deal.II version GIT relicensing-1838-g97284be5cd 2024-09-11 15:30:00+00:00
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Private Types | Private Member Functions | Private Attributes | Static Private Attributes | List of all members
Function< dim, RangeNumberType > Class Template Referenceabstract

#include <deal.II/base/function.h>

Inheritance diagram for Function< dim, RangeNumberType >:
Inheritance graph
[legend]

Public Types

using time_type = typename FunctionTime< typename numbers::NumberTraits< RangeNumberType >::real_type >::time_type
 

Public Member Functions

 Function (const unsigned int n_components=1, const time_type initial_time=0.0)
 
 Function (const Function &f)=default
 
virtual ~Function () override=0
 
Functionoperator= (const Function &f)
 
virtual RangeNumberType value (const Point< dim > &p, const unsigned int component=0) const
 
virtual void vector_value (const Point< dim > &p, Vector< RangeNumberType > &values) const
 
virtual void value_list (const std::vector< Point< dim > > &points, std::vector< RangeNumberType > &values, const unsigned int component=0) const
 
virtual void vector_value_list (const std::vector< Point< dim > > &points, std::vector< Vector< RangeNumberType > > &values) const
 
virtual void vector_values (const std::vector< Point< dim > > &points, std::vector< std::vector< RangeNumberType > > &values) const
 
virtual Tensor< 1, dim, RangeNumberType > gradient (const Point< dim > &p, const unsigned int component=0) const
 
virtual void vector_gradient (const Point< dim > &p, std::vector< Tensor< 1, dim, RangeNumberType > > &gradients) const
 
virtual void gradient_list (const std::vector< Point< dim > > &points, std::vector< Tensor< 1, dim, RangeNumberType > > &gradients, const unsigned int component=0) const
 
virtual void vector_gradients (const std::vector< Point< dim > > &points, std::vector< std::vector< Tensor< 1, dim, RangeNumberType > > > &gradients) const
 
virtual void vector_gradient_list (const std::vector< Point< dim > > &points, std::vector< std::vector< Tensor< 1, dim, RangeNumberType > > > &gradients) const
 
virtual RangeNumberType laplacian (const Point< dim > &p, const unsigned int component=0) const
 
virtual void vector_laplacian (const Point< dim > &p, Vector< RangeNumberType > &values) const
 
virtual void laplacian_list (const std::vector< Point< dim > > &points, std::vector< RangeNumberType > &values, const unsigned int component=0) const
 
virtual void vector_laplacian_list (const std::vector< Point< dim > > &points, std::vector< Vector< RangeNumberType > > &values) const
 
virtual SymmetricTensor< 2, dim, RangeNumberType > hessian (const Point< dim > &p, const unsigned int component=0) const
 
virtual void vector_hessian (const Point< dim > &p, std::vector< SymmetricTensor< 2, dim, RangeNumberType > > &values) const
 
virtual void hessian_list (const std::vector< Point< dim > > &points, std::vector< SymmetricTensor< 2, dim, RangeNumberType > > &values, const unsigned int component=0) const
 
virtual void vector_hessian_list (const std::vector< Point< dim > > &points, std::vector< std::vector< SymmetricTensor< 2, dim, RangeNumberType > > > &values) const
 
virtual std::size_t memory_consumption () const
 
Number get_time () const
 
virtual void set_time (const Number new_time)
 
virtual void advance_time (const Number delta_t)
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 
Subscriptor functionality

Classes derived from Subscriptor provide a facility to subscribe to this object. This is mostly used by the SmartPointer class.

void subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
void unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
unsigned int n_subscriptions () const
 
template<typename StreamType >
void list_subscribers (StreamType &stream) const
 
void list_subscribers () const
 

Static Public Member Functions

static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 

Public Attributes

const unsigned int n_components
 

Static Public Attributes

static constexpr unsigned int dimension = dim
 

Private Types

using map_value_type = decltype(counter_map)::value_type
 
using map_iterator = decltype(counter_map)::iterator
 

Private Member Functions

void check_no_subscribers () const noexcept
 

Private Attributes

Number time
 
std::atomic< unsigned intcounter
 
std::map< std::string, unsigned intcounter_map
 
std::vector< std::atomic< bool > * > validity_pointers
 
const std::type_info * object_info
 

Static Private Attributes

static std::mutex mutex
 

Detailed Description

template<int dim, typename RangeNumberType = double>
class Function< dim, RangeNumberType >

This class is a model for a general function that, given a point at which to evaluate the function, returns a vector of values with one or more components.

The class serves the purpose of representing both scalar and vector valued functions. To this end, we consider scalar functions as a special case of vector valued functions, in the former case only having a single component return vector. Since handling vectors is comparatively expensive, the interface of this class has functions which only ask for a single component of the vector-valued results (this is what you will usually need in case you know that your function is scalar-valued) as well as functions you can ask for an entire vector of results with as many components as the function object represents. Access to function objects therefore is through the following methods:

// access to one component at one point
double
value(const Point<dim> & p,
const unsigned int component = 0) const;
// return all components at one point
void
virtual RangeNumberType value(const Point< dim > &p, const unsigned int component=0) const
virtual void vector_value(const Point< dim > &p, Vector< RangeNumberType > &values) const
Definition point.h:111

For more efficiency, there are other functions returning one or all components at a list of points at once:

// access to one component at several points
void
value_list(const std::vector<Point<dim>> &point_list,
std::vector<double> &value_list,
const unsigned int component = 0) const;
// return all components at several points
void
vector_value_list(const std::vector<Point<dim>> &point_list,
std::vector<Vector<double>> &value_list) const;
virtual void vector_value_list(const std::vector< Point< dim > > &points, std::vector< Vector< RangeNumberType > > &values) const
virtual void value_list(const std::vector< Point< dim > > &points, std::vector< RangeNumberType > &values, const unsigned int component=0) const

Furthermore, there are functions returning the gradient of the function or even higher derivatives at one or several points.

You will usually only overload those functions you need; the functions returning several values at a time (value_list(), vector_value_list(), and gradient analogs) will call those returning only one value (value(), vector_value(), and gradient analogs), while those ones will throw an exception when called but not overloaded.

Conversely, the functions returning all components of the function at one or several points (i.e. vector_value(), vector_value_list()), will not call the function returning one component at one point repeatedly, once for each point and component. The reason is efficiency: this would amount to too many virtual function calls. If you have vector-valued functions, you should therefore also provide overloads of the virtual functions for all components at a time.

Also note, that unless only called a very small number of times, you should overload all sets of functions (returning only one value, as well as those returning a whole array), since the cost of evaluation of a point value is often less than the virtual function call itself.

Support for time dependent functions can be found in the base class FunctionTime.

Functions that return tensors

If the functions you are dealing with have a number of components that are a priori known (for example, dim elements), you might consider using the TensorFunction class instead. This is, in particular, true if the objects you return have the properties of a tensor, i.e., they are for example dim-dimensional vectors or dim-by-dim matrices. On the other hand, functions like VectorTools::interpolate or VectorTools::interpolate_boundary_values definitely only want objects of the current type. You can use the VectorFunctionFromTensorFunction class to convert the former to the latter.

Functions that return vectors of other data types

Most of the time, your functions will have the form \(f : \Omega \rightarrow {\mathbb R}^{n_\text{components}}\). However, there are occasions where you want the function to return vectors (or scalars) over a different number field, for example functions that return complex numbers or vectors of complex numbers: \(f : \Omega \rightarrow {\mathbb C}^{n_\text{components}}\). In such cases, you can choose a value different than the default double for the second template argument of this class: it describes the scalar type to be used for each component of your return values. It defaults to double, but in the example above, it could be set to std::complex<double>. step-58 is an example of this.

Template Parameters
dimThe space dimension of the range space within which the domain \(\Omega\) of the function lies. Consequently, the function will be evaluated at objects of type Point<dim>.
RangeNumberTypeThe scalar type of the vector space that is the range (or image) of this function. As discussed above, objects of the current type represent functions from \({\mathbb R}^\text{dim}\) to \(S^{n_\text{components}}\) where \(S\) is the underlying scalar type of the vector space. The type of \(S\) is given by the RangeNumberType template argument.

Definition at line 149 of file function.h.

Member Typedef Documentation

◆ time_type

template<int dim, typename RangeNumberType = double>
using Function< dim, RangeNumberType >::time_type = typename FunctionTime< typename numbers::NumberTraits<RangeNumberType>::real_type>::time_type

The scalar-valued real type used for representing time.

Definition at line 168 of file function.h.

◆ map_value_type

using Subscriptor::map_value_type = decltype(counter_map)::value_type
privateinherited

The data type used in counter_map.

Definition at line 229 of file subscriptor.h.

◆ map_iterator

using Subscriptor::map_iterator = decltype(counter_map)::iterator
privateinherited

The iterator type used in counter_map.

Definition at line 234 of file subscriptor.h.

Constructor & Destructor Documentation

◆ Function() [1/2]

template<int dim, typename RangeNumberType = double>
Function< dim, RangeNumberType >::Function ( const unsigned int  n_components = 1,
const time_type  initial_time = 0.0 
)
explicit

Constructor. May take an initial value for the number of components (which defaults to one, i.e. a scalar function), and the time variable, which defaults to zero.

◆ Function() [2/2]

template<int dim, typename RangeNumberType = double>
Function< dim, RangeNumberType >::Function ( const Function< dim, RangeNumberType > &  f)
default

Copy constructor.

◆ ~Function()

template<int dim, typename RangeNumberType = double>
virtual Function< dim, RangeNumberType >::~Function ( )
overridepure virtual

Virtual destructor; absolutely necessary in this case.

This destructor is declared pure virtual, such that objects of this class cannot be created. Since all the other virtual functions have a pseudo-implementation to avoid overhead in derived classes, they can not be abstract. As a consequence, we could generate an object of this class because none of this class's functions are abstract.

We circumvent this problem by making the destructor of this class abstract virtual. This ensures that at least one member function is abstract, and consequently, no objects of type Function can be created. However, there is no need for derived classes to explicitly implement a destructor: every class has a destructor, either explicitly implemented or implicitly generated by the compiler, and this resolves the abstractness of any derived class even if they do not have an explicitly declared destructor.

Nonetheless, since derived classes want to call the destructor of a base class, this destructor is implemented (despite it being pure virtual).

Member Function Documentation

◆ operator=()

template<int dim, typename RangeNumberType = double>
Function & Function< dim, RangeNumberType >::operator= ( const Function< dim, RangeNumberType > &  f)

Assignment operator. This is here only so that you can have objects of derived classes in containers, or assign them otherwise. It will raise an exception if the object from which you assign has a different number of components than the one being assigned to.

◆ value()

template<int dim, typename RangeNumberType = double>
virtual RangeNumberType Function< dim, RangeNumberType >::value ( const Point< dim > &  p,
const unsigned int  component = 0 
) const
virtual

Return the value of the function at the given point. Unless there is only one component (i.e. the function is scalar), you should state the component you want to have evaluated; it defaults to zero, i.e. the first component.

Reimplemented in Functions::CosineGradFunction< dim >, DoFTools::internal::RigidBodyMotion< dim >, Functions::ConstantFunction< dim, RangeNumberType >, Functions::ConstantFunction< dim, double >, Functions::IdentityFunction< dim, RangeNumberType >, ScalarFunctionFromFunctionObject< dim, RangeNumberType >, VectorFunctionFromScalarFunctionObject< dim, RangeNumberType >, FunctionFromFunctionObjects< dim, RangeNumberType >, VectorFunctionFromTensorFunction< dim, RangeNumberType >, FunctionDerivative< dim >, Functions::SquareFunction< dim >, Functions::Q1WedgeFunction< dim >, Functions::PillowFunction< dim >, Functions::CosineFunction< dim >, Functions::ExpFunction< dim >, Functions::SlitSingularityFunction< dim >, Functions::JumpFunction< dim >, Functions::FourierCosineFunction< dim >, Functions::FourierSineFunction< dim >, Functions::FourierSineSum< dim >, Functions::FourierCosineSum< dim >, Functions::CutOffFunctionTensorProduct< dim >, Functions::CutOffFunctionLinfty< dim >, Functions::CutOffFunctionW1< dim >, Functions::CutOffFunctionC1< dim >, Functions::CutOffFunctionCinfty< dim >, Functions::Monomial< dim, Number >, Functions::InterpolatedTensorProductGridData< dim >, Functions::InterpolatedUniformGridData< dim >, Functions::Polynomial< dim >, FunctionParser< dim >, Functions::SignedDistance::Rectangle< dim >, Functions::SignedDistance::ZalesakDisk< dim >, Functions::IncrementalFunction< dim, RangeNumberType >, Functions::ParsedFunction< dim >, Functions::SymbolicFunction< dim, RangeNumberType >, Functions::FEFieldFunction< dim, VectorType, spacedim >, Functions::CoordinateRestriction< dim >, Functions::CSpline< dim >, Functions::SignedDistance::Sphere< dim >, Functions::SignedDistance::Plane< dim >, Functions::SignedDistance::Ellipsoid< dim >, Functions::Spherical< dim >, NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >, Functions::FlowFunction< dim >, Functions::FlowFunction< 2 >, and Functions::Bessel1< dim >.

◆ vector_value()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_value ( const Point< dim > &  p,
Vector< RangeNumberType > &  values 
) const
virtual

◆ value_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::value_list ( const std::vector< Point< dim > > &  points,
std::vector< RangeNumberType > &  values,
const unsigned int  component = 0 
) const
virtual

Set values to the point values of the specified component of the function at the points. It is assumed that values already has the right size, i.e. the same size as the points array.

By default, this function repeatedly calls value() for each point separately, to fill the output array.

Reimplemented in Functions::ConstantFunction< dim, RangeNumberType >, and Functions::FEFieldFunction< dim, VectorType, spacedim >.

◆ vector_value_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_value_list ( const std::vector< Point< dim > > &  points,
std::vector< Vector< RangeNumberType > > &  values 
) const
virtual

Set values to the point values of the function at the points. It is assumed that values already has the right size, i.e. the same size as the points array, and that all elements be vectors with the same number of components as this function has.

By default, this function repeatedly calls vector_value() for each point separately, to fill the output array.

Reimplemented in Functions::ConstantFunction< dim, RangeNumberType >, VectorFunctionFromTensorFunction< dim, RangeNumberType >, ComponentSelectFunction< dim, RangeNumberType >, and Functions::FEFieldFunction< dim, VectorType, spacedim >.

◆ vector_values()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_values ( const std::vector< Point< dim > > &  points,
std::vector< std::vector< RangeNumberType > > &  values 
) const
virtual

For each component of the function, fill a vector of values, one for each point.

The default implementation of this function in Function calls value_list() for each component. In order to improve performance, this can be reimplemented in derived classes to speed up performance.

◆ gradient()

template<int dim, typename RangeNumberType = double>
virtual Tensor< 1, dim, RangeNumberType > Function< dim, RangeNumberType >::gradient ( const Point< dim > &  p,
const unsigned int  component = 0 
) const
virtual

Return the gradient of the specified component of the function at the given point.

Reimplemented in Functions::SignedDistance::Plane< dim >, Functions::SignedDistance::Ellipsoid< dim >, Functions::CosineGradFunction< dim >, AutoDerivativeFunction< dim >, Functions::ConstantFunction< dim, RangeNumberType >, Functions::ConstantFunction< dim, double >, Functions::IdentityFunction< dim, RangeNumberType >, FunctionFromFunctionObjects< dim, RangeNumberType >, VectorFunctionFromTensorFunction< dim, RangeNumberType >, Functions::Bessel1< dim >, Functions::CSpline< dim >, Functions::SquareFunction< dim >, Functions::Q1WedgeFunction< dim >, Functions::PillowFunction< dim >, Functions::CosineFunction< dim >, Functions::ExpFunction< dim >, Functions::SlitSingularityFunction< dim >, Functions::JumpFunction< dim >, Functions::FourierCosineFunction< dim >, Functions::FourierSineFunction< dim >, Functions::FourierSineSum< dim >, Functions::FourierCosineSum< dim >, Functions::CutOffFunctionTensorProduct< dim >, Functions::CutOffFunctionC1< dim >, Functions::CutOffFunctionCinfty< dim >, Functions::Monomial< dim, Number >, Functions::InterpolatedTensorProductGridData< dim >, Functions::InterpolatedUniformGridData< dim >, Functions::Polynomial< dim >, Functions::Spherical< dim >, Functions::SymbolicFunction< dim, RangeNumberType >, Functions::FEFieldFunction< dim, VectorType, spacedim >, Functions::CoordinateRestriction< dim >, Functions::SignedDistance::Sphere< dim >, and NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >.

◆ vector_gradient()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_gradient ( const Point< dim > &  p,
std::vector< Tensor< 1, dim, RangeNumberType > > &  gradients 
) const
virtual

◆ gradient_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::gradient_list ( const std::vector< Point< dim > > &  points,
std::vector< Tensor< 1, dim, RangeNumberType > > &  gradients,
const unsigned int  component = 0 
) const
virtual

Set gradients to the gradients of the specified component of the function at the points. It is assumed that gradients already has the right size, i.e. the same size as the points array.

Reimplemented in Functions::FEFieldFunction< dim, VectorType, spacedim >, Functions::ConstantFunction< dim, RangeNumberType >, and VectorFunctionFromTensorFunction< dim, RangeNumberType >.

◆ vector_gradients()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_gradients ( const std::vector< Point< dim > > &  points,
std::vector< std::vector< Tensor< 1, dim, RangeNumberType > > > &  gradients 
) const
virtual

For each component of the function, fill a vector of gradient values, one for each point.

The default implementation of this function in Function calls value_list() for each component. In order to improve performance, this can be reimplemented in derived classes to speed up performance.

Reimplemented in VectorFunctionFromTensorFunction< dim, RangeNumberType >.

◆ vector_gradient_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_gradient_list ( const std::vector< Point< dim > > &  points,
std::vector< std::vector< Tensor< 1, dim, RangeNumberType > > > &  gradients 
) const
virtual

Set gradients to the gradients of the function at the points, for all components. It is assumed that gradients already has the right size, i.e. the same size as the points array.

The outer loop over gradients is over the points in the list, the inner loop over the different components of the function.

Reimplemented in Functions::FEFieldFunction< dim, VectorType, spacedim >, Functions::ConstantFunction< dim, RangeNumberType >, and VectorFunctionFromTensorFunction< dim, RangeNumberType >.

◆ laplacian()

template<int dim, typename RangeNumberType = double>
virtual RangeNumberType Function< dim, RangeNumberType >::laplacian ( const Point< dim > &  p,
const unsigned int  component = 0 
) const
virtual

◆ vector_laplacian()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_laplacian ( const Point< dim > &  p,
Vector< RangeNumberType > &  values 
) const
virtual

Compute the Laplacian of all components at point p and store them in values.

Reimplemented in Functions::FEFieldFunction< dim, VectorType, spacedim >.

◆ laplacian_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::laplacian_list ( const std::vector< Point< dim > > &  points,
std::vector< RangeNumberType > &  values,
const unsigned int  component = 0 
) const
virtual

Compute the Laplacian of one component at a set of points.

Reimplemented in Functions::FEFieldFunction< dim, VectorType, spacedim >.

◆ vector_laplacian_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_laplacian_list ( const std::vector< Point< dim > > &  points,
std::vector< Vector< RangeNumberType > > &  values 
) const
virtual

Compute the Laplacians of all components at a set of points.

Reimplemented in Functions::FEFieldFunction< dim, VectorType, spacedim >.

◆ hessian()

template<int dim, typename RangeNumberType = double>
virtual SymmetricTensor< 2, dim, RangeNumberType > Function< dim, RangeNumberType >::hessian ( const Point< dim > &  p,
const unsigned int  component = 0 
) const
virtual

◆ vector_hessian()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_hessian ( const Point< dim > &  p,
std::vector< SymmetricTensor< 2, dim, RangeNumberType > > &  values 
) const
virtual

Compute the Hessian of all components at point p and store them in values.

◆ hessian_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::hessian_list ( const std::vector< Point< dim > > &  points,
std::vector< SymmetricTensor< 2, dim, RangeNumberType > > &  values,
const unsigned int  component = 0 
) const
virtual

Compute the Hessian of one component at a set of points.

◆ vector_hessian_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_hessian_list ( const std::vector< Point< dim > > &  points,
std::vector< std::vector< SymmetricTensor< 2, dim, RangeNumberType > > > &  values 
) const
virtual

Compute the Hessians of all components at a set of points.

◆ memory_consumption()

template<int dim, typename RangeNumberType = double>
virtual std::size_t Function< dim, RangeNumberType >::memory_consumption ( ) const
virtual

◆ get_time()

template<typename Number = double>
Number FunctionTime< Number >::get_time ( ) const
inherited

Return the value of the time variable.

◆ set_time()

template<typename Number = double>
virtual void FunctionTime< Number >::set_time ( const Number  new_time)
virtualinherited

Set the time to new_time, overwriting the old value.

◆ advance_time()

template<typename Number = double>
virtual void FunctionTime< Number >::advance_time ( const Number  delta_t)
virtualinherited

Advance the time by the given time step delta_t.

◆ subscribe()

void Subscriptor::subscribe ( std::atomic< bool > *const  validity,
const std::string &  identifier = "" 
) const
inherited

Subscribes a user of the object by storing the pointer validity. The subscriber may be identified by text supplied as identifier.

Definition at line 130 of file subscriptor.cc.

◆ unsubscribe()

void Subscriptor::unsubscribe ( std::atomic< bool > *const  validity,
const std::string &  identifier = "" 
) const
inherited

Unsubscribes a user from the object.

Note
The identifier and the validity pointer must be the same as the one supplied to subscribe().

Definition at line 150 of file subscriptor.cc.

◆ n_subscriptions()

unsigned int Subscriptor::n_subscriptions ( ) const
inlineinherited

Return the present number of subscriptions to this object. This allows to use this class for reference counted lifetime determination where the last one to unsubscribe also deletes the object.

Definition at line 300 of file subscriptor.h.

◆ list_subscribers() [1/2]

template<typename StreamType >
void Subscriptor::list_subscribers ( StreamType &  stream) const
inlineinherited

List the subscribers to the input stream.

Definition at line 317 of file subscriptor.h.

◆ list_subscribers() [2/2]

void Subscriptor::list_subscribers ( ) const
inherited

List the subscribers to deallog.

Definition at line 198 of file subscriptor.cc.

◆ serialize()

template<class Archive >
void Subscriptor::serialize ( Archive &  ar,
const unsigned int  version 
)
inlineinherited

Read or write the data of this object to or from a stream for the purpose of serialization using the BOOST serialization library.

This function does not actually serialize any of the member variables of this class. The reason is that what this class stores is only who subscribes to this object, but who does so at the time of storing the contents of this object does not necessarily have anything to do with who subscribes to the object when it is restored. Consequently, we do not want to overwrite the subscribers at the time of restoring, and then there is no reason to write the subscribers out in the first place.

Definition at line 309 of file subscriptor.h.

◆ check_no_subscribers()

void Subscriptor::check_no_subscribers ( ) const
privatenoexceptinherited

Check that there are no objects subscribing to this object. If this check passes then it is safe to destroy the current object. It this check fails then this function will either abort or print an error message to deallog (by using the AssertNothrow mechanism), but will not throw an exception.

Note
Since this function is just a consistency check it does nothing in release mode.
If this function is called when there is an uncaught exception then, rather than aborting, this function prints an error message to the standard error stream and returns.

Definition at line 52 of file subscriptor.cc.

Member Data Documentation

◆ dimension

template<int dim, typename RangeNumberType = double>
constexpr unsigned int Function< dim, RangeNumberType >::dimension = dim
staticconstexpr

Export the value of the template parameter as a static member constant. Sometimes useful for some expression template programming.

Definition at line 158 of file function.h.

◆ n_components

template<int dim, typename RangeNumberType = double>
const unsigned int Function< dim, RangeNumberType >::n_components

Number of vector components.

Definition at line 163 of file function.h.

◆ time

template<typename Number = double>
Number FunctionTime< Number >::time
privateinherited

Store the present time.

Definition at line 112 of file function_time.h.

◆ counter

std::atomic<unsigned int> Subscriptor::counter
mutableprivateinherited

Store the number of objects which subscribed to this object. Initially, this number is zero, and upon destruction it shall be zero again (i.e. all objects which subscribed should have unsubscribed again).

The creator (and owner) of an object is counted in the map below if HE manages to supply identification.

We use the mutable keyword in order to allow subscription to constant objects also.

This counter may be read from and written to concurrently in multithreaded code: hence we use the std::atomic class template.

Definition at line 218 of file subscriptor.h.

◆ counter_map

std::map<std::string, unsigned int> Subscriptor::counter_map
mutableprivateinherited

In this map, we count subscriptions for each different identification string supplied to subscribe().

Definition at line 224 of file subscriptor.h.

◆ validity_pointers

std::vector<std::atomic<bool> *> Subscriptor::validity_pointers
mutableprivateinherited

In this vector, we store pointers to the validity bool in the SmartPointer objects that subscribe to this class.

Definition at line 240 of file subscriptor.h.

◆ object_info

const std::type_info* Subscriptor::object_info
mutableprivateinherited

Pointer to the typeinfo object of this object, from which we can later deduce the class name. Since this information on the derived class is neither available in the destructor, nor in the constructor, we obtain it in between and store it here.

Definition at line 248 of file subscriptor.h.

◆ mutex

std::mutex Subscriptor::mutex
staticprivateinherited

A mutex used to ensure data consistency when accessing the mutable members of this class. This lock is used in the subscribe() and unsubscribe() functions, as well as in list_subscribers().

Definition at line 271 of file subscriptor.h.


The documentation for this class was generated from the following file: