deal.II version GIT relicensing-2167-g9622207b8f 2024-11-21 12:40:00+00:00
|
#include <deal.II/matrix_free/evaluation_kernels.h>
Public Types | |
using | Number2 = typename FEEvaluationData< dim, Number, false >::shape_info_number_type |
using | Eval = EvaluatorTensorProduct< evaluate_evenodd, dim, fe_degree+1, fe_degree+1, Number, Number2 > |
Static Public Member Functions | |
static void | evaluate (const unsigned int n_components, const EvaluationFlags::EvaluationFlags evaluation_flag, const Number *values_dofs, FEEvaluationData< dim, Number, false > &fe_eval) |
static void | integrate (const unsigned int n_components, const EvaluationFlags::EvaluationFlags integration_flag, Number *values_dofs, FEEvaluationData< dim, Number, false > &fe_eval, const bool add_into_values_array) |
This struct performs the evaluation of function values and gradients for tensor-product finite elements. This is a specialization for elements where the nodal points coincide with the quadrature points like FE_Q shape functions on Gauss-Lobatto elements integrated with Gauss-Lobatto quadrature. The assumption of this class is that the shape 'values' operation is identity, which allows us to write shorter code.
In literature, this form of evaluation is often called spectral evaluation, spectral collocation or simply collocation, meaning the same location for shape functions and evaluation space (quadrature points).
Definition at line 1788 of file evaluation_kernels.h.
using internal::FEEvaluationImplCollocation< dim, fe_degree, Number >::Number2 = typename FEEvaluationData<dim, Number, false>::shape_info_number_type |
Definition at line 1790 of file evaluation_kernels.h.
using internal::FEEvaluationImplCollocation< dim, fe_degree, Number >::Eval = EvaluatorTensorProduct<evaluate_evenodd, dim, fe_degree + 1, fe_degree + 1, Number, Number2> |
Definition at line 1792 of file evaluation_kernels.h.
|
inlinestatic |
Definition at line 1800 of file evaluation_kernels.h.
|
inlinestatic |
Definition at line 1823 of file evaluation_kernels.h.