Reference documentation for deal.II version GIT f0f8c7fe18 2023-03-21 21:25:02+00:00
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
polynomials_wedge.h
Go to the documentation of this file.
1 // ---------------------------------------------------------------------
2 //
3 // Copyright (C) 2021 - 2022 by the deal.II authors
4 //
5 // This file is part of the deal.II library.
6 //
7 // The deal.II library is free software; you can use it, redistribute
8 // it, and/or modify it under the terms of the GNU Lesser General
9 // Public License as published by the Free Software Foundation; either
10 // version 2.1 of the License, or (at your option) any later version.
11 // The full text of the license can be found in the file LICENSE.md at
12 // the top level directory of deal.II.
13 //
14 // ---------------------------------------------------------------------
15 
16 
17 #ifndef dealii_base_polynomials_wedge_h
18 #define dealii_base_polynomials_wedge_h
19 
20 #include <deal.II/base/config.h>
21 
22 #include <deal.II/base/ndarray.h>
25 
27 
28 
29 namespace internal
30 {
36  static const constexpr ::ndarray<unsigned int, 6, 2> wedge_table_1{
37  {{{0, 0}}, {{1, 0}}, {{2, 0}}, {{0, 1}}, {{1, 1}}, {{2, 1}}}};
38 
44  static const constexpr ::ndarray<unsigned int, 18, 2> wedge_table_2{
45  {{{0, 0}},
46  {{1, 0}},
47  {{2, 0}},
48  {{0, 1}},
49  {{1, 1}},
50  {{2, 1}},
51  {{3, 0}},
52  {{4, 0}},
53  {{5, 0}},
54  {{3, 1}},
55  {{4, 1}},
56  {{5, 1}},
57  {{0, 2}},
58  {{1, 2}},
59  {{2, 2}},
60  {{3, 2}},
61  {{4, 2}},
62  {{5, 2}}}};
63 } // namespace internal
64 
65 
75 template <int dim>
77 {
78 public:
82  static constexpr unsigned int dimension = dim;
83 
84  /*
85  * Constructor taking the polynomial @p degree as input.
86  *
87  * @note Currently, only linear (degree=1) and quadratic polynomials
88  * (degree=2) are implemented.
89  */
90  ScalarLagrangePolynomialWedge(const unsigned int degree);
91 
97  void
98  evaluate(const Point<dim> & unit_point,
99  std::vector<double> & values,
100  std::vector<Tensor<1, dim>> &grads,
101  std::vector<Tensor<2, dim>> &grad_grads,
102  std::vector<Tensor<3, dim>> &third_derivatives,
103  std::vector<Tensor<4, dim>> &fourth_derivatives) const override;
104 
105  double
106  compute_value(const unsigned int i, const Point<dim> &p) const override;
107 
113  template <int order>
115  compute_derivative(const unsigned int i, const Point<dim> &p) const;
116 
118  compute_1st_derivative(const unsigned int i,
119  const Point<dim> & p) const override;
120 
127  compute_2nd_derivative(const unsigned int i,
128  const Point<dim> & p) const override;
129 
136  compute_3rd_derivative(const unsigned int i,
137  const Point<dim> & p) const override;
138 
145  compute_4th_derivative(const unsigned int i,
146  const Point<dim> & p) const override;
147 
154  compute_grad(const unsigned int i, const Point<dim> &p) const override;
155 
162  compute_grad_grad(const unsigned int i, const Point<dim> &p) const override;
163 
164  std::string
165  name() const override;
166 
167  virtual std::unique_ptr<ScalarPolynomialsBase<dim>>
168  clone() const override;
169 
170 private:
175 
180 };
181 
182 
183 
184 template <int dim>
185 template <int order>
188  const unsigned int i,
189  const Point<dim> & p) const
190 {
191  Tensor<order, dim> der;
192 
193  AssertDimension(order, 1);
194  const auto grad = compute_grad(i, p);
195 
196  for (unsigned int i = 0; i < dim; ++i)
197  der[i] = grad[i];
198 
199  return der;
200 }
201 
203 
204 #endif
Definition: point.h:110
Tensor< 1, dim > compute_grad(const unsigned int i, const Point< dim > &p) const override
Tensor< 1, dim > compute_1st_derivative(const unsigned int i, const Point< dim > &p) const override
Tensor< 4, dim > compute_4th_derivative(const unsigned int i, const Point< dim > &p) const override
std::string name() const override
Tensor< 3, dim > compute_3rd_derivative(const unsigned int i, const Point< dim > &p) const override
Tensor< 2, dim > compute_2nd_derivative(const unsigned int i, const Point< dim > &p) const override
ScalarLagrangePolynomialWedge(const unsigned int degree)
Tensor< order, dim > compute_derivative(const unsigned int i, const Point< dim > &p) const
virtual std::unique_ptr< ScalarPolynomialsBase< dim > > clone() const override
void evaluate(const Point< dim > &unit_point, std::vector< double > &values, std::vector< Tensor< 1, dim >> &grads, std::vector< Tensor< 2, dim >> &grad_grads, std::vector< Tensor< 3, dim >> &third_derivatives, std::vector< Tensor< 4, dim >> &fourth_derivatives) const override
static constexpr unsigned int dimension
double compute_value(const unsigned int i, const Point< dim > &p) const override
const BarycentricPolynomials< 1 > poly_line
const BarycentricPolynomials< 2 > poly_tri
Tensor< 2, dim > compute_grad_grad(const unsigned int i, const Point< dim > &p) const override
virtual unsigned int degree() const
#define DEAL_II_NAMESPACE_OPEN
Definition: config.h:474
#define DEAL_II_NAMESPACE_CLOSE
Definition: config.h:475
#define AssertDimension(dim1, dim2)
Definition: exceptions.h:1759
static constexpr const ::ndarray< unsigned int, 18, 2 > wedge_table_2
static constexpr const ::ndarray< unsigned int, 6, 2 > wedge_table_1