524 *
"Diffusion parameter");
526 * prm.declare_entry(
"Fe degree",
529 *
"Finite Element degree");
530 * prm.declare_entry(
"Smoother type",
533 *
"Select smoother: SOR|Jacobi|block SOR|block Jacobi");
534 * prm.declare_entry(
"Smoothing steps",
537 *
"Number of smoothing steps");
542 *
"Select DoF renumbering: none|downstream|upstream|random");
543 * prm.declare_entry(
"With streamline diffusion",
546 *
"Enable streamline diffusion stabilization: true|false");
547 * prm.declare_entry(
"Output",
550 *
"Generate graphical output: true|false");
553 *
if (prm_filename.empty())
557 *
false, ExcMessage(
"Please pass a .prm file as the first argument!"));
560 * prm.parse_input(prm_filename);
562 *
epsilon = prm.get_double(
"Epsilon");
563 * fe_degree = prm.get_integer(
"Fe degree");
564 * smoother_type = prm.get(
"Smoother type");
565 * smoothing_steps = prm.get_integer(
"Smoothing steps");
567 *
const std::string renumbering = prm.get(
"DoF renumbering");
568 *
if (renumbering ==
"none")
569 * dof_renumbering = DoFRenumberingStrategy::none;
570 *
else if (renumbering ==
"downstream")
571 * dof_renumbering = DoFRenumberingStrategy::downstream;
572 *
else if (renumbering ==
"upstream")
573 * dof_renumbering = DoFRenumberingStrategy::upstream;
574 *
else if (renumbering ==
"random")
575 * dof_renumbering = DoFRenumberingStrategy::random;
578 * ExcMessage(
"The <DoF renumbering> parameter has "
579 *
"an invalid value."));
581 * with_streamline_diffusion = prm.get_bool(
"With streamline diffusion");
582 * output = prm.get_bool(
"Output");
589 * <a name=
"step_63-Cellpermutations"></a>
590 * <h3>Cell permutations</h3>
594 * The ordering in which cells and degrees of freedom are traversed
595 * will play a role in the speed of convergence
for multiplicative
596 * methods. Here we define
functions which
return a specific ordering
597 * of cells to be used by the block smoothers.
601 * For each type of cell ordering, we define a function
for the
602 * active mesh and one
for a
level mesh (i.e.,
for the cells at one
603 *
level of a multigrid hierarchy). While the only reordering
604 * necessary
for solving the system will be on the
level meshes, we
605 * include the active reordering
for visualization purposes in
611 * array with all of the relevant cells that we then sort in
612 *
downstream direction
using a
"comparator" object. The output of
613 * the
functions is then simply an array of the indices of the cells
614 * in the just computed order.
618 * std::vector<unsigned int>
621 *
const unsigned int level)
623 * std::vector<typename DoFHandler<dim>::level_cell_iterator> ordered_cells;
624 * ordered_cells.reserve(dof_handler.get_triangulation().n_cells(
level));
625 *
for (
const auto &cell : dof_handler.cell_iterators_on_level(
level))
626 * ordered_cells.push_back(cell);
629 * CompareDownstream<typename DoFHandler<dim>::level_cell_iterator, dim>
630 * comparator(direction);
631 * std::sort(ordered_cells.begin(), ordered_cells.end(), comparator);
633 * std::vector<unsigned> ordered_indices;
634 * ordered_indices.reserve(dof_handler.get_triangulation().n_cells(
level));
636 *
for (
const auto &cell : ordered_cells)
637 * ordered_indices.push_back(cell->
index());
639 *
return ordered_indices;
645 * std::vector<unsigned int>
649 * std::vector<typename DoFHandler<dim>::active_cell_iterator> ordered_cells;
650 * ordered_cells.reserve(dof_handler.get_triangulation().n_active_cells());
651 *
for (
const auto &cell : dof_handler.active_cell_iterators())
652 * ordered_cells.push_back(cell);
655 * CompareDownstream<typename DoFHandler<dim>::active_cell_iterator, dim>
656 * comparator(direction);
657 * std::sort(ordered_cells.begin(), ordered_cells.end(), comparator);
659 * std::vector<unsigned int> ordered_indices;
660 * ordered_indices.reserve(dof_handler.get_triangulation().n_active_cells());
662 *
for (
const auto &cell : ordered_cells)
663 * ordered_indices.push_back(cell->
index());
665 *
return ordered_indices;
672 * spirit in that they
first put information about all cells into an
673 * array. But then, instead of sorting them, they shuffle the
674 * elements randomly
using the facilities
C++ offers to generate
675 *
random numbers. The way
this is done is by iterating over all
676 * elements of the array, drawing a
random number
for another
677 * element before that, and then exchanging these elements. The
678 * result is a
random shuffle of the elements of the array.
682 * std::vector<unsigned int>
684 *
const unsigned int level)
686 * std::vector<unsigned int> ordered_cells;
687 * ordered_cells.reserve(dof_handler.get_triangulation().n_cells(
level));
688 *
for (
const auto &cell : dof_handler.cell_iterators_on_level(
level))
689 * ordered_cells.push_back(cell->
index());
691 * std::mt19937 random_number_generator;
692 * std::shuffle(ordered_cells.begin(),
693 * ordered_cells.end(),
694 * random_number_generator);
696 *
return ordered_cells;
702 * std::vector<unsigned int>
705 * std::vector<unsigned int> ordered_cells;
706 * ordered_cells.reserve(dof_handler.get_triangulation().n_active_cells());
707 *
for (
const auto &cell : dof_handler.active_cell_iterators())
708 * ordered_cells.push_back(cell->
index());
710 * std::mt19937 random_number_generator;
711 * std::shuffle(ordered_cells.begin(),
712 * ordered_cells.end(),
713 * random_number_generator);
715 *
return ordered_cells;
722 * <a name=
"step_63-Righthandsideandboundaryvalues"></a>
723 * <h3>Right-hand side and boundary
values</h3>
727 * The problem solved in
this tutorial is an adaptation of Ex. 3.1.3 found
729 * href=
"https://global.oup.com/academic/product/finite-elements-and-fast-iterative-solvers-9780199678808">
730 * Finite Elements and Fast Iterative Solvers: with Applications in
731 * Incompressible Fluid Dynamics by Elman, Silvester, and Wathen</a>. The
732 * main difference being that we add a hole in the center of our domain with
733 * zero Dirichlet boundary conditions.
737 * For a complete description, we need classes that implement the
738 * zero right-hand side
first (we could of course have just used
743 * class RightHandSide : public
Function<dim>
747 * const unsigned
int component = 0) const override;
749 *
virtual void value_list(
const std::vector<
Point<dim>> &points,
750 * std::vector<double> &values,
751 *
const unsigned int component = 0)
const override;
757 *
double RightHandSide<dim>::value(
const Point<dim> &,
758 *
const unsigned int component)
const
760 *
Assert(component == 0, ExcIndexRange(component, 0, 1));
769 *
void RightHandSide<dim>::value_list(
const std::vector<
Point<dim>> &points,
770 * std::vector<double> &values,
771 *
const unsigned int component)
const
775 *
for (
unsigned int i = 0; i < points.size(); ++i)
776 * values[i] = RightHandSide<dim>::value(points[i], component);
782 * We also have Dirichlet boundary conditions. On a connected portion of the
783 * outer, square boundary we set the
value to 1, and we set the
value to 0
784 * everywhere
else (including the inner, circular boundary):
788 *
class BoundaryValues :
public Function<dim>
792 *
const unsigned int component = 0)
const override;
795 * std::vector<double> &values,
796 *
const unsigned int component = 0)
const override;
802 *
double BoundaryValues<dim>::value(
const Point<dim> &p,
803 *
const unsigned int component)
const
805 *
Assert(component == 0, ExcIndexRange(component, 0, 1));
810 * Set boundary to 1
if @f$x=1@f$, or
if @f$x>0.5@f$ and @f$y=-1@f$.
813 *
if (std::fabs(p[0] - 1) < 1e-8 ||
814 * (std::fabs(p[1] + 1) < 1e-8 && p[0] >= 0.5))
827 *
void BoundaryValues<dim>::value_list(
const std::vector<
Point<dim>> &points,
828 * std::vector<double> &values,
829 *
const unsigned int component)
const
833 *
for (
unsigned int i = 0; i < points.size(); ++i)
834 * values[i] = BoundaryValues<dim>::value(points[i], component);
842 * <a name=
"step_63-Streamlinediffusionimplementation"></a>
843 * <h3>Streamline diffusion implementation</h3>
847 * The streamline diffusion method has a stabilization
constant that
848 * we need to be able to compute. The choice of how
this parameter
849 * is computed is taken from <a
850 * href=
"https://link.springer.com/chapter/10.1007/978-3-540-34288-5_27">On
851 * Discontinuity-Capturing Methods
for Convection-Diffusion
852 * Equations by Volker John and Petr Knobloch</a>.
856 *
double compute_stabilization_delta(
const double hk,
861 *
const double Peclet = dir.norm() * hk / (2.0 *
eps * pk);
862 *
const double coth =
865 *
return hk / (2.0 * dir.norm() * pk) * (coth - 1.0 / Peclet);
872 * <a name=
"step_63-codeAdvectionProblemcodeclass"></a>
873 * <h3><code>AdvectionProblem</code>
class</h3>
877 * This is the main
class of the program, and should look very similar to
878 * @ref step_16
"step-16". The major difference is that, since we are defining our multigrid
879 * smoother at runtime, we choose to define a function `create_smoother()` and
880 * a
class object `mg_smoother` which is a `
std::unique_ptr` to a smoother
881 * that is derived from
MGSmoother. Note that for smoothers derived from
883 * This will contain information about the cell ordering and the method of
884 * inverting cell matrices.
891 * class AdvectionProblem
894 * AdvectionProblem(
const Settings &settings);
898 *
void setup_system();
900 *
template <
class IteratorType>
901 *
void assemble_cell(
const IteratorType &cell,
902 * ScratchData<dim> &scratch_data,
903 * CopyData ©_data);
904 *
void assemble_system_and_multigrid();
906 *
void setup_smoother();
909 *
void refine_grid();
910 *
void output_results(
const unsigned int cycle)
const;
937 * std::unique_ptr<MGSmoother<Vector<double>>> mg_smoother;
939 *
using SmootherType =
941 *
using SmootherAdditionalDataType = SmootherType::AdditionalData;
954 * AdvectionProblem<dim>::AdvectionProblem(
const Settings &settings)
957 * , fe(settings.fe_degree)
958 * , mapping(settings.fe_degree)
959 * , settings(settings)
972 * <a name=
"step_63-codeAdvectionProblemsetup_systemcode"></a>
973 * <h4><code>AdvectionProblem::setup_system()</code></h4>
982 * We could renumber the active DoFs with the
DoFRenumbering class,
983 * but the smoothers only act on multigrid levels and as such,
this
984 * would not matter
for the computations. Instead, we will renumber the
985 * DoFs on each multigrid
level below.
989 *
void AdvectionProblem<dim>::setup_system()
993 * dof_handler.distribute_dofs(fe);
995 * solution.reinit(dof_handler.n_dofs());
996 * system_rhs.reinit(dof_handler.n_dofs());
998 * constraints.clear();
1002 * mapping, dof_handler, 0, BoundaryValues<dim>(), constraints);
1004 * mapping, dof_handler, 1, BoundaryValues<dim>(), constraints);
1005 * constraints.close();
1013 * sparsity_pattern.copy_from(dsp);
1014 * system_matrix.reinit(sparsity_pattern);
1016 * dof_handler.distribute_mg_dofs();
1020 * Having enumerated the global degrees of freedom as well as (in
1021 * the last line above) the
level degrees of freedom, let us
1022 * renumber the
level degrees of freedom to get a better smoother
1023 * as explained in the introduction. The
first block below
1025 * direction
if needed. This is only necessary
for point smoothers
1026 * (SOR and Jacobi) as the block smoothers operate on cells (see
1027 * `create_smoother()`). The blocks below then also implement
1031 * if (settings.smoother_type ==
"SOR" || settings.smoother_type ==
"Jacobi")
1033 *
if (settings.dof_renumbering ==
1034 * Settings::DoFRenumberingStrategy::downstream ||
1035 * settings.dof_renumbering ==
1036 * Settings::DoFRenumberingStrategy::upstream)
1039 * (settings.dof_renumbering ==
1040 * Settings::DoFRenumberingStrategy::upstream ?
1043 * advection_direction;
1051 *
else if (settings.dof_renumbering ==
1052 * Settings::DoFRenumberingStrategy::random)
1063 * The rest of the function just sets up
data structures. The last
1064 * lines of the code below is unlike the other GMG tutorials, as
1065 * it sets up both the
interface in and out matrices. We need this
1069 * mg_constrained_dofs.clear();
1070 * mg_constrained_dofs.initialize(dof_handler);
1072 * mg_constrained_dofs.make_zero_boundary_constraints(dof_handler, {0, 1});
1074 * mg_matrices.resize(0, n_levels - 1);
1075 * mg_matrices.clear_elements();
1076 * mg_interface_in.resize(0, n_levels - 1);
1077 * mg_interface_in.clear_elements();
1078 * mg_interface_out.resize(0, n_levels - 1);
1079 * mg_interface_out.clear_elements();
1080 * mg_sparsity_patterns.resize(0, n_levels - 1);
1081 * mg_interface_sparsity_patterns.resize(0, n_levels - 1);
1087 * dof_handler.n_dofs(
level));
1089 * mg_sparsity_patterns[
level].copy_from(dsp);
1090 * mg_matrices[
level].reinit(mg_sparsity_patterns[
level]);
1094 * dof_handler.n_dofs(
level));
1096 * mg_constrained_dofs,
1099 * mg_interface_sparsity_patterns[
level].copy_from(dsp);
1101 * mg_interface_in[
level].reinit(mg_interface_sparsity_patterns[
level]);
1102 * mg_interface_out[
level].reinit(mg_interface_sparsity_patterns[
level]);
1111 * <a name=
"step_63-codeAdvectionProblemassemble_cellcode"></a>
1112 * <h4><code>AdvectionProblem::assemble_cell()</code></h4>
1116 * Here we define the assembly of the linear system on each cell to
1117 * be used by the
mesh_loop() function below. This one function
1118 * assembles the cell matrix for either an active or a
level cell
1119 * (whatever it is passed as its
first argument), and only assembles
1120 * a right-hand side if called with an active cell.
1126 * template <
int dim>
1127 * template <class IteratorType>
1128 *
void AdvectionProblem<dim>::assemble_cell(const IteratorType &cell,
1129 * ScratchData<dim> &scratch_data,
1130 * CopyData ©_data)
1132 * copy_data.level = cell->level();
1134 *
const unsigned int dofs_per_cell =
1135 * scratch_data.fe_values.get_fe().n_dofs_per_cell();
1136 * copy_data.dofs_per_cell = dofs_per_cell;
1137 * copy_data.cell_matrix.reinit(dofs_per_cell, dofs_per_cell);
1139 *
const unsigned int n_q_points =
1140 * scratch_data.fe_values.get_quadrature().size();
1142 *
if (cell->is_level_cell() ==
false)
1143 * copy_data.cell_rhs.reinit(dofs_per_cell);
1145 * copy_data.local_dof_indices.resize(dofs_per_cell);
1146 * cell->get_active_or_mg_dof_indices(copy_data.local_dof_indices);
1148 * scratch_data.fe_values.reinit(cell);
1150 * RightHandSide<dim> right_hand_side;
1151 * std::vector<double> rhs_values(n_q_points);
1153 * right_hand_side.value_list(scratch_data.fe_values.get_quadrature_points(),
1158 * If we are
using streamline diffusion we must add its contribution
1159 * to both the cell
matrix and the cell right-hand side. If we are not
1160 *
using streamline diffusion, setting @f$\delta=0@f$ negates
this contribution
1161 * below and we are left with the standard, Galerkin finite element
1165 *
const double delta = (settings.with_streamline_diffusion ?
1166 * compute_stabilization_delta(cell->diameter(),
1168 * advection_direction,
1169 * settings.fe_degree) :
1172 *
for (
unsigned int q_point = 0; q_point < n_q_points; ++q_point)
1173 *
for (
unsigned int i = 0; i < dofs_per_cell; ++i)
1175 *
for (
unsigned int j = 0; j < dofs_per_cell; ++j)
1179 * The assembly of the local
matrix has two parts. First
1180 * the Galerkin contribution:
1183 * copy_data.cell_matrix(i, j) +=
1184 * (settings.epsilon *
1185 * scratch_data.fe_values.shape_grad(i, q_point) *
1186 * scratch_data.fe_values.shape_grad(j, q_point) *
1187 * scratch_data.fe_values.JxW(q_point)) +
1188 * (scratch_data.fe_values.shape_value(i, q_point) *
1189 * (advection_direction *
1190 * scratch_data.fe_values.shape_grad(j, q_point)) *
1191 * scratch_data.fe_values.JxW(q_point))
1194 * and then the streamline diffusion contribution:
1198 * (advection_direction *
1199 * scratch_data.fe_values.shape_grad(j, q_point)) *
1200 * (advection_direction *
1201 * scratch_data.fe_values.shape_grad(i, q_point)) *
1202 * scratch_data.fe_values.JxW(q_point) -
1203 * delta * settings.epsilon *
1204 *
trace(scratch_data.fe_values.shape_hessian(j, q_point)) *
1205 * (advection_direction *
1206 * scratch_data.fe_values.shape_grad(i, q_point)) *
1207 * scratch_data.fe_values.JxW(q_point);
1209 *
if (cell->is_level_cell() ==
false)
1213 * The same applies to the right hand side. First the
1214 * Galerkin contribution:
1217 * copy_data.cell_rhs(i) +=
1218 * scratch_data.fe_values.shape_value(i, q_point) *
1219 * rhs_values[q_point] * scratch_data.fe_values.JxW(q_point)
1222 * and then the streamline diffusion contribution:
1225 * + delta * rhs_values[q_point] * advection_direction *
1226 * scratch_data.fe_values.shape_grad(i, q_point) *
1227 * scratch_data.fe_values.JxW(q_point);
1236 * <a name=
"step_63-codeAdvectionProblemassemble_system_and_multigridcode"></a>
1237 * <h4><code>AdvectionProblem::assemble_system_and_multigrid()</code></h4>
1242 * system_matrix, system_rhs, and all mg_matrices for us.
1248 * template <
int dim>
1249 *
void AdvectionProblem<dim>::assemble_system_and_multigrid()
1251 *
const auto cell_worker_active =
1252 * [&](
const decltype(dof_handler.begin_active()) &cell,
1253 * ScratchData<dim> &scratch_data,
1254 * CopyData ©_data) {
1255 * this->assemble_cell(cell, scratch_data, copy_data);
1258 *
const auto copier_active = [&](
const CopyData ©_data) {
1259 * constraints.distribute_local_to_global(copy_data.cell_matrix,
1260 * copy_data.cell_rhs,
1261 * copy_data.local_dof_indices,
1268 * dof_handler.end(),
1269 * cell_worker_active,
1271 * ScratchData<dim>(fe, fe.degree + 1),
1277 * Unlike the constraints
for the active
level, we choose to create
1278 * constraint objects
for each multigrid
level local to
this function
1279 * since they are never needed elsewhere in the program.
1282 * std::vector<AffineConstraints<double>> boundary_constraints(
1287 * boundary_constraints[
level].reinit(
1288 * dof_handler.locally_owned_mg_dofs(
level),
1292 * mg_constrained_dofs.get_refinement_edge_indices(
level))
1293 * boundary_constraints[
level].constrain_dof_to_zero(dof_index);
1295 * mg_constrained_dofs.get_boundary_indices(
level))
1296 * boundary_constraints[
level].constrain_dof_to_zero(dof_index);
1297 * boundary_constraints[
level].close();
1300 *
const auto cell_worker_mg =
1301 * [&](
const decltype(dof_handler.begin_mg()) &cell,
1302 * ScratchData<dim> &scratch_data,
1303 * CopyData ©_data) {
1304 * this->assemble_cell(cell, scratch_data, copy_data);
1307 *
const auto copier_mg = [&](
const CopyData ©_data) {
1308 * boundary_constraints[copy_data.level].distribute_local_to_global(
1309 * copy_data.cell_matrix,
1310 * copy_data.local_dof_indices,
1311 * mg_matrices[copy_data.level]);
1315 * If @f$(i,j)@f$ is an `interface_out` dof pair, then @f$(j,i)@f$ is an
1316 * `interface_in` dof pair. Note: For `interface_in`, we load
1317 * the
transpose of the
interface entries, i.
e., the entry for
1318 * dof pair @f$(j,i)@f$ is stored in `interface_in(i,j)`. This is an
1319 * optimization
for the
symmetric case which allows only one
1320 *
matrix to be used when setting the edge_matrices in
1321 * solve(). Here, however, since our problem is non-
symmetric,
1322 * we must store both `interface_in` and `interface_out`
1326 *
for (
unsigned int i = 0; i < copy_data.dofs_per_cell; ++i)
1327 *
for (
unsigned int j = 0; j < copy_data.dofs_per_cell; ++j)
1328 *
if (mg_constrained_dofs.is_interface_matrix_entry(
1330 * copy_data.local_dof_indices[i],
1331 * copy_data.local_dof_indices[j]))
1333 * mg_interface_out[copy_data.level].add(
1334 * copy_data.local_dof_indices[i],
1335 * copy_data.local_dof_indices[j],
1336 * copy_data.cell_matrix(i, j));
1337 * mg_interface_in[copy_data.level].add(
1338 * copy_data.local_dof_indices[i],
1339 * copy_data.local_dof_indices[j],
1340 * copy_data.cell_matrix(j, i));
1345 * dof_handler.end_mg(),
1348 * ScratchData<dim>(fe, fe.degree + 1),
1357 * <a name=
"step_63-codeAdvectionProblemsetup_smoothercode"></a>
1358 * <h4><code>AdvectionProblem::setup_smoother()</code></h4>
1362 * Next, we set up the smoother based on the settings in the `.prm` file. The
1363 * two options that are of significance is the number of pre- and
1364 * post-smoothing steps on each
level of the multigrid v-cycle and the
1365 * relaxation parameter.
1369 * Since multiplicative methods tend to be more powerful than additive method,
1370 * fewer smoothing steps are required to see convergence
independent of mesh
1371 *
size. The same holds
for block smoothers over
point smoothers. This is
1372 * reflected in the choice
for the number of smoothing steps
for each type of
1377 * The relaxation parameter
for point smoothers is chosen based on trial and
1378 * error, and reflects
values necessary to keep the iteration counts in
1379 * the GMRES solve
constant (or as close as possible) as we
refine the mesh.
1380 * The two
values given
for both
"Jacobi" and
"SOR" in the `.prm` files are
1381 *
for degree 1 and degree 3 finite elements. If the user wants to change to
1382 * another degree, they may need to adjust these
numbers. For block smoothers,
1383 *
this parameter has a more straightforward interpretation, namely that
for
1384 * additive methods in 2
d, a DoF can have a repeated contribution from up to 4
1385 * cells, therefore we must relax these methods by 0.25 to compensate. This is
1386 * not an issue
for multiplicative methods as each cell
's inverse application
1387 * carries new information to all its DoFs.
1391 * Finally, as mentioned above, the point smoothers only operate on DoFs, and
1392 * the block smoothers on cells, so only the block smoothers need to be given
1393 * information regarding cell orderings. DoF ordering for point smoothers has
1394 * already been taken care of in `setup_system()`.
1400 * template <int dim>
1401 * void AdvectionProblem<dim>::setup_smoother()
1403 * if (settings.smoother_type == "SOR")
1405 * using Smoother = PreconditionSOR<SparseMatrix<double>>;
1408 * std::make_unique<MGSmootherPrecondition<SparseMatrix<double>,
1410 * Vector<double>>>();
1411 * smoother->initialize(mg_matrices,
1412 * Smoother::AdditionalData(fe.degree == 1 ? 1.0 :
1414 * smoother->set_steps(settings.smoothing_steps);
1415 * mg_smoother = std::move(smoother);
1417 * else if (settings.smoother_type == "Jacobi")
1419 * using Smoother = PreconditionJacobi<SparseMatrix<double>>;
1421 * std::make_unique<MGSmootherPrecondition<SparseMatrix<double>,
1423 * Vector<double>>>();
1424 * smoother->initialize(mg_matrices,
1425 * Smoother::AdditionalData(fe.degree == 1 ? 0.6667 :
1427 * smoother->set_steps(settings.smoothing_steps);
1428 * mg_smoother = std::move(smoother);
1430 * else if (settings.smoother_type == "block SOR" ||
1431 * settings.smoother_type == "block Jacobi")
1433 * smoother_data.resize(0, triangulation.n_levels() - 1);
1435 * for (unsigned int level = 0; level < triangulation.n_levels(); ++level)
1437 * DoFTools::make_cell_patches(smoother_data[level].block_list,
1441 * smoother_data[level].relaxation =
1442 * (settings.smoother_type == "block SOR" ? 1.0 : 0.25);
1443 * smoother_data[level].inversion = PreconditionBlockBase<double>::svd;
1445 * std::vector<unsigned int> ordered_indices;
1446 * switch (settings.dof_renumbering)
1448 * case Settings::DoFRenumberingStrategy::downstream:
1450 * create_downstream_cell_ordering(dof_handler,
1451 * advection_direction,
1455 * case Settings::DoFRenumberingStrategy::upstream:
1457 * create_downstream_cell_ordering(dof_handler,
1458 * -1.0 * advection_direction,
1462 * case Settings::DoFRenumberingStrategy::random:
1464 * create_random_cell_ordering(dof_handler, level);
1467 * case Settings::DoFRenumberingStrategy::none:
1471 * AssertThrow(false, ExcNotImplemented());
1475 * smoother_data[level].order =
1476 * std::vector<std::vector<unsigned int>>(1, ordered_indices);
1479 * if (settings.smoother_type == "block SOR")
1481 * auto smoother = std::make_unique<MGSmootherPrecondition<
1482 * SparseMatrix<double>,
1483 * RelaxationBlockSOR<SparseMatrix<double>, double, Vector<double>>,
1484 * Vector<double>>>();
1485 * smoother->initialize(mg_matrices, smoother_data);
1486 * smoother->set_steps(settings.smoothing_steps);
1487 * mg_smoother = std::move(smoother);
1489 * else if (settings.smoother_type == "block Jacobi")
1491 * auto smoother = std::make_unique<
1492 * MGSmootherPrecondition<SparseMatrix<double>,
1493 * RelaxationBlockJacobi<SparseMatrix<double>,
1496 * Vector<double>>>();
1497 * smoother->initialize(mg_matrices, smoother_data);
1498 * smoother->set_steps(settings.smoothing_steps);
1499 * mg_smoother = std::move(smoother);
1503 * AssertThrow(false, ExcNotImplemented());
1510 * <a name="step_63-codeAdvectionProblemsolvecode"></a>
1511 * <h4><code>AdvectionProblem::solve()</code></h4>
1515 * Before we can solve the system, we must first set up the multigrid
1516 * preconditioner. This requires the setup of the transfer between levels,
1517 * the coarse matrix solver, and the smoother. This setup follows almost
1518 * identically to @ref step_16 "step-16", the main difference being the various smoothers
1519 * defined above and the fact that we need different interface edge matrices
1520 * for in and out since our problem is non-symmetric. (In reality, for this
1521 * tutorial these interface matrices are empty since we are only using global
1522 * refinement, and thus have no refinement edges. However, we have still
1523 * included both here since if one made the simple switch to an adaptively
1524 * refined method, the program would still run correctly.)
1528 * The last thing to note is that since our problem is non-symmetric, we must
1529 * use an appropriate Krylov subspace method. We choose here to
1530 * use GMRES since it offers the guarantee of residual reduction in each
1531 * iteration. The major disadvantage of GMRES is that, for each iteration,
1532 * the number of stored temporary vectors increases by one, and one also needs
1533 * to compute a scalar product with all previously stored vectors. This is
1534 * rather expensive. This requirement is relaxed by using the restarted GMRES
1535 * method which puts a cap on the number of vectors we are required to store
1536 * at any one time (here we restart after 50 temporary vectors, or 48
1537 * iterations). This then has the disadvantage that we lose information we
1538 * have gathered throughout the iteration and therefore we could see slower
1539 * convergence. As a consequence, where to restart is a question of balancing
1540 * memory consumption, CPU effort, and convergence speed.
1541 * However, the goal of this tutorial is to have very low
1542 * iteration counts by using a powerful GMG preconditioner, so we have picked
1543 * the restart length such that all of the results shown below converge prior
1544 * to restart happening, and thus we have a standard GMRES method. If the user
1545 * is interested, another suitable method offered in deal.II would be
1552 * template <int dim>
1553 * void AdvectionProblem<dim>::solve()
1555 * const unsigned int max_iters = 200;
1556 * const double solve_tolerance = 1e-8 * system_rhs.l2_norm();
1557 * SolverControl solver_control(max_iters, solve_tolerance, true, true);
1558 * solver_control.enable_history_data();
1560 * using Transfer = MGTransferPrebuilt<Vector<double>>;
1561 * Transfer mg_transfer(mg_constrained_dofs);
1562 * mg_transfer.build(dof_handler);
1564 * FullMatrix<double> coarse_matrix;
1565 * coarse_matrix.copy_from(mg_matrices[0]);
1566 * MGCoarseGridHouseholder<double, Vector<double>> coarse_grid_solver;
1567 * coarse_grid_solver.initialize(coarse_matrix);
1571 * mg_matrix.initialize(mg_matrices);
1572 * mg_interface_matrix_in.initialize(mg_interface_in);
1573 * mg_interface_matrix_out.initialize(mg_interface_out);
1575 * Multigrid<Vector<double>> mg(
1576 * mg_matrix, coarse_grid_solver, mg_transfer, *mg_smoother, *mg_smoother);
1577 * mg.set_edge_matrices(mg_interface_matrix_out, mg_interface_matrix_in);
1579 * PreconditionMG<dim, Vector<double>, Transfer> preconditioner(dof_handler,
1583 * std::cout << " Solving with GMRES to tol " << solve_tolerance << "..."
1585 * SolverGMRES<Vector<double>> solver(
1586 * solver_control, SolverGMRES<Vector<double>>::AdditionalData(50, true));
1590 * solver.solve(system_matrix, solution, system_rhs, preconditioner);
1593 * std::cout << " converged in " << solver_control.last_step()
1595 * << " in " << time.last_wall_time() << " seconds " << std::endl;
1597 * constraints.distribute(solution);
1599 * mg_smoother.release();
1606 * <a name="step_63-codeAdvectionProblemoutput_resultscode"></a>
1607 * <h4><code>AdvectionProblem::output_results()</code></h4>
1611 * The final function of interest generates graphical output.
1612 * Here we output the solution and cell ordering in a .vtu format.
1616 * At the top of the function, we generate an index for each cell to
1617 * visualize the ordering used by the smoothers. Note that we do
1618 * this only for the active cells instead of the levels, where the
1619 * smoothers are actually used. For the point smoothers we renumber
1620 * DoFs instead of cells, so this is only an approximation of what
1621 * happens in reality. Finally, the random ordering is not the
1622 * random ordering we actually use (see `create_smoother()` for that).
1626 * The (integer) ordering of cells is then copied into a (floating
1627 * point) vector for graphical output.
1630 * template <int dim>
1631 * void AdvectionProblem<dim>::output_results(const unsigned int cycle) const
1633 * const unsigned int n_active_cells = triangulation.n_active_cells();
1634 * Vector<double> cell_indices(n_active_cells);
1636 * std::vector<unsigned int> ordered_indices;
1637 * switch (settings.dof_renumbering)
1639 * case Settings::DoFRenumberingStrategy::downstream:
1641 * create_downstream_cell_ordering(dof_handler, advection_direction);
1644 * case Settings::DoFRenumberingStrategy::upstream:
1646 * create_downstream_cell_ordering(dof_handler,
1647 * -1.0 * advection_direction);
1650 * case Settings::DoFRenumberingStrategy::random:
1651 * ordered_indices = create_random_cell_ordering(dof_handler);
1654 * case Settings::DoFRenumberingStrategy::none:
1655 * ordered_indices.resize(n_active_cells);
1656 * for (unsigned int i = 0; i < n_active_cells; ++i)
1657 * ordered_indices[i] = i;
1661 * AssertThrow(false, ExcNotImplemented());
1665 * for (unsigned int i = 0; i < n_active_cells; ++i)
1666 * cell_indices(ordered_indices[i]) = static_cast<double>(i);
1671 * The remainder of the function is then straightforward, given
1672 * previous tutorial programs:
1675 * DataOut<dim> data_out;
1676 * data_out.attach_dof_handler(dof_handler);
1677 * data_out.add_data_vector(solution, "solution");
1678 * data_out.add_data_vector(cell_indices, "cell_index");
1679 * data_out.build_patches();
1681 * const std::string filename =
1682 * "solution-" + Utilities::int_to_string(cycle) + ".vtu";
1683 * std::ofstream output(filename);
1684 * data_out.write_vtu(output);
1691 * <a name="step_63-codeAdvectionProblemruncode"></a>
1692 * <h4><code>AdvectionProblem::run()</code></h4>
1696 * As in most tutorials, this function creates/refines the mesh and calls
1697 * the various functions defined above to set up, assemble, solve, and output
1702 * In cycle zero, we generate the mesh for the on the square
1703 * <code>[-1,1]^dim</code> with a hole of radius 3/10 units centered
1704 * at the origin. For objects with `manifold_id` equal to one
1705 * (namely, the faces adjacent to the hole), we assign a spherical
1712 * template <int dim>
1713 * void AdvectionProblem<dim>::run()
1715 * for (unsigned int cycle = 0; cycle < (settings.fe_degree == 1 ? 7u : 5u);
1718 * std::cout << " Cycle " << cycle << ':
' << std::endl;
1722 * GridGenerator::hyper_cube_with_cylindrical_hole(triangulation,
1726 * const SphericalManifold<dim> manifold_description(Point<dim>(0, 0));
1727 * triangulation.set_manifold(1, manifold_description);
1730 * triangulation.refine_global();
1734 * std::cout << " Number of active cells: "
1735 * << triangulation.n_active_cells() << " ("
1736 * << triangulation.n_levels() << " levels)" << std::endl;
1737 * std::cout << " Number of degrees of freedom: "
1738 * << dof_handler.n_dofs() << std::endl;
1740 * assemble_system_and_multigrid();
1744 * if (settings.output)
1745 * output_results(cycle);
1747 * std::cout << std::endl;
1750 * } // namespace Step63
1756 * <a name="step_63-Thecodemaincodefunction"></a>
1757 * <h3>The <code>main</code> function</h3>
1761 * Finally, the main function is like most tutorials. The only
1762 * interesting bit is that we require the user to pass a `.prm` file
1763 * as a sole command line argument. If no parameter file is given, the
1764 * program will output the contents of a sample parameter file with
1765 * all default values to the screen that the user can then copy and
1766 * paste into their own `.prm` file.
1772 * int main(int argc, char *argv[])
1776 * Step63::Settings settings;
1777 * settings.get_parameters((argc > 1) ? (argv[1]) : "");
1779 * Step63::AdvectionProblem<2> advection_problem_2d(settings);
1780 * advection_problem_2d.run();
1782 * catch (std::exception &exc)
1784 * std::cerr << std::endl
1786 * << "----------------------------------------------------"
1788 * std::cerr << "Exception on processing: " << std::endl
1789 * << exc.what() << std::endl
1790 * << "Aborting!" << std::endl
1791 * << "----------------------------------------------------"
1797 * std::cerr << std::endl
1799 * << "----------------------------------------------------"
1801 * std::cerr << "Unknown exception!" << std::endl
1802 * << "Aborting!" << std::endl
1803 * << "----------------------------------------------------"
1811<a name="step_63-Results"></a><h1>Results</h1>
1814<a name="step_63-GMRESIterationNumbers"></a><h3> GMRES Iteration Numbers </h3>
1817The major advantage for GMG is that it is an @f$\mathcal{O}(n)@f$ method,
1818that is, the complexity of the problem increases linearly with the
1819problem size. To show then that the linear solver presented in this
1820tutorial is in fact @f$\mathcal{O}(n)@f$, all one needs to do is show that
1821the iteration counts for the GMRES solve stay roughly constant as we
1824Each of the following tables gives the GMRES iteration counts to reduce the
1825initial residual by a factor of @f$10^8@f$. We selected a sufficient number of smoothing steps
1826(based on the method) to get iteration numbers independent of mesh size. As
1827can be seen from the tables below, the method is indeed @f$\mathcal{O}(n)@f$.
1829<a name="step_63-DoFCellRenumbering"></a><h4> DoF/Cell Renumbering </h4>
1832The point-wise smoothers ("Jacobi" and "SOR") get applied in the order the
1833DoFs are numbered on each level. We can influence this using the
1834DoFRenumbering namespace. The block smoothers are applied based on the
1835ordering we set in `setup_smoother()`. We can visualize this numbering. The
1836following pictures show the cell numbering of the active cells in downstream,
1837random, and upstream numbering (left to right):
1839<img src="https://www.dealii.org/images/steps/developer/step-63-cell-order.png" alt="">
1841Let us start with the additive smoothers. The following table shows
1842the number of iterations necessary to obtain convergence from GMRES:
1844<table align="center" class="doxtable">
1848 <th colspan="1">@f$Q_1@f$</th>
1849 <th colspan="7">Smoother (smoothing steps)</th>
1855 <th colspan="3">Jacobi (6)</th>
1857 <th colspan="3">Block Jacobi (3)</th>
1863 <th colspan="3">Renumbering Strategy</th>
1865 <th colspan="3">Renumbering Strategy</th>
1965We see that renumbering the
1966DoFs/cells has no effect on convergence speed. This is because these
1967smoothers compute operations on each DoF (point-smoother) or cell
1968(block-smoother) independently and add up the results. Since we can
1969define these smoothers as an application of a sum of matrices, and
1970matrix addition is commutative, the order at which we sum the
1971different components will not affect the end result.
1973On the other hand, the situation is different for multiplicative smoothers:
1975<table align="center" class="doxtable">
1979 <th colspan="1">@f$Q_1@f$</th>
1980 <th colspan="7">Smoother (smoothing steps)</th>
1986 <th colspan="3">SOR (3)</th>
1988 <th colspan="3">Block SOR (1)</th>
1994 <th colspan="3">Renumbering Strategy</th>
1996 <th colspan="3">Renumbering Strategy</th>
2096Here, we can speed up
2097convergence by renumbering the DoFs/cells in the advection direction,
2098and similarly, we can slow down convergence if we do the renumbering
2099in the opposite direction. This is because advection-dominated
2100problems have a directional flow of information (in the advection
2101direction) which, given the right renumbering of DoFs/cells,
2102multiplicative methods are able to capture.
2104This feature of multiplicative methods is, however, dependent on the
2105value of @f$\varepsilon@f$. As we increase @f$\varepsilon@f$ and the problem
2106becomes more diffusion-dominated, we have a more uniform propagation
2107of information over the mesh and there is a diminished advantage for
2108renumbering in the advection direction. On the opposite end, in the
2109extreme case of @f$\varepsilon=0@f$ (advection-only), we have a 1st-order
2110PDE and multiplicative methods with the right renumbering become
2111effective solvers: A correct downstream numbering may lead to methods
2112that require only a single iteration because information can be
2113propagated from the inflow boundary downstream, with no information
2114transport in the opposite direction. (Note, however, that in the case
2115of @f$\varepsilon=0@f$, special care must be taken for the boundary
2116conditions in this case).
2119<a name="step_63-Pointvsblocksmoothers"></a><h4> %Point vs. block smoothers </h4>
2122We will limit the results to runs using the downstream
2123renumbering. Here is a cross comparison of all four smoothers for both
2124@f$Q_1@f$ and @f$Q_3@f$ elements:
2126<table align="center" class="doxtable">
2130 <th colspan="1">@f$Q_1@f$</th>
2131 <th colspan="4">Smoother (smoothing steps)</th>
2133 <th colspan="1">@f$Q_3@f$</th>
2134 <th colspan="4">Smoother (smoothing steps)</th>
2137 <th colspan="1">Cells</th>
2139 <th colspan="1">DoFs</th>
2140 <th colspan="1">Jacobi (6)</th>
2141 <th colspan="1">Block Jacobi (3)</th>
2142 <th colspan="1">SOR (3)</th>
2143 <th colspan="1">Block SOR (1)</th>
2145 <th colspan="1">DoFs</th>
2146 <th colspan="1">Jacobi (6)</th>
2147 <th colspan="1">Block Jacobi (3)</th>
2148 <th colspan="1">SOR (3)</th>
2149 <th colspan="1">Block SOR (1)</th>
2248We see that for @f$Q_1@f$, both multiplicative smoothers require a smaller
2249combination of smoothing steps and iteration counts than either
2250additive smoother. However, when we increase the degree to a @f$Q_3@f$
2251element, there is a clear advantage for the block smoothers in terms
2252of the number of smoothing steps and iterations required to
2253solve. Specifically, the block SOR smoother gives constant iteration
2254counts over the degree, and the block Jacobi smoother only sees about
2255a 38% increase in iterations compared to 75% and 183% for Jacobi and
2258<a name="step_63-Cost"></a><h3> Cost </h3>
2261Iteration counts do not tell the full story in the optimality of a one
2262smoother over another. Obviously we must examine the cost of an
2263iteration. Block smoothers here are at a disadvantage as they are
2264having to construct and invert a cell matrix for each cell. Here is a
2265comparison of solve times for a @f$Q_3@f$ element with 74,496 DoFs:
2267<table align="center" class="doxtable">
2269 <th colspan="1">@f$Q_3@f$</th>
2270 <th colspan="4">Smoother (smoothing steps)</th>
2273 <th colspan="1">DoFs</th>
2274 <th colspan="1">Jacobi (6)</th>
2275 <th colspan="1">Block Jacobi (3)</th>
2276 <th colspan="1">SOR (3)</th>
2277 <th colspan="1">Block SOR (1)</th>
2288The smoother that requires the most iterations (Jacobi) actually takes
2289the shortest time (roughly 2/3 the time of the next fastest
2290method). This is because all that is required to apply a Jacobi
2291smoothing step is multiplication by a diagonal matrix which is very
2292cheap. On the other hand, while SOR requires over 3x more iterations
2293(each with 3x more smoothing steps) than block SOR, the times are
2294roughly equivalent, implying that a smoothing step of block SOR is
2295roughly 9x slower than a smoothing step of SOR. Lastly, block Jacobi
2296is almost 6x more expensive than block SOR, which intuitively makes
2297sense from the fact that 1 step of each method has the same cost
2298(inverting the cell matrices and either adding or multiply them
2299together), and block Jacobi has 3 times the number of smoothing steps per
2300iteration with 2 times the iterations.
2303<a name="step_63-Additionalpoints"></a><h3> Additional points </h3>
2306There are a few more important points to mention:
2309<li> For a mesh distributed in parallel, multiplicative methods cannot
2310be executed over the entire domain. This is because they operate one
2311cell at a time, and downstream cells can only be handled once upstream
2312cells have already been done. This is fine on a single processor: The
2313processor just goes through the list of cells one after the
2314other. However, in parallel, it would imply that some processors are
2315idle because upstream processors have not finished doing the work on
2316cells upstream from the ones owned by the current processor. Once the
2317upstream processors are done, the downstream ones can start, but by
2318that time the upstream processors have no work left. In other words,
2319most of the time during these smoother steps, most processors are in
2320fact idle. This is not how one obtains good parallel scalability!
2322One can use a hybrid method where
2323a multiplicative smoother is applied on each subdomain, but as you
2324increase the number of subdomains, the method approaches the behavior
2325of an additive method. This is a major disadvantage to these methods.
2328<li> Current research into block smoothers suggest that soon we will be
2329able to compute the inverse of the cell matrices much cheaper than
2330what is currently being done inside deal.II. This research is based on
2331the fast diagonalization method (dating back to the 1960s) and has
2332been used in the spectral community for around 20 years (see, e.g., <a
2333href="https://doi.org/10.1007/s10915-004-4787-3"> Hybrid
2334Multigrid/Schwarz Algorithms for the Spectral Element Method by Lottes
2335and Fischer</a>). There are currently efforts to generalize these
2336methods to DG and make them more robust. Also, it seems that one
2337should be able to take advantage of matrix-free implementations and
2338the fact that, in the interior of the domain, cell matrices tend to
2339look very similar, allowing fewer matrix inverse computations.
2343Combining 1. and 2. gives a good reason for expecting that a method
2344like block Jacobi could become very powerful in the future, even
2345though currently for these examples it is quite slow.
2348<a name="step_63-Possibilitiesforextensions"></a><h3> Possibilities for extensions </h3>
2351<a name="step_63-ConstantiterationsforQsub5sub"></a><h4> Constant iterations for Q<sub>5</sub> </h4>
2354Change the number of smoothing steps and the smoother relaxation
2355parameter (set in <code>Smoother::AdditionalData()</code> inside
2356<code>create_smoother()</code>, only necessary for point smoothers) so
2357that we maintain a constant number of iterations for a @f$Q_5@f$ element.
2359<a name="step_63-Effectivenessofrenumberingforchangingepsilon"></a><h4> Effectiveness of renumbering for changing epsilon </h4>
2362Increase/decrease the parameter "Epsilon" in the `.prm` files of the
2363multiplicative methods and observe for which values renumbering no
2364longer influences convergence speed.
2366<a name="step_63-Meshadaptivity"></a><h4> Mesh adaptivity </h4>
2369The code is set up to work correctly with an adaptively refined mesh (the
2370interface matrices are created and set). Devise a suitable refinement
2371criterium or try the KellyErrorEstimator class.
2374<a name="step_63-PlainProg"></a>
2375<h1> The plain program</h1>
2376@include "step-63.cc"
virtual void value_list(const std::vector< Point< dim > > &points, std::vector< RangeNumberType > &values, const unsigned int component=0) const
virtual RangeNumberType value(const Point< dim > &p, const unsigned int component=0) const
void declare_entry(const std::string &entry, const std::string &default_value, const Patterns::PatternBase &pattern=Patterns::Anything(), const std::string &documentation="", const bool has_to_be_set=false)
#define Assert(cond, exc)
#define AssertDimension(dim1, dim2)
#define AssertThrow(cond, exc)
void mesh_loop(const CellIteratorType &begin, const CellIteratorType &end, const CellWorkerFunctionType &cell_worker, const CopierType &copier, const ScratchData &sample_scratch_data, const CopyData &sample_copy_data, const AssembleFlags flags=assemble_own_cells, const BoundaryWorkerFunctionType &boundary_worker=BoundaryWorkerFunctionType(), const FaceWorkerFunctionType &face_worker=FaceWorkerFunctionType(), const unsigned int queue_length=2 *MultithreadInfo::n_threads(), const unsigned int chunk_size=8)
void make_hanging_node_constraints(const DoFHandler< dim, spacedim > &dof_handler, AffineConstraints< number > &constraints)
void make_sparsity_pattern(const DoFHandler< dim, spacedim > &dof_handler, SparsityPatternBase &sparsity_pattern, const AffineConstraints< number > &constraints={}, const bool keep_constrained_dofs=true, const types::subdomain_id subdomain_id=numbers::invalid_subdomain_id)
#define DEAL_II_NOT_IMPLEMENTED()
std::vector< index_type > data
Expression coth(const Expression &x)
void downstream(DoFHandler< dim, spacedim > &dof_handler, const Tensor< 1, spacedim > &direction, const bool dof_wise_renumbering=false)
void random(DoFHandler< dim, spacedim > &dof_handler)
void refine(Triangulation< dim, spacedim > &tria, const Vector< Number > &criteria, const double threshold, const unsigned int max_to_mark=numbers::invalid_unsigned_int)
@ matrix
Contents is actually a matrix.
@ symmetric
Matrix is symmetric.
Point< spacedim > point(const gp_Pnt &p, const double tolerance=1e-10)
SymmetricTensor< 2, dim, Number > C(const Tensor< 2, dim, Number > &F)
SymmetricTensor< 2, dim, Number > e(const Tensor< 2, dim, Number > &F)
SymmetricTensor< 2, dim, Number > d(const Tensor< 2, dim, Number > &F, const Tensor< 2, dim, Number > &dF_dt)
SymmetricTensor< 2, dim, Number > epsilon(const Tensor< 2, dim, Number > &Grad_u)
void run(const Iterator &begin, const std_cxx20::type_identity_t< Iterator > &end, Worker worker, Copier copier, const ScratchData &sample_scratch_data, const CopyData &sample_copy_data, const unsigned int queue_length, const unsigned int chunk_size)
int(&) functions(const void *v1, const void *v2)
static constexpr double PI
::VectorizedArray< Number, width > exp(const ::VectorizedArray< Number, width > &)
::VectorizedArray< Number, width > cos(const ::VectorizedArray< Number, width > &)
::VectorizedArray< Number, width > sin(const ::VectorizedArray< Number, width > &)
const ::parallel::distributed::Triangulation< dim, spacedim > * triangulation
DEAL_II_HOST constexpr Number trace(const SymmetricTensor< 2, dim2, Number > &)