std::map<std::pair<cell_iterator, unsigned int>, std::pair<std::pair<cell_iterator, unsigned int>, std::bitset<3> > > Triangulation< dim, spacedim >::periodic_face_map
privateinherited

If add_periodicity() is called, this variable stores the active periodic face pairs.

Definition at line 3775 of file tria.h.

◆ levels

std::vector< std::unique_ptr<::internal::TriangulationImplementation::TriaLevel> > Triangulation< dim, spacedim >::levels
privateinherited

Array of pointers pointing to the objects storing the cell data on the different levels.

Definition at line 4153 of file tria.h.

◆ faces

std::unique_ptr<::internal::TriangulationImplementation::TriaFaces> Triangulation< dim, spacedim >::faces
privateinherited

Pointer to the faces of the triangulation. In 1d this contains nothing, in 2D it contains data concerning lines and in 3D quads and lines. All of these have no level and are therefore treated separately.

Definition at line 4161 of file tria.h.

◆ vertices

std::vector<Point<spacedim> > Triangulation< dim, spacedim >::vertices
privateinherited

Array of the vertices of this triangulation.

Definition at line 4167 of file tria.h.

◆ vertices_used

std::vector<bool> Triangulation< dim, spacedim >::vertices_used
privateinherited

Array storing a bit-pattern which vertices are used.

Definition at line 4172 of file tria.h.

◆ manifolds

std::map<types::manifold_id, std::unique_ptr<const Manifold<dim, spacedim> > > Triangulation< dim, spacedim >::manifolds
privateinherited

Collection of manifold objects. We store only objects, which are not of type FlatManifold.

Definition at line 4179 of file tria.h.

◆ anisotropic_refinement

bool Triangulation< dim, spacedim >::anisotropic_refinement
privateinherited

Flag indicating whether anisotropic refinement took place.

Definition at line 4184 of file tria.h.

◆ check_for_distorted_cells

const bool Triangulation< dim, spacedim >::check_for_distorted_cells
privateinherited

A flag that determines whether we are to check for distorted cells upon creation and refinement of a mesh.

Definition at line 4191 of file tria.h.

◆ vertex_to_boundary_id_map_1d

std::unique_ptr<std::map<unsigned int, types::boundary_id> > Triangulation< dim, spacedim >::vertex_to_boundary_id_map_1d
privateinherited

A map that relates the number of a boundary vertex to the boundary indicator. This field is only used in 1d. We have this field because we store boundary indicator information with faces in 2d and higher where we have space in the structures that store data for faces, but in 1d there is no such space for faces.

The field is declared as a pointer for a rather mundane reason: all other fields of this class that can be modified by the TriaAccessor hierarchy are pointers, and so these accessor classes store a const pointer to the triangulation. We could no longer do so for TriaAccessor<0,1,spacedim> if this field (that can be modified by TriaAccessor::set_boundary_id) were not a pointer.

Definition at line 4219 of file tria.h.

◆ vertex_to_manifold_id_map_1d

std::unique_ptr<std::map<unsigned int, types::manifold_id> > Triangulation< dim, spacedim >::vertex_to_manifold_id_map_1d
privateinherited

A map that relates the number of a boundary vertex to the manifold indicator. This field is only used in 1d. We have this field because we store manifold indicator information with faces in 2d and higher where we have space in the structures that store data for faces, but in 1d there is no such space for faces.

Note
Manifold objects are pretty useless for points since they are neither refined nor are their interiors mapped. We nevertheless allow storing manifold ids for points to be consistent in dimension-independent programs.

The field is declared as a pointer for a rather mundane reason: all other fields of this class that can be modified by the TriaAccessor hierarchy are pointers, and so these accessor classes store a const pointer to the triangulation. We could no longer do so for TriaAccessor<0,1,spacedim> if this field (that can be modified by TriaAccessor::set_manifold_id) were not a pointer.

Definition at line 4242 of file tria.h.


The documentation for this class was generated from the following files: