Reference documentation for deal.II version GIT relicensing-489-g2d48aca8cc 2024-04-28 17:30:02+00:00
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
The step-87 tutorial program

This tutorial depends on step-40.

Table of contents
  1. Introduction
  2. The commented program
  1. Results
  2. The plain program

This program was contributed by Magdalena Schreter-Fleischhacker and Peter Munch. Many ideas presented here are the result of common code development with Maximilian Bergbauer, Marco Feder, Niklas Fehn, Johannes Heinz, Luca Heltai, Martin Kronbichler, Nils Much, and Judith Pauen.

This tutorial is loosely based on chapter 3.4 of the submitted PhD thesis "Matrix-free finite element computations at extreme scale and for challenging applications" by Peter Munch. Magdalena Schreter-Fleischhacker is funded by the Austrian Science Fund (FWF) Schrödinger Fellowship (J4577).

Note
If you use this program as a basis for your own work, please consider citing it in your list of references. The initial version of this work was contributed to the deal.II project by the authors listed in the following citation: 10.5281/zenodo.8411345

Introduction

This tutorial presents the advanced point-evaluation functionalities of deal.II, specifically useful for evaluating finite element solutions at arbitrary points. The underlying finite element mesh can be distributed among processes, which makes the operations more involved due to communication. In the examples discussed in this tutorial, we focus on point evaluation for MPI-parallel computations, like parallel::distributed::Triangulation. Nevertheless, the application to non-distributed meshes is also possible.

Point evaluation

In the context of the finite element method (FEM), it is a common task to query the solution \(u\) at an arbitrary point \(\boldsymbol{x}_q\) in the domain of interest \(\Omega\)

\[ u(\boldsymbol{x}_q) = \sum_{i} N_i(\boldsymbol{x}_q) u_i \quad\text{with}\quad i\in[0,n_{\text{dofs}}), \]

by evaluating the shape functions \(N_i\) at this point together with the corresponding solution coefficients \(u_i\). After identifying the cell \(K\) where the point \(\boldsymbol{x}_q\) resides, the transformation between \(\boldsymbol{x}_q\) and the corresponding coordinates in the reference cell \(\hat{\boldsymbol{x}}_q\) is obtained by the mapping \(\boldsymbol{x}_q=\boldsymbol{F}_K(\hat{\boldsymbol{x}}_q)\). In this setting, the evaluation of the solution at an arbitrary point boils down to a cell-local evaluation

\[ u(\boldsymbol{x}_q) = \sum_{i} \hat{N}^K_i(\hat{\boldsymbol{x}}_q) u_i^K \quad\text{with}\quad i\in[0,n_{\text{dofs_per_cell}}), \]

with \(\hat{N}^K_i\) being the shape functions defined on the reference cell and \(u_i^{K}\) the solution coefficients restricted to the cell \(K\).

Alternatively to point evaluation, evaluating weak-form (integration) operations of the type

\[ u_i = \left(N_i(\boldsymbol{x}), u(\boldsymbol{x})\right)_\Omega = \int_{\Omega} N_i(\boldsymbol{x}) u(\boldsymbol{x}) dx = \sum_q N_i\left(\boldsymbol{x}_q\right) u\left(\boldsymbol{x}_q\right) |J\left( \boldsymbol{x}_q\right)| w\left(\boldsymbol{x}_q\right) \quad\text{with}\quad i\in[0,n_{\text{dofs}}) \]

is possible, with \(\boldsymbol{x}_q\) being quadrature points at arbitrary positions. After the values at the quadrature points have been multiplied by the integration weights, this operation can be interpreted as the transpose of the evaluation. Not surprisingly, such an operation can be also implemented as a cell loop.

Setup and communication

To determine the cell \(K\) and the reference position \(\hat{\boldsymbol x}_q\) within the cell for a given point \(\boldsymbol{x}_q\) on distributed meshes, deal.II performs a two-level-search approach. First, all processes whose portion of the global mesh might contain the point are determined ("coarse search"). For this purpose, e.g., a distributed tree based on bounding boxes around locally owned domains using "ArborX" [134] is applied. After the potentially owning processes have been determined and the points have been sent to them as a request, one can start to find the cells that surround the points among locally owned cells ("fine search"). In order to accelerate this search, an R-tree from "boost::geometry" built around the vertices of the mesh is used.

Once the cell \(K\) that surrounds point \(\boldsymbol{x}_q\) has been found, the reference position \(\hat{\boldsymbol{x}}_q\) is obtained by performing the minimization:

\[ \min_{\hat{\boldsymbol{x}}_q}(| \boldsymbol{F}_K(\hat{\boldsymbol{x}}_q) - {\boldsymbol{x}_q}|) \quad \text{with} \quad \hat{\boldsymbol{x}}_q\in[0,1]^{dim}. \]

With the determined pieces of information, the desired evaluation can be performed by the process that owns the cell. The result can now be communicated to the requesting process.

In summary, the coarse search determines, for each point, a list of processes that might own it. The subsequent fine search by each process determines whether the processes actually own these points by the sequence of request ("Does the process own the point?") and answer ("Yes."/"No."). Processes might post any number of point requests and communicate with any process. We propose to collect the point requests to a process to use the dynamic, sparse, scalable consensus-based communication algorithms [112], and to consider the obtained information to set up point-to-point communication patterns.

Implementation: Utilities::MPI::RemotePointEvaluation

The algorithm described above is implemented in Utilities::MPI::RemotePointEvaluation (short: "rpe") and related classes/functions. In this section, basic functionalities are briefly summarized. Their advanced capabilities will be shown subsequently based on concrete application cases.

The following code snippet shows the setup steps for the communication pattern:

std::vector<Point<dim>> points; // ... (filling of points not shown)
rpe.reinit(points, triangulation, mapping);
const ::parallel::distributed::Triangulation< dim, spacedim > * triangulation

All what is needed is a list of evaluation points and the mesh with a mapping.

The following code snippet shows the evaluation steps:

const std::function<void(const ArrayView<T> &, const CellData &)>
std::vector<T> output;
rpe.evaluate_and_process(output, evaluation_function);

The user provides a function that processes the locally owned points. These values are communicated by Utilities::MPI::RemotePointEvaluation.

The relevant class during the local evaluation is Utilities::MPI::RemotePointEvaluation::CellData. It allows to loop over cells that surround the points. On these cells, a cell iterator and the positions in the reference cell of the requested points can be queried. Furthermore, this class provides controlled access to the output vector of the Utilities::MPI::RemotePointEvaluation::evaluate_and_process() function.

for (const auto cell_index : cell_data.cell_indices())
{
const auto cell = cell_data.get_active_cell_iterator(cell_index);
const auto unit_points = cell_data.get_unit_points(cell_index);
const auto local_output = cell_data.get_data_view(cell_index, output);
}
unsigned int cell_index

The functions

const auto evaluated_values =
VectorTools::point_values<n_components>(rpe, dof_handler, vector);
const auto evaluated_gradients =
VectorTools::point_gradients<n_components>(rpe, dof_handler, vector);

evaluate the values and gradients of a solution defined by DoFHandler and a vector at the requested points. Internally, a lambda function is passed to Utilities::MPI::RemotePointEvaluation. Additionally it handles the special case if points belong to multiple cells by taking, e.g., the average, the minimum, or the maximum via an optional argument of type EvaluationFlags::EvaluationFlags. This occurs when a point lies on a cell boundary or within a small tolerance around it and might be relevant for discontinuous solution quantities, such as values of discontinuous Galerkin methods or gradients in continuous finite element methods.

Motivation: two-phase flow

The minimal code examples (short "mini examples") presented in this tutorial are motivated by the application of two-phase-flow simulations formulated in a one-fluid setting using a Eulerian framework. In diffuse interface methods, the two phases may be implicitly described by a level-set function, here chosen as a signed distance function \(\phi(\boldsymbol{ x})\) in \(\Omega\) and illustrated for a popular benchmark case of a rising bubble in the following figure.

The discrete interface \(\Gamma\) is represented implicitly through a certain isosurface of the level-set function e.g. for the signed-distance function \(\Gamma=\{\boldsymbol x \in \Omega~|~\phi (\boldsymbol{x})=0\}\). We would like to note that deal.II provides a set of analytical signed distance functions for simple geometries in the Functions::SignedDistance namespace. Those can be combined via Boolean operations to describe more complex geometries [51]. The temporal evolution of the level-set field is obtained by the transport equation

\[ \frac{\partial \, \phi}{\partial \, t} + \boldsymbol{u}\vert_\Gamma \cdot \nabla \phi = 0 \]

with the transport velocity at the interface \(\boldsymbol{u}\vert_\Gamma\), which might be approximated by the local fluid velocity \(\boldsymbol{u} \vert_\Gamma\approx\boldsymbol{u}(\boldsymbol{x})\). To reobtain the signed-distance property of the level-set field throughout the numerical solution procedure, PDE-based or, alternatively, also geometric reinitialization methods are used. For the latter, an algorithm for computing the distance from the support points to the discrete interface, e.g., via closest-point point projection [110], is needed. This will be part of one of the mini examples, where we describe how to obtain the closest point \(\boldsymbol{x}^*\) to the interface \(\Gamma\) for an arbitrary point \(\boldsymbol{x}\). For the simplest case, the former can be computed from the following equation

\[ \boldsymbol{x}^{*} = \boldsymbol{x} - \boldsymbol{n}(\boldsymbol{x}) \phi(\boldsymbol{x}), \]

assuming that the interface normal vector \(\boldsymbol{n}(\boldsymbol{x})\) and \(\phi(\boldsymbol{x})\) represent exact quantities. Typically, this projection is only performed for points located within a narrow band region around the interface, indicated in the right panel of the figure above.

Alternatively to the implicit representation of the interface, in sharp interface methods, e.g., via front tracking, the interface \(\Gamma\) is explicitly represented by a surface mesh. The latter is immersed into a background mesh, from which the local velocity at the support points of the surface mesh is extracted and leads to a movement of the support points of the immersed mesh as

\[ \boldsymbol{x}_q^{(i + 1)} = \boldsymbol{x}_q^{(i)} + \Delta t \cdot \boldsymbol{u}(\boldsymbol{x}_q^{(i)}) \quad \text{ for } \boldsymbol{x}_q \in \Gamma \]

which considers an explicit Euler time integration scheme from time step \(i\) to \(i+1\) with time step-size \(\Delta t\).

For a two-phase-flow model considering the incompressible Navier-Stokes equations, the two phases are usually coupled by a singular surface-tension force \(\boldsymbol{F}_S\), which results, together with the difference in fluid properties, in discontinuities across the interface:

\[ \boldsymbol{F}_S(\boldsymbol{x})= \sigma \kappa(\boldsymbol{x}) \boldsymbol{n}(\boldsymbol{x}) \delta_{\Gamma}(\boldsymbol{x}). \]

Here \(\sigma\) represents the surface-tension coefficient, \(\boldsymbol{n}(\boldsymbol{x})\) the interface normal vector and \(\kappa(\boldsymbol{x})\) the interface mean curvature field. The singularity at the interface is imposed by the Dirac delta function

\[ \delta_{\Gamma}(\boldsymbol{x}) = \begin{cases} 1 & \text{on } \Gamma \\ 0 & \text{else}\end{cases} \]

with support on the interface \(\Gamma\). In a finite element context, the weak form of the surface-tension force is needed. The latter can be applied as a sharp surface-tension force model

\[ (\boldsymbol v, \boldsymbol F_S)_{\Omega} = \left( \boldsymbol{v}, \sigma \kappa \boldsymbol{n} \right)_\Gamma, \]

exploiting the property of the Dirac delta function for any smooth function \(v\), i.e., \(\int_\Omega\delta_{\Gamma}\,v\,\text{d}x=\int_\Gamma v\,\text{d}y\). For front-tracking methods, the curvature and the normal vector are directly computed from the surface mesh.

Alternatively, in regularized surface-tension-force models [39] [160] [133], the Dirac delta function is approximated by a smooth ansatz

\[ (\boldsymbol v, \boldsymbol F_S)_{\Omega} \approx \left(\boldsymbol v, \sigma \kappa \boldsymbol{n} \|\nabla H\| \right)_\Omega \]

considering the absolute value of the gradient of a regularized indicator function \(\|\nabla H\|\), which is related to the level-set field. In such models, the interface normal vector

\[ \boldsymbol{n}(\boldsymbol{x}) = \nabla \phi(\boldsymbol{x}), \]

and the interface curvature field

\[ \kappa(\boldsymbol{x}) = \nabla \cdot \boldsymbol{n}(\boldsymbol{x})= \Delta \phi(\boldsymbol{x}) \,. \]

are derived from the level-set function.

Overview

In the following, we present three simple use cases of Utilities::MPI::RemotePointEvaluation. We start with discussing a serial code in mini example 0. In the subsequent mini examples, advanced problems are solved on distributed meshes:

  • mini example 1: we evaluate values and user quantities along a line;
  • mini example 2: we perform a closest-point projection within a narrow band, based on a level-set function, use the information to update the distance and to perform an extrapolation from the interface;
  • mini example 3: we compute the surface-tension term sharply with the interface given by an codim-1 mesh, which is advected by the velocity from the background mesh (front tracking; solution transfer between a background mesh and an immersed surface mesh).

The commented program

Include files

The program starts with including all the relevant header files.

  #include <deal.II/base/mpi.h>
  #include <deal.II/base/mpi.templates.h>
  #include <deal.II/distributed/tria.h>
  #include <deal.II/dofs/dof_renumbering.h>
  #include <deal.II/dofs/dof_tools.h>
  #include <deal.II/fe/fe_nothing.h>
  #include <deal.II/fe/fe_q.h>
  #include <deal.II/fe/fe_system.h>
  #include <deal.II/grid/grid_tools.h>
  #include <deal.II/numerics/data_out.h>

The files most relevant for this tutorial are the ones that contain Utilities::MPI::RemotePointEvaluation and the distributed evaluation functions in the VectorTools namespace, which use Utilities::MPI::RemotePointEvaluation.

The following header file provides the class FEPointEvaluation, which allows us to evaluate values of a local solution vector at arbitrary unit points of a cell.

  #include <deal.II/matrix_free/fe_point_evaluation.h>

We pack everything that is specific for this program into a namespace of its own.

  namespace Step87
  {
  using namespace dealii;

Utility functions (declaration)

In the following, we declare utility functions that are used in the mini examples below. You find the definitions at the end of the tutorial.

The minimum requirement of this tutorial is MPI. If deal.II is built with p4est, we use parallel::distributed::Triangulation as distributed mesh. The class parallel::shared::Triangulation is used if deal.II is built without p4est or if the dimension of the triangulation is 1D, e.g., in the case of codim-1 meshes.

A list of points along a line is created by definition of a start point p0, an end point p1, and the number of subdivisions n_subdivisions.

  template <int spacedim>
  std::vector<Point<spacedim>>
  const unsigned int n_subdivisions);

A given list of points and the corresponding values values_0 and values_1 (optional) are printed column-wise to a file file_name. In addition, the first column represents the distance of the points from the first point.

  template <int spacedim, typename T0, typename T1 = int>
  void print_along_line(const std::string &file_name,
  const std::vector<Point<spacedim>> &points,
  const std::vector<T0> &values_0,
  const std::vector<T1> &values_1 = {});

Create a unique list of the real coordinates of support points into support_points from the provided Mapping mapping and the DoFHandler dof_handler.

From the provided Mapping mapping and the DoFHandler dof_handler collect the global DoF indices and corresponding support points within a narrow band around the zero-level-set isosurface. Thereto, the value of the finite element function signed_distance corresponding to the DoFHandler dof_handler_support_points is evaluated at each support point. A support point is only collected if the absolute value is below the value for the narrow_band_threshold.

  template <int dim, int spacedim, typename T>
  std::tuple<std::vector<Point<spacedim>>, std::vector<types::global_dof_index>>
  const Mapping<dim, spacedim> &mapping,
  const double narrow_band_threshold);

Convert a distributed vector of support points (support_points_unrolled) with a sequential order of the coordinates per point into a list of points.

  template <int spacedim>
  std::vector<Point<spacedim>> convert(

Mini example 0: Evaluation at given points for a serial mesh

In this introductory example, we demonstrate basic functionalities available in deal.II to evaluate solution quantities at arbitrary points on a serial mesh. The same functionalities are used directly or indirecly in the distributed case to evaluate solution on locally owned cells. This, however, needs to be augmented by communication, as presented in following examples.

We first create the typical objects needed for a finite element discretization (defined by mapping, triangulation, and finite element) and a vector containing finite element solution coefficients.

  void example_0()
  {
  std::cout << "Running: example 0" << std::endl;
  constexpr unsigned int dim = 2;
  constexpr unsigned int fe_degree = 3;
  FE_Q<dim> fe(fe_degree);
  DoFHandler<dim> dof_handler(tria);
  dof_handler.distribute_dofs(fe);
  Vector<double> vector(dof_handler.n_dofs());
  dof_handler,
  (dim == 1) ? Point<dim>(0.5) :
  (dim == 2) ? Point<dim>(0.5, 0.5) :
  Point<dim>(0.5, 0.5, 0.5),
  0.25),
  vector);
Definition point.h:111
void subdivided_hyper_cube(Triangulation< dim, spacedim > &tria, const unsigned int repetitions, const double left=0., const double right=1., const bool colorize=false)
void interpolate(const Mapping< dim, spacedim > &mapping, const DoFHandler< dim, spacedim > &dof, const Function< spacedim, typename VectorType::value_type > &function, VectorType &vec, const ComponentMask &component_mask={})

We create a list of points inside the domain at which we would like to evaluate the finite element interpolant.

  const auto points_line =
  (dim == 2) ? Point<dim>(0.0, 0.5) :
  Point<dim>(0.0, 0.5, 0.5),
  (dim == 1) ? Point<dim>(1.0) :
  (dim == 2) ? Point<dim>(1.0, 0.5) :
  Point<dim>(1.0, 0.5, 0.5),
  20);

Now, we loop over all evaluation points. In the first step, we determine via GridTools::find_active_cell_around_point() the cell \(K\) that surrounds the point and translate the given real coordinate \(\boldsymbol{x}\) to the corresponding coordinate on the unit cell \(\hat{\boldsymbol{x}}_K\) according to the provided mapping. The resulting information is printed to the screen.

  std::vector<double> values_line;
  values_line.reserve(points_line.size());
  for (const auto &p_real : points_line)
  {
  const auto [cell, p_unit] =
  GridTools::find_active_cell_around_point(mapping,
  dof_handler,
  {
  AssertThrow(cell != dof_handler.end(), ExcInternalError());
  std::cout << " - Found point with real coordinates: " << p_real
  << std::endl;
  std::cout << " - in cell with vertices:";
  for (const auto &v : cell->vertex_indices())
  std::cout << " (" << cell->vertex(v) << ")";
  std::cout << std::endl;
  std::cout << " - with coordinates on the unit cell: (" << p_unit
  << ")" << std::endl;
  }
unsigned int vertex_indices[2]
#define AssertThrow(cond, exc)
STL namespace.

Having determined \(K\) and \(\hat{\boldsymbol{x}}_K\), we can perform the evaluation of the finite element solution at this point. In the following, we show three approaches for this purpose. In the first approach, we follow a traditional technique by using FEValues based on a cell-specific quadrature rule consisting of the unit point.

  std::cout << " - Values at point:" << std::endl;
  {
  FEValues<dim> fe_values(mapping,
  fe,
  fe_values.reinit(cell);
  std::vector<double> quad_values(1);
  fe_values.get_function_values(vector, quad_values);
  const double value_0 = quad_values[0];
  std::cout << " - " << value_0 << " (w. FEValues)" << std::endl;
  values_line.push_back(value_0);
  }
@ update_values
Shape function values.

The second approach considers FEPointEvaluation, which directly takes a list of unit points for the subsequent evaluation. The class FEPointEvaluation is a class optimized for the evaluation on cell level at arbitrary points and should be favored for such tasks.

  {
  std::vector<double> cell_vector(fe.n_dofs_per_cell());
  cell->get_dof_values(vector, cell_vector.begin(), cell_vector.end());
  fe_point.reinit(cell, ArrayView<const Point<dim>>(p_unit));
  fe_point.evaluate(cell_vector, EvaluationFlags::values);
  const auto value_1 = fe_point.get_value(0);
  std::cout << " - " << value_1 << " (w. FEPointEvaluation)"
  << std::endl;
  }

Finally, in the third approach, the function VectorTools::point_value() is considered. It performs both the search of the surrounding cell and the evaluation at the requested point. However, its application is limited to a serial run of the code.

  {
  const auto value_2 =
  VectorTools::point_value(dof_handler, vector, p_real);
  std::cout << " - " << value_2 << " (w. VectorTools::point_value())"
  << std::endl;
  std::cout << std::endl;
  }
  }
void point_value(const DoFHandler< dim, spacedim > &dof, const VectorType &fe_function, const Point< spacedim, double > &point, Vector< typename VectorType::value_type > &value)

We output the requested points together with the corresponding evaluated solution to a CSV file.

  std::cout << " - writing csv file" << std::endl;
  print_along_line("example_0_profile.csv", points_line, values_line);
  }

Obviously, the code above cannot work for distributed meshes, since the search (which might require communication) is called within a for-loop with loop bounds possibly different on each process. In the following code examples, we present the usage of arbitrary point evaluation in a parallel computation.

Mini example 1: Evaluation at given points on a distributed mesh

Just like in the introductory example, we evaluate the solution along a line, however, on a distributed mesh. We again start with setting up the objects needed for a finite element discretization.

  void example_1()
  {
  constexpr unsigned int dim = 2;
  constexpr unsigned int fe_degree = 3;
  0);
  pcout << "Running: example 1" << std::endl;
  FE_Q<dim> fe(fe_degree);
  DoFHandler<dim> dof_handler(tria);
  dof_handler.distribute_dofs(fe);
unsigned int this_mpi_process(const MPI_Comm mpi_communicator)
Definition mpi.cc:107

We determine a finite element solution representing implicitly the geometry of a sphere with a radius of \(r=0.25\) and the center at \((0.5,0.5)\) via a signed distance function.

  signed_distance.reinit(dof_handler.locally_owned_dofs(),
  dof_handler,
  (dim == 1) ? Point<dim>(0.5) :
  (dim == 2) ? Point<dim>(0.5, 0.5) :
  Point<dim>(0.5, 0.5, 0.5),
  0.25),
  signed_distance);
IndexSet extract_locally_active_dofs(const DoFHandler< dim, spacedim > &dof_handler)

Next, we fill a vector from an arbitrary function that should represent a possible finite element solution, which we would like to evaluate.

We create a list of arbitrary (evaluation) points along a horizontal line, which intersects the center of the sphere. We do this only on the root rank, since we intend to output the results to a CSV file by the root rank.

  std::vector<Point<dim>> profile;
  (dim == 2) ? Point<dim>(0.0, 0.5) :
  Point<dim>(0.0, 0.5, 0.5),
  (dim == 1) ? Point<dim>(1.0) :
  (dim == 2) ? Point<dim>(1.0, 0.5) :
  Point<dim>(1.0, 0.5, 0.5),
  20);

Now, we can evaluate the results, e.g., for the signed distance function at all evaluation points in one go. First, we create a modifiable Utilities::MPI::RemotePointEvaluation object. We use VectorTools::point_values() by specifying the number of components of the solution vector (1 for the present example) as a template parameter. Within this function, the provided object for Utilities::MPI::RemotePointEvaluation is automatically reinitialized with the given points (profile). The ghost values of the solution vector need to be updated from the user.

  signed_distance.update_ghost_values();
  const std::vector<double> profile_signed_distance =
  VectorTools::point_values<1>(
  mapping, dof_handler, signed_distance, profile, rpe);

In addition to VectorTools::point_values(), function gradients can be evaluated via VectorTools::point_gradient(). However, for the computation of user-derived quantities, one might need to fall back to the direct usage of Utilities::MPI::RemotePointEvaluation::evaluate_and_process() or Utilities::MPI::RemotePointEvaluation::process_and_evaluate(). For the sake of demonstration, we use the former to evaluate the values of the solution vector at the requested points. First, we define a lambda function for the operation on the surrounding cells. Using the CellData object, we can create a FEPointEvaluation object to evaluate the solution values at the cell-specific unit coordinates of the requested points. Then, we assign the values to the result vector.

  const auto evaluate_function = [&](const ArrayView<double> &values,
  const auto &cell_data) {
  std::vector<double> local_values;
  std::vector<types::global_dof_index> local_dof_indices;
  for (const auto cell : cell_data.cell_indices())
  {
  cell_data.get_active_cell_iterator(cell)->as_dof_handler_iterator(
  dof_handler);
  const auto unit_points = cell_data.get_unit_points(cell);
  const auto local_value = cell_data.get_data_view(cell, values);
  local_values.resize(cell_dofs->get_fe().n_dofs_per_cell());
  cell_dofs->get_dof_values(solution,
  local_values.begin(),
  fe_point.reinit(cell_dofs, unit_points);
  for (unsigned int q = 0; q < unit_points.size(); ++q)
  local_value[q] = fe_point.get_value(q);
  }
  };

The lambda function is passed to Utilities::MPI::RemotePointEvaluation::evaluate_and_process(), where the values are processed accordingly and stored within the created output vector. Again, the ghost values of the vector to be read need to be updated by the user.

  solution.update_ghost_values();
  const std::vector<double> output =
  rpe.evaluate_and_process<double>(evaluate_function);

Finally, we output all results: the mesh as a VTU file and the results along the line as a CSV file. You can import the CSV file in ParaView and compare the output with the native line plot of ParaView based on the VTU file.

  DataOut<dim> data_out;
  data_out.add_data_vector(dof_handler, signed_distance, "signed_distance");
  data_out.build_patches(mapping);
  data_out.write_vtu_in_parallel("example_1.vtu", MPI_COMM_WORLD);
  {
  std::cout << " - writing csv file" << std::endl;
  print_along_line("example_1_profile.csv",
  output);
  }
  }

Mini example 2: Closest-point evaluation on a distributed mesh

In this mini example, we perform a closest-point projection for each support point of a mesh within a narrow band by iteratively solving for

\[ \boldsymbol{x}^{(i+1)} = \boldsymbol{x}^{(i)} - \boldsymbol{n}(\boldsymbol{x}^{(i)})\phi(\boldsymbol{x}^{(i)}). \]

Once the closest point is determined, we can compute the distance and extrapolate the values from the interface. Note that the demonstrated algorithm does not guarantee that the closest points are collinear (see discussion in [66]). For the latter, one might also need to perform a tangential correction, which we omit here to keep the discussion concise.

We start with creating the objects for the finite element representation of the background mesh.

  void example_2()
  {
  constexpr unsigned int dim = 2;
  constexpr unsigned int fe_degree = 3;
  0);
  pcout << "Running: example 2" << std::endl;
  pcout << " - create system" << std::endl;
  FE_Q<dim> fe(fe_degree);
  DoFHandler<dim> dof_handler(tria);
  dof_handler.distribute_dofs(fe);

We compute finite element solution vector, based on an arbitrary function. In addition, a finite element function computed from a signed distance function represents the geometry of a sphere implicitly.

  solution.reinit(dof_handler.locally_owned_dofs(),
  dof_handler,
  solution);
  signed_distance.reinit(dof_handler.locally_owned_dofs(),
  dof_handler,
  (dim == 1) ? Point<dim>(0.5) :
  (dim == 2) ? Point<dim>(0.5, 0.5) :
  Point<dim>(0.5, 0.5, 0.5),
  0.25),
  signed_distance);
  signed_distance.update_ghost_values();

In the next step, we collect the points in the narrow band around the zero-level-set isosurface for which we would like to perform a closest point projection. To this end, we loop over all support points and collect the coordinates and the DoF indices of those with a maximum distance of 0.1 from the zero-level-set isosurface.

  pcout << " - determine narrow band" << std::endl;
  dof_handler,
  signed_distance,
  dof_handler,
  0.1 /*narrow_band_threshold*/);

For the iterative solution procedure of the closest-point projection, the maximum number of iterations and the tolerance for the maximum absolute acceptable change in the distance in one iteration are set.

  pcout << " - determine closest point iteratively" << std::endl;
  constexpr int max_iter = 30;
  constexpr double tol_distance = 1e-6;

Now, we are ready to perform the algorithm by setting an initial guess for the projection points simply corresponding to the collected support points. We collect the global indices of the support points and the total number of points that need to be processed and do not fulfill the required tolerance. Those will be gradually reduced upon the iterative process.

  std::vector<Point<dim>> closest_points = support_points; // initial guess
  std::vector<unsigned int> unmatched_points_idx(closest_points.size());
  std::iota(unmatched_points_idx.begin(), unmatched_points_idx.end(), 0);
T sum(const T &t, const MPI_Comm mpi_communicator)

Now, we create a Utilities::MPI::RemotePointEvaluation cache object and start the loop for the fix-point iteration. We update the list of points that still need to be processed and subsequently pass this information to the Utilities::MPI::RemotePointEvaluation object. For the sake of illustration, we export the coordinates of the points to be updated for each iteration to a CSV file. Next, we can evaluate the signed distance function and the gradient at those points to update the current solution for the closest points. We perform the update only if the signed distance of the closest point is not already within the tolerance and register those points that still need to be processed.

  for (int it = 0; it < max_iter && n_unmatched_points > 0; ++it)
  {
  pcout << " - iteration " << it << ": " << n_unmatched_points;
  std::vector<Point<dim>> unmatched_points(unmatched_points_idx.size());
  for (unsigned int i = 0; i < unmatched_points_idx.size(); ++i)
  Utilities::MPI::reduce<std::vector<Point<dim>>>(
  unmatched_points, MPI_COMM_WORLD, [](const auto &a, const auto &b) {
  auto result = a;
  result.insert(result.end(), b.begin(), b.end());
  return result;
  });
  {
  std::ofstream file("example_2_" + std::to_string(it) + ".csv");
  for (const auto &p : all_unmatched_points)
  file << p << std::endl;
  file.close();
  }
  rpe.reinit(unmatched_points, tria, mapping);
  AssertThrow(rpe.all_points_found(),
  ExcMessage("Processed point is outside domain."));
  const auto eval_values =
  VectorTools::point_values<1>(rpe, dof_handler, signed_distance);
  const auto eval_gradient =
  VectorTools::point_gradients<1>(rpe, dof_handler, signed_distance);
  std::vector<unsigned int> unmatched_points_idx_next;
  for (unsigned int i = 0; i < unmatched_points_idx.size(); ++i)
  {
  }
  pcout << " -> " << n_unmatched_points << std::endl;
  }
::VectorizedArray< Number, width > abs(const ::VectorizedArray< Number, width > &)

We print a warning message if we exceed the maximum number of allowed iterations and if there are still projection points with a distance value exceeding the tolerance.

  pcout << "WARNING: The tolerance of " << n_unmatched_points
  << " points is not yet attained." << std::endl;

As a result, we obtain a list of support points and corresponding closest points at the zero-isosurface level set. This information can be used to update the signed distance function, i.e., the reinitialization the values of the level-set function to maintain the signed distance property [110].

  pcout << " - determine distance in narrow band" << std::endl;
  solution_distance.reinit(solution);
  for (unsigned int i = 0; i < closest_points.size(); ++i)

In addition, we use the information of the closest point to extrapolate values from the interface, i.e., the zero-level set isosurface, to the support points within the narrow band. This might be helpful to improve accuracy, e.g., for diffuse interface fluxes where certain quantities are only accurately determined at the interface (e.g. curvature for surface tension [66]).

  pcout << " - perform extrapolation in narrow band" << std::endl;
  rpe.reinit(closest_points, tria, mapping);
  solution.update_ghost_values();
  const auto vals = VectorTools::point_values<1>(rpe, dof_handler, solution);
  solution_extrapolated.reinit(solution);
  for (unsigned int i = 0; i < closest_points.size(); ++i)

Finally, we output the results to a VTU file.

  pcout << " - output results" << std::endl;
  DataOut<dim> data_out;
  data_out.add_data_vector(dof_handler, signed_distance, "signed_distance");
  data_out.add_data_vector(dof_handler, solution, "solution");
  data_out.add_data_vector(dof_handler,
  "solution_distance");
  data_out.add_data_vector(dof_handler,
  "solution_extrapolated");
  data_out.build_patches(mapping);
  data_out.write_vtu_in_parallel("example_2.vtu", MPI_COMM_WORLD);
  pcout << std::endl;
  }

Mini example 3: Sharp interface method on the example of surface tension for front tracking

The final mini example presents a basic implementation of front tracking [165], [192] of a surface mesh \(\mathbb{T}_\Gamma\) immersed in a Eulerian background fluid mesh \(\mathbb{T}_\Omega\).

We assume that the immersed surface is transported according to a prescribed velocity field from the background mesh. Subsequently, we perform a sharp computation of the surface-tension force:

\[ (\boldsymbol v_i (\boldsymbol{x}), \boldsymbol F_S (\boldsymbol{x}))_{\Omega} = \left( \boldsymbol{v}_i (\boldsymbol{x}), \sigma (\boldsymbol{x}) \kappa (\boldsymbol{x}) \boldsymbol{n} (\boldsymbol{x}) \right)_\Gamma \approx \sum_{q\in\mathbb{T}_\Gamma} \boldsymbol{v}_i^T (\boldsymbol{x}_q) \sigma (\boldsymbol{x}_q) \kappa (\boldsymbol{x}_q) \boldsymbol{n} (\boldsymbol{x}_q) |J(\boldsymbol{x}_q)| w(\boldsymbol{x}_q) \quad \forall i\in\mathbb{T}_\Omega . \]

We decompose this operation into two steps. In the first step, we evaluate the force contributions \(\sigma (\boldsymbol{x}_q) \kappa (\boldsymbol{x}_q) \boldsymbol{n} (\boldsymbol{x}_q)\) at the quadrature points defined on the immersed mesh and multiply them with the mapped quadrature weight \(|J(\boldsymbol{x}_q)| w_q\):

\[ \boldsymbol{F}_S (\boldsymbol{x}_q) \gets \sigma (\boldsymbol{x}_q) \kappa (\boldsymbol{x}_q) \boldsymbol{n} (\boldsymbol{x}_q) |J(\boldsymbol{x}_q)| w_q \quad \forall q\in\mathbb{T}_\Gamma. \]

In the second step, we compute the discretized weak form by multiplying with test functions on the background mesh:

\[ (\boldsymbol v_i (\boldsymbol{x}), \boldsymbol F_S (\boldsymbol{x}))_{\Omega} \gets \sum_q \boldsymbol{v}_i^T (\boldsymbol{x}_q) \boldsymbol{F}_S (\boldsymbol{x}_q) \quad \forall i\in\mathbb{T}_\Omega . \]

Obviously, we need to communicate between the two steps. The second step can be handled completely by Utilities::MPI::RemotePointEvaluation, which provides the function Utilities::MPI::RemotePointEvaluation::process_and_evaluate() for this purpose.

We start with setting the parameters consisting of the polynomial degree of the shape functions, the dimension of the background mesh, the time-step size to be considered for transporting the surface mesh and the number of time steps.

  void example_3()
  {
  constexpr unsigned int degree = 3;
  constexpr unsigned int dim = 2;
  const double dt = 0.01;
  const unsigned int n_time_steps = 200;

This program is intended to be executed in 2D or 3D.

  static_assert(dim == 2 || dim == 3, "Only implemented for 2D or 3D.");
  0);
  pcout << "Running: example 3" << std::endl;

Next, we create the standard objects necessary for the finite element representation of the background mesh

  pcout << " - creating background mesh" << std::endl;
  tria_background.refine_global(5);
void hyper_cube(Triangulation< dim, spacedim > &tria, const double left=0., const double right=1., const bool colorize=false)

and, similarly, for the immersed surface mesh. We use a sphere with radius \(r=0.75\) which is placed in the center of the top half of the cubic background domain.

  pcout << " - creating immersed mesh" << std::endl;
  const Point<dim> center((dim == 2) ? Point<dim>(0.5, 0.75) :
  Point<dim>(0.5, 0.75, 0.5));
  const double radius = 0.15;
  tria_immersed.refine_global(4);
Point< 3 > center
void hyper_sphere(Triangulation< spacedim - 1, spacedim > &tria, const Point< spacedim > &center=Point< spacedim >(), const double radius=1.)

Two different mappings are considered for the immersed surface mesh: one valid for the initial configuration and one that is updated in every time step according to the nodal displacements. Two types of finite elements are used to represent scalar and vector-valued DoF values.

We renumber the DoFs related to the vector-valued problem to simplify access to the individual components.

void support_point_wise(DoFHandler< dim, spacedim > &dof_handler)

We fill a DoF vector on the background mesh with an analytical velocity field considering the Rayleigh-Kothe vortex flow and initialize a DoF vector for the weak form of the surface-tension force.

Next, we collect the real positions \(\boldsymbol{x}_q\) of the quadrature points of the surface mesh in a vector.

We initialize a Utilities::MPI::RemotePointEvaluation object and start the time loop. For any other step than the initial one, we first move the support points of the surface mesh according to the fluid velocity of the background mesh. Thereto, we first update the time of the velocity function. Then, we update the internal data structures of the Utilities::MPI::RemotePointEvaluation object with the collected support points of the immersed mesh. We throw an exception if one of the points cannot be found within the domain of the background mesh. Next, we evaluate the velocity at the surface-mesh support points and compute the resulting update of the coordinates. Finally, we update the mapping of the immersed surface mesh to the current position.

  double time = 0.0;
  for (unsigned int it = 0; it <= n_time_steps; ++it, time += dt)
  {
  pcout << "time: " << time << std::endl;
  if (it > 0)
  {
  pcout << " - move support points (immersed mesh)" << std::endl;
  vortex.set_time(time);
  AssertThrow(rpe.all_points_found(),
  ExcMessage(
  "Immersed domain leaves background domain!"));
  velocity.update_ghost_values();
  const auto immersed_velocity =
  VectorTools::point_values<dim>(rpe,
  for (unsigned int i = 0, c = 0;
  i < immersed_support_points.locally_owned_size() / dim;
  ++i)
  for (unsigned int d = 0; d < dim; ++d, ++c)
  immersed_support_points.local_element(c) +=
  false);
  }

Next, we loop over all locally owned cells of the immersed mesh and its quadrature points to compute the value for the local surface tension force contribution \(\boldsymbol{F}_S(\boldsymbol{x}_q)\). We store the real coordinates of the quadrature points and the corresponding force contributions in two individual vectors. For computation of the latter, the normal vector \(\boldsymbol{n}(\boldsymbol{x}_q)\) can be directly extracted from the surface mesh via FEValues and, for the curvature, we use the following approximation:

\[ \kappa(\boldsymbol{x}_q) = \nabla \cdot \boldsymbol{n}(\boldsymbol{x}_q) = \text{tr}\left({\nabla \boldsymbol{n}(\boldsymbol{x}_q)}\right) \approx \text{tr}\left({\nabla \sum_i \boldsymbol{N}_i (\boldsymbol{x}_q) \boldsymbol n_i}\right) = \sum_i\text{tr}\left({\nabla \boldsymbol{N}_i (\boldsymbol{x}_q) \boldsymbol n_i}\right) \;\text{with}\; i\in[0,n_{\text{dofs_per_cell}}), \]

which we can apply since the immersed mesh is consistently orientated. The surface tension coefficient is set to 1 for the sake of demonstration.

  pcout << " - compute to be tested values (immersed mesh)" << std::endl;
  using value_type = Tensor<1, dim, double>;
  std::vector<Point<dim>> integration_points;
  std::vector<value_type> integration_values;
  FEValues<dim - 1, dim> fe_values(mapping_immersed,
  FEValues<dim - 1, dim> fe_values_co(
  fe_scalar_immersed.get_unit_support_points(),
  std::vector<unsigned int> component_to_system_index(
  fe_immersed.n_dofs_per_cell());
  for (unsigned int i = 0, c = 0;
  i < fe_scalar_immersed.n_dofs_per_cell();
  ++i)
  for (unsigned int d = 0; d < dim; ++d, ++c)
  component_to_system_index[c] =
  fe_immersed.component_to_system_index(d, i);
  for (const auto &cell : tria_immersed.active_cell_iterators() |
  IteratorFilters::LocallyOwnedCell())
  {
  fe_values.reinit(cell);
  fe_values_co.reinit(cell);
  for (const auto &q : fe_values.quadrature_point_indices())
  {
  integration_points.emplace_back(fe_values.quadrature_point(q));
  const auto sigma = 1.0; // surface tension coefficient
  const auto normal = fe_values.normal_vector(q);
  double curvature = 0;
  for (unsigned int i = 0, c = 0;
  i < fe_scalar_immersed.n_dofs_per_cell();
  ++i)
  for (unsigned int d = 0; d < dim; ++d, ++c)
  curvature += fe_values.shape_grad_component(
  component_to_system_index[c], q, d)[d] *
  fe_values_co.normal_vector(i)[d];
  const auto FxJxW =
  sigma * curvature * normal * fe_values.JxW(q);
  integration_values.emplace_back(FxJxW);
  }
  }
@ update_normal_vectors
Normal vectors.
@ update_JxW_values
Transformed quadrature weights.
@ update_gradients
Shape function gradients.
@ update_quadrature_points
Transformed quadrature points.

Before we evaluate the weak form of the surface-tension force, the communication pattern of Utilities::MPI::RemotePointEvaluation is set up from the quadrature points of the immersed mesh, determining the surrounding cells on the background mesh.

  pcout << " - test values (background mesh)" << std::endl;

In preparation for utilizing Utilities::MPI::RemotePointEvaluation::process_and_evaluate that performs the multiplication with the test function, we set up a callback function that contains the operation on the intersected cells of the background mesh. Within this function, we initialize a FEPointEvaluation object that allows us to integrate values at arbitrary points within a cell. We loop over the cells that surround quadrature points of the immersed mesh – provided by the callback function. From the provided CellData object, we retrieve the unit points, i.e., the quadrature points of the immersed mesh that lie within the current cell and a pointer to the stored values on the current cell (local surface-tension force) for convenience. We reinitialize the data structure of FEPointEvaluation on every cell according to the unit points. Next, we loop over the quadrature points attributed to the cell and submit the local surface-tension force to the FEPointEvaluation object. Via FEPointEvaluation::test_and_sum(), the submitted values are multiplied by the values of the test function and a summation over all given points is performed. Subsequently, the contributions are assembled into the global vector containing the weak form of the surface-tension force.

  const auto integration_function = [&](const auto &values,
  const auto &cell_data) {
  std::vector<double> local_values;
  std::vector<types::global_dof_index> local_dof_indices;
  for (const auto cell : cell_data.cell_indices())
  {
  cell_data.get_active_cell_iterator(cell)
  ->as_dof_handler_iterator(dof_handler_background);
  const auto unit_points = cell_data.get_unit_points(cell);
  const auto FxJxW = cell_data.get_data_view(cell, values);
  phi_force.reinit(cell_dofs, unit_points);
  for (const auto q : phi_force.quadrature_point_indices())
  phi_force.submit_value(FxJxW[q], q);
  local_values.resize(cell_dofs->get_fe().n_dofs_per_cell());
  local_dof_indices.resize(cell_dofs->get_fe().n_dofs_per_cell());
  cell_dofs->get_dof_indices(local_dof_indices);
  AffineConstraints<double>().distribute_local_to_global(
  local_values, local_dof_indices, force_vector);
  }
  };

The callback function is passed together with the vector holding the surface-tension force contribution at each quadrature point of the immersed mesh to Utilities::MPI::RemotePointEvaluation::process_and_evaluate. The only missing step is to compress the distributed force vector.

After every tenth step or at the beginning/end of the time loop, we output the force vector and the velocity of the background mesh to a VTU file. In addition, we also export the geometry of the (deformed) immersed surface mesh to a separate VTU file.

  if (it % 10 == 0 || it == n_time_steps)
  {
  std::vector<
  pcout << " - write data (background mesh)" << std::endl;
  flags_background.write_higher_order_cells = true;
  data_out_background.add_data_vector(
  std::vector<std::string>(dim, "force"),
  data_out_background.add_data_vector(
  std::vector<std::string>(dim, "velocity"),
  data_out_background.write_vtu_in_parallel("example_3_background_" +
  std::to_string(it) +
  ".vtu",
  pcout << " - write mesh (immersed mesh)" << std::endl;
  data_out_immersed.attach_triangulation(tria_immersed);
  data_out_immersed.write_vtu_in_parallel("example_3_immersed_" +
  std::to_string(it) +
  ".vtu",
  }
  pcout << std::endl;
  }
  }

Utility functions (definition)

  template <int spacedim>
  std::vector<Point<spacedim>>
  const unsigned int n_subdivisions)
  {
  Assert(n_subdivisions >= 1, ExcInternalError());
  std::vector<Point<spacedim>> points;
  points.reserve(n_subdivisions + 1);
  points.emplace_back(p0);
  for (unsigned int i = 1; i < n_subdivisions; ++i)
  points.emplace_back(p0 + (p1 - p0) * static_cast<double>(i) /
  static_cast<double>(n_subdivisions));
  points.emplace_back(p1);
  return points;
  }
  template <int spacedim, typename T0, typename T1>
  void print_along_line(const std::string &file_name,
  const std::vector<Point<spacedim>> &points,
  const std::vector<T0> &values_0,
  const std::vector<T1> &values_1)
  {
  AssertThrow(points.size() == values_0.size() &&
  (values_1.size() == points.size() || values_1.empty()),
  ExcMessage("The provided vectors must have the same length."));
  std::ofstream file(file_name);
  for (unsigned int i = 0; i < points.size(); ++i)
  {
  file << std::fixed << std::right << std::setw(5) << std::setprecision(3)
  << points[0].distance(points[i]);
  for (unsigned int d = 0; d < spacedim; ++d)
  file << std::fixed << std::right << std::setw(10)
  << std::setprecision(3) << points[i][d];
  file << std::fixed << std::right << std::setw(10)
  << std::setprecision(3) << values_0[i];
  if (!values_1.empty())
  file << std::fixed << std::right << std::setw(10)
  << std::setprecision(3) << values_1[i];
  file << std::endl;
  }
  }
  template <int dim, int spacedim>
  const Mapping<dim, spacedim> &mapping,
  const DoFHandler<dim, spacedim> &dof_handler,
  LinearAlgebra::distributed::Vector<double> &support_points)
  {
  support_points.reinit(dof_handler.locally_owned_dofs(),
  dof_handler.get_communicator());
  const auto &fe = dof_handler.get_fe();
  mapping,
  fe,
  fe.base_element(0).get_unit_support_points(),
  std::vector<types::global_dof_index> local_dof_indices(
  fe.n_dofs_per_cell());
  std::vector<unsigned int> component_to_system_index(
  fe_values.n_quadrature_points * spacedim);
  for (unsigned int q = 0, c = 0; q < fe_values.n_quadrature_points; ++q)
  for (unsigned int d = 0; d < spacedim; ++d, ++c)
  component_to_system_index[c] = fe.component_to_system_index(d, q);
  for (const auto &cell : dof_handler.active_cell_iterators() |
  IteratorFilters::LocallyOwnedCell())
  {
  fe_values.reinit(cell);
  cell->get_dof_indices(local_dof_indices);
  for (unsigned int q = 0, c = 0; q < fe_values.n_quadrature_points; ++q)
  for (unsigned int d = 0; d < spacedim; ++d, ++c)
  support_points[local_dof_indices[component_to_system_index[c]]] =
  fe_values.quadrature_point(q)[d];
  }
  }
  template <int dim, int spacedim, typename T>
  std::tuple<std::vector<Point<spacedim>>, std::vector<types::global_dof_index>>
  const Mapping<dim, spacedim> &mapping,
  {
  ExcMessage("The narrow band threshold"
  " must be larger than or equal to 0."));
  const auto &tria = dof_handler_signed_distance.get_triangulation();
  .base_element(0)
  .get_unit_support_points());
  quad,
  quad,
  std::vector<T> temp_distance(quad.size());
  std::vector<types::global_dof_index> local_dof_indices(
  dof_handler_support_points.get_fe().n_dofs_per_cell());
  std::vector<Point<dim>> support_points;
  std::vector<types::global_dof_index> support_points_idx;
  const bool has_ghost_elements = signed_distance.has_ghost_elements();
  dof_handler_support_points.locally_owned_dofs();
  std::vector<bool> flags(locally_owned_dofs_req.n_elements(), false);
  if (has_ghost_elements == false)
  signed_distance.update_ghost_values();
  for (const auto &cell :
  tria.active_cell_iterators() | IteratorFilters::LocallyOwnedCell())
  {
  cell->as_dof_handler_iterator(dof_handler_signed_distance);
  distance_values.get_function_values(signed_distance, temp_distance);
  const auto cell_req =
  cell->as_dof_handler_iterator(dof_handler_support_points);
  cell_req->get_dof_indices(local_dof_indices);
  for (const auto q : req_values.quadrature_point_indices())
  {
  const auto idx = local_dof_indices[q];
  if (locally_owned_dofs_req.is_element(idx) == false ||
  flags[locally_owned_dofs_req.index_within_set(idx)])
  continue;
  flags[locally_owned_dofs_req.index_within_set(idx)] = true;
  support_points_idx.emplace_back(idx);
  support_points.emplace_back(req_values.quadrature_point(q));
  }
  }
  if (has_ghost_elements == false)
  signed_distance.zero_out_ghost_values();
  }
  template <int spacedim>
  std::vector<Point<spacedim>> convert(
  {
  const unsigned int n_points =
  support_points_unrolled.locally_owned_size() / spacedim;
  std::vector<Point<spacedim>> points(n_points);
  for (unsigned int i = 0, c = 0; i < n_points; ++i)
  for (unsigned int d = 0; d < spacedim; ++d, ++c)
  points[i][d] = support_points_unrolled.local_element(c);
  return points;
  }
  } // namespace Step87
Abstract base class for mapping classes.
Definition mapping.h:318
#define Assert(cond, exc)
const Triangulation< dim, spacedim > & tria
if(marked_vertices.size() !=0) for(auto it
SymmetricTensor< 2, dim, Number > d(const Tensor< 2, dim, Number > &F, const Tensor< 2, dim, Number > &dF_dt)

Driver

Finally, the driver of the program executes the four mini examples.

  int main(int argc, char **argv)
  {
  using namespace dealii;
  std::cout.precision(5);
  Step87::example_0(); // only run on root process
  }
friend class Tensor
Definition tensor.h:882

Results

Mini example 0

We present a part of the terminal output. It shows, for each point, the determined cell and reference position. Also, one can see that the values evaluated with FEValues, FEPointEvaluation, and VectorTools::point_values() are identical, as expected.

Running: example 0
 - Found point with real coordinates: 0 0.5
   - in cell with vertices: (0 0.4) (0.2 0.4) (0 0.6) (0.2 0.6)
   - with coordinates on the unit cell: (0 0.5)
 - Values at point:
  - 0.25002 (w. FEValues)
  - 0.25002 (w. FEPointEvaluation)
  - 0.25002 (w. VectorTools::point_value())

 - Found point with real coordinates: 0.05 0.5
   - in cell with vertices: (0 0.4) (0.2 0.4) (0 0.6) (0.2 0.6)
   - with coordinates on the unit cell: (0.25 0.5)
 - Values at point:
  - 0.20003 (w. FEValues)
  - 0.20003 (w. FEPointEvaluation)
  - 0.20003 (w. VectorTools::point_value())

...

 - Found point with real coordinates: 1 0.5
   - in cell with vertices: (0.8 0.4) (1 0.4) (0.8 0.6) (1 0.6)
   - with coordinates on the unit cell: (1 0.5)
 - Values at point:
  - 0.25002 (w. FEValues)
  - 0.25002 (w. FEPointEvaluation)
  - 0.25002 (w. VectorTools::point_value())

 - writing csv file

The CSV output is as follows and contains, in the first column, the distances with respect to the first point, the second and the third column represent the coordinates of the points and the fourth column the evaluated solution values at those points.

0.000     0.000     0.500     0.250
0.050     0.050     0.500     0.200
0.100     0.100     0.500     0.150
0.150     0.150     0.500     0.100
0.200     0.200     0.500     0.050
0.250     0.250     0.500     0.000
0.300     0.300     0.500    -0.050
0.350     0.350     0.500    -0.100
0.400     0.400     0.500    -0.149
0.450     0.450     0.500    -0.200
0.500     0.500     0.500    -0.222
0.550     0.550     0.500    -0.200
0.600     0.600     0.500    -0.149
0.650     0.650     0.500    -0.100
0.700     0.700     0.500    -0.050
0.750     0.750     0.500     0.000
0.800     0.800     0.500     0.050
0.850     0.850     0.500     0.100
0.900     0.900     0.500     0.150
0.950     0.950     0.500     0.200
1.000     1.000     0.500     0.250

Mini example 1

We show the terminal output.

Running: example 1
 - writing csv file

The CSV output is as follows and identical to the results of the serial case presented in mini example 0. The fifth column shows the user quantity evaluated additionally in this mini example.

0.000     0.000     0.500     0.250     0.000
0.050     0.050     0.500     0.200     0.050
0.100     0.100     0.500     0.150     0.100
0.150     0.150     0.500     0.100     0.150
0.200     0.200     0.500     0.050     0.200
0.250     0.250     0.500     0.000     0.250
0.300     0.300     0.500    -0.050     0.300
0.350     0.350     0.500    -0.100     0.350
0.400     0.400     0.500    -0.149     0.400
0.450     0.450     0.500    -0.200     0.450
0.500     0.500     0.500    -0.222     0.500
0.550     0.550     0.500    -0.200     0.550
0.600     0.600     0.500    -0.149     0.600
0.650     0.650     0.500    -0.100     0.650
0.700     0.700     0.500    -0.050     0.700
0.750     0.750     0.500     0.000     0.750
0.800     0.800     0.500     0.050     0.800
0.850     0.850     0.500     0.100     0.850
0.900     0.900     0.500     0.150     0.900
0.950     0.950     0.500     0.200     0.950
1.000     1.000     0.500     0.250     1.000

Mini example 2

We show the terminal output.

Running: example 2
  - create system
  - determine narrow band
  - determine closest point iteratively
    - iteration 0: 7076 -> 7076
    - iteration 1: 7076 -> 104
    - iteration 2: 104 -> 0
  - determine distance in narrow band
  - perform extrapolation in narrow band
  - output results

The following three plots, representing the performed iterations of the closest-point projection, show the current position of the closest points exceeding the required tolerance of the discrete interface of the circle and still need to be corrected. It can be seen that the numbers of points to be processed decrease from iteration to iteration.

The output visualized in Paraview looks like the following: On the left, the original distance function is shown as the light gray surface. In addition, the contour values refer to the distance values determined from calculation of the distance to the closest points at the interface in the narrow band. It can be seen that the two functions coincide. Similarly, on the right, the original solution and the extrapolated solution from the interface is shown.

Mini example 3

We show a shortened version of the terminal output.

Running: example 3
  - creating background mesh
  - creating immersed mesh
time: 0
  - compute to be tested values (immersed mesh)
  - test values (background mesh)
  - write data (background mesh)
  - write mesh (immersed mesh)

time: 0.01
  - move support points (immersed mesh)
  - compute to be tested values (immersed mesh)
  - test values (background mesh)

time: 0.02
  - move support points (immersed mesh)
  - compute to be tested values (immersed mesh)
  - test values (background mesh)

...

time: 2
  - move support points (immersed mesh)
  - compute to be tested values (immersed mesh)
  - test values (background mesh)
  - write data (background mesh)
  - write mesh (immersed mesh)

The output visualized in Paraview looks like the following: The deformation of the immersed mesh by the reversible vortex flow can be seen. Due to discretization errors, the shape is not exactly circular at the end, illustrated in the right figure. The sharp nature of the surface-tension force vector, shown as vector plots, can be seen by its restriction to cells that are intersected by the immersed mesh.

Possibilities for extension

This program highlights some of the main capabilities of the distributed evaluation routines in deal.II. However, there are many related topics worth mentioning:

  • Performing a distributed search is an expensive step. That is why we suggest to provide hints to Utilities::MPI::RemotePointEvaluation and to reuse Utilities::MPI::RemotePointEvaluation instances in the case that the communication pattern has not changed. Furthermore, there are instances where no search is needed and the points are already sorted into the right cells. This is the case if the points are generated on the cell level (see step-85; CutFEM) or the points are automatically sorted into the correct (neighboring) cell (see step-68; PIC with Particles::ParticleHandler). Having said that, the Particles::ParticleHandler::insert_global_particles() function uses the described infrastructure to perform the initial sorting of particles into cells.
  • We concentrated on parallelization aspects in this tutorial. However, we would like to point out the need for fast evaluation on cell level. The task for this in deal.II is FEPointEvaluation. It exploits the structure of

    \[ \hat{u}(\hat{\boldsymbol{x}}) = \sum_i \hat{N}_i(\hat{\boldsymbol{x}}) \hat{u}_i \]

    to derive fast implementations, e.g., for tensor-product elements

    \[ \hat{u}(\hat{x}_0, \hat{x}_1, \hat{x}_2) = \sum_k \hat{N}^{\text{1D}}_k(\hat{x}_2) \sum_j \hat{N}^{\text{1D}}_j(\hat{x}_1) \sum_i \hat{N}^{\text{1D}}_i(\hat{x}_0) \hat{u}_{ijk}. \]

    Since only 1D shape functions are queried and are re-used in re-occurring terms, this formulation is faster than without exploitation of the structure.
  • Utilities::MPI::RemotePointEvaluation is used in multiple places in deal.II. The class DataOutResample allows to output results on a different mesh than the computational mesh. This is useful if one wants to output the results on a coarser mesh or one does not want to output 3D results but instead 2D slices. In addition, MGTwoLevelTransferNonNested allows to prolongate solutions and restrict residuals between two independent meshes. By passing a sequence of such two-level transfer operators to MGTransferMF and, finally, to Multigrid, non-nested multigrid can be computed.
  • Utilities::MPI::RemotePointEvaluation can be used to couple non-matching grids via surfaces (example: fluid-structure interaction, independently created grids). The evaluation points can come from any side (pointwise interpolation) or are defined on intersected meshes (Nitsche-type mortaring [106]). Concerning the creation of such intersected meshes and the corresponding evaluation points, see GridTools::internal::distributed_compute_intersection_locations().
  • Alternatively to the coupling via Utilities::MPI::RemotePointEvaluation, preCICE [48] [55] can be used. The code-gallery program "Laplace equation coupled to an external simulation program" shows how to use this library with deal.II.

The plain program

/* ------------------------------------------------------------------------
*
* SPDX-License-Identifier: LGPL-2.1-or-later
* Copyright (C) 2023 by the deal.II authors
*
* This file is part of the deal.II library.
*
* Part of the source code is dual licensed under Apache-2.0 WITH
* LLVM-exception OR LGPL-2.1-or-later. Detailed license information
* governing the source code and code contributions can be found in
* LICENSE.md and CONTRIBUTING.md at the top level directory of deal.II.
*
* ------------------------------------------------------------------------
*
*
* Authors: Magdalena Schreter-Fleischhacker, Technical University of
* Munich, 2023
* Peter Munch, University of Augsburg, 2023
*/
#include <deal.II/base/mpi.templates.h>
#include <iostream>
#include <fstream>
namespace Step87
{
using namespace dealii;
#ifdef DEAL_II_WITH_P4EST
template <int dim, int spacedim = dim>
using DistributedTriangulation = typename std::conditional_t<
dim == 1,
#else
template <int dim, int spacedim = dim>
#endif
template <int spacedim>
std::vector<Point<spacedim>>
const unsigned int n_subdivisions);
template <int spacedim, typename T0, typename T1 = int>
void print_along_line(const std::string &file_name,
const std::vector<Point<spacedim>> &points,
const std::vector<T0> &values_0,
const std::vector<T1> &values_1 = {});
template <int dim, int spacedim>
const Mapping<dim, spacedim> &mapping,
const DoFHandler<dim, spacedim> &dof_handler,
template <int dim, int spacedim, typename T>
std::tuple<std::vector<Point<spacedim>>, std::vector<types::global_dof_index>>
const Mapping<dim, spacedim> &mapping,
const LinearAlgebra::distributed::Vector<T> &signed_distance,
const double narrow_band_threshold);
template <int spacedim>
std::vector<Point<spacedim>> convert(
void example_0()
{
std::cout << "Running: example 0" << std::endl;
constexpr unsigned int dim = 2;
constexpr unsigned int fe_degree = 3;
MappingQ1<dim> mapping;
FE_Q<dim> fe(fe_degree);
DoFHandler<dim> dof_handler(tria);
dof_handler.distribute_dofs(fe);
Vector<double> vector(dof_handler.n_dofs());
dof_handler,
(dim == 1) ? Point<dim>(0.5) :
(dim == 2) ? Point<dim>(0.5, 0.5) :
Point<dim>(0.5, 0.5, 0.5),
0.25),
vector);
const auto points_line =
(dim == 2) ? Point<dim>(0.0, 0.5) :
Point<dim>(0.0, 0.5, 0.5),
(dim == 1) ? Point<dim>(1.0) :
(dim == 2) ? Point<dim>(1.0, 0.5) :
Point<dim>(1.0, 0.5, 0.5),
20);
std::vector<double> values_line;
values_line.reserve(points_line.size());
for (const auto &p_real : points_line)
{
const auto [cell, p_unit] =
dof_handler,
{
AssertThrow(cell != dof_handler.end(), ExcInternalError());
std::cout << " - Found point with real coordinates: " << p_real
<< std::endl;
std::cout << " - in cell with vertices:";
for (const auto &v : cell->vertex_indices())
std::cout << " (" << cell->vertex(v) << ")";
std::cout << std::endl;
std::cout << " - with coordinates on the unit cell: (" << p_unit
<< ")" << std::endl;
}
std::cout << " - Values at point:" << std::endl;
{
FEValues<dim> fe_values(mapping,
fe,
fe_values.reinit(cell);
std::vector<double> quad_values(1);
fe_values.get_function_values(vector, quad_values);
const double value_0 = quad_values[0];
std::cout << " - " << value_0 << " (w. FEValues)" << std::endl;
values_line.push_back(value_0);
}
{
std::vector<double> cell_vector(fe.n_dofs_per_cell());
cell->get_dof_values(vector, cell_vector.begin(), cell_vector.end());
fe_point.reinit(cell, ArrayView<const Point<dim>>(p_unit));
fe_point.evaluate(cell_vector, EvaluationFlags::values);
const auto value_1 = fe_point.get_value(0);
std::cout << " - " << value_1 << " (w. FEPointEvaluation)"
<< std::endl;
}
{
const auto value_2 =
VectorTools::point_value(dof_handler, vector, p_real);
std::cout << " - " << value_2 << " (w. VectorTools::point_value())"
<< std::endl;
std::cout << std::endl;
}
}
std::cout << " - writing csv file" << std::endl;
print_along_line("example_0_profile.csv", points_line, values_line);
}
void example_1()
{
constexpr unsigned int dim = 2;
constexpr unsigned int fe_degree = 3;
0);
pcout << "Running: example 1" << std::endl;
FE_Q<dim> fe(fe_degree);
DoFHandler<dim> dof_handler(tria);
dof_handler.distribute_dofs(fe);
signed_distance.reinit(dof_handler.locally_owned_dofs(),
dof_handler,
(dim == 1) ? Point<dim>(0.5) :
(dim == 2) ? Point<dim>(0.5, 0.5) :
Point<dim>(0.5, 0.5, 0.5),
0.25),
signed_distance);
solution.reinit(dof_handler.locally_owned_dofs(),
dof_handler,
solution);
std::vector<Point<dim>> profile;
(dim == 2) ? Point<dim>(0.0, 0.5) :
Point<dim>(0.0, 0.5, 0.5),
(dim == 1) ? Point<dim>(1.0) :
(dim == 2) ? Point<dim>(1.0, 0.5) :
Point<dim>(1.0, 0.5, 0.5),
20);
signed_distance.update_ghost_values();
const std::vector<double> profile_signed_distance =
VectorTools::point_values<1>(
mapping, dof_handler, signed_distance, profile, rpe);
const auto evaluate_function = [&](const ArrayView<double> &values,
const auto &cell_data) {
std::vector<double> local_values;
std::vector<types::global_dof_index> local_dof_indices;
for (const auto cell : cell_data.cell_indices())
{
const auto cell_dofs =
cell_data.get_active_cell_iterator(cell)->as_dof_handler_iterator(
dof_handler);
const auto unit_points = cell_data.get_unit_points(cell);
const auto local_value = cell_data.get_data_view(cell, values);
local_values.resize(cell_dofs->get_fe().n_dofs_per_cell());
cell_dofs->get_dof_values(solution,
local_values.begin(),
local_values.end());
fe_point.reinit(cell_dofs, unit_points);
for (unsigned int q = 0; q < unit_points.size(); ++q)
local_value[q] = fe_point.get_value(q);
}
};
solution.update_ghost_values();
const std::vector<double> output =
DataOut<dim> data_out;
data_out.add_data_vector(dof_handler, signed_distance, "signed_distance");
data_out.build_patches(mapping);
data_out.write_vtu_in_parallel("example_1.vtu", MPI_COMM_WORLD);
{
std::cout << " - writing csv file" << std::endl;
print_along_line("example_1_profile.csv",
output);
}
}
void example_2()
{
constexpr unsigned int dim = 2;
constexpr unsigned int fe_degree = 3;
0);
pcout << "Running: example 2" << std::endl;
pcout << " - create system" << std::endl;
FE_Q<dim> fe(fe_degree);
DoFHandler<dim> dof_handler(tria);
dof_handler.distribute_dofs(fe);
solution.reinit(dof_handler.locally_owned_dofs(),
dof_handler,
solution);
signed_distance.reinit(dof_handler.locally_owned_dofs(),
dof_handler,
(dim == 1) ? Point<dim>(0.5) :
(dim == 2) ? Point<dim>(0.5, 0.5) :
Point<dim>(0.5, 0.5, 0.5),
0.25),
signed_distance);
signed_distance.update_ghost_values();
pcout << " - determine narrow band" << std::endl;
dof_handler,
signed_distance,
dof_handler,
0.1 /*narrow_band_threshold*/);
pcout << " - determine closest point iteratively" << std::endl;
constexpr int max_iter = 30;
constexpr double tol_distance = 1e-6;
std::vector<Point<dim>> closest_points = support_points; // initial guess
std::vector<unsigned int> unmatched_points_idx(closest_points.size());
std::iota(unmatched_points_idx.begin(), unmatched_points_idx.end(), 0);
{
pcout << " - iteration " << it << ": " << n_unmatched_points;
std::vector<Point<dim>> unmatched_points(unmatched_points_idx.size());
for (unsigned int i = 0; i < unmatched_points_idx.size(); ++i)
const auto all_unmatched_points =
Utilities::MPI::reduce<std::vector<Point<dim>>>(
unmatched_points, MPI_COMM_WORLD, [](const auto &a, const auto &b) {
auto result = a;
result.insert(result.end(), b.begin(), b.end());
return result;
});
{
std::ofstream file("example_2_" + std::to_string(it) + ".csv");
for (const auto &p : all_unmatched_points)
file << p << std::endl;
file.close();
}
rpe.reinit(unmatched_points, tria, mapping);
ExcMessage("Processed point is outside domain."));
const auto eval_values =
VectorTools::point_values<1>(rpe, dof_handler, signed_distance);
const auto eval_gradient =
VectorTools::point_gradients<1>(rpe, dof_handler, signed_distance);
std::vector<unsigned int> unmatched_points_idx_next;
for (unsigned int i = 0; i < unmatched_points_idx.size(); ++i)
{
}
pcout << " -> " << n_unmatched_points << std::endl;
}
pcout << "WARNING: The tolerance of " << n_unmatched_points
<< " points is not yet attained." << std::endl;
pcout << " - determine distance in narrow band" << std::endl;
solution_distance.reinit(solution);
for (unsigned int i = 0; i < closest_points.size(); ++i)
support_points[i].distance(closest_points[i]);
pcout << " - perform extrapolation in narrow band" << std::endl;
rpe.reinit(closest_points, tria, mapping);
solution.update_ghost_values();
const auto vals = VectorTools::point_values<1>(rpe, dof_handler, solution);
solution_extrapolated.reinit(solution);
for (unsigned int i = 0; i < closest_points.size(); ++i)
pcout << " - output results" << std::endl;
DataOut<dim> data_out;
data_out.add_data_vector(dof_handler, signed_distance, "signed_distance");
data_out.add_data_vector(dof_handler, solution, "solution");
data_out.add_data_vector(dof_handler,
"solution_distance");
data_out.add_data_vector(dof_handler,
"solution_extrapolated");
data_out.build_patches(mapping);
data_out.write_vtu_in_parallel("example_2.vtu", MPI_COMM_WORLD);
pcout << std::endl;
}
void example_3()
{
constexpr unsigned int degree = 3;
constexpr unsigned int dim = 2;
const double dt = 0.01;
const unsigned int n_time_steps = 200;
static_assert(dim == 2 || dim == 3, "Only implemented for 2D or 3D.");
0);
pcout << "Running: example 3" << std::endl;
pcout << " - creating background mesh" << std::endl;
tria_background.refine_global(5);
pcout << " - creating immersed mesh" << std::endl;
const Point<dim> center((dim == 2) ? Point<dim>(0.5, 0.75) :
Point<dim>(0.5, 0.75, 0.5));
const double radius = 0.15;
tria_immersed.refine_global(4);
MappingQ<dim - 1, dim> mapping_immersed_base(3);
MappingQCache<dim - 1, dim> mapping_immersed(3);
QGauss<dim - 1> quadrature_immersed(degree + 1);
FE_Q<dim - 1, dim> fe_scalar_immersed(degree);
velocity.reinit(dof_handler_background.locally_owned_dofs(),
dof_handler_background.locally_owned_dofs(),
double time = 0.0;
for (unsigned int it = 0; it <= n_time_steps; ++it, time += dt)
{
pcout << "time: " << time << std::endl;
if (it > 0)
{
pcout << " - move support points (immersed mesh)" << std::endl;
vortex.set_time(time);
"Immersed domain leaves background domain!"));
velocity.update_ghost_values();
const auto immersed_velocity =
VectorTools::point_values<dim>(rpe,
for (unsigned int i = 0, c = 0;
i < immersed_support_points.locally_owned_size() / dim;
++i)
for (unsigned int d = 0; d < dim; ++d, ++c)
immersed_support_points.local_element(c) +=
false);
}
pcout << " - compute to be tested values (immersed mesh)" << std::endl;
std::vector<Point<dim>> integration_points;
std::vector<value_type> integration_values;
FEValues<dim - 1, dim> fe_values(mapping_immersed,
FEValues<dim - 1, dim> fe_values_co(
fe_scalar_immersed.get_unit_support_points(),
std::vector<unsigned int> component_to_system_index(
fe_immersed.n_dofs_per_cell());
for (unsigned int i = 0, c = 0;
i < fe_scalar_immersed.n_dofs_per_cell();
++i)
for (unsigned int d = 0; d < dim; ++d, ++c)
component_to_system_index[c] =
fe_immersed.component_to_system_index(d, i);
for (const auto &cell : tria_immersed.active_cell_iterators() |
IteratorFilters::LocallyOwnedCell())
{
fe_values.reinit(cell);
fe_values_co.reinit(cell);
for (const auto &q : fe_values.quadrature_point_indices())
{
integration_points.emplace_back(fe_values.quadrature_point(q));
const auto sigma = 1.0; // surface tension coefficient
const auto normal = fe_values.normal_vector(q);
double curvature = 0;
for (unsigned int i = 0, c = 0;
i < fe_scalar_immersed.n_dofs_per_cell();
++i)
for (unsigned int d = 0; d < dim; ++d, ++c)
curvature += fe_values.shape_grad_component(
component_to_system_index[c], q, d)[d] *
fe_values_co.normal_vector(i)[d];
const auto FxJxW =
sigma * curvature * normal * fe_values.JxW(q);
integration_values.emplace_back(FxJxW);
}
}
pcout << " - test values (background mesh)" << std::endl;
const auto integration_function = [&](const auto &values,
const auto &cell_data) {
std::vector<double> local_values;
std::vector<types::global_dof_index> local_dof_indices;
for (const auto cell : cell_data.cell_indices())
{
const auto cell_dofs =
cell_data.get_active_cell_iterator(cell)
->as_dof_handler_iterator(dof_handler_background);
const auto unit_points = cell_data.get_unit_points(cell);
const auto FxJxW = cell_data.get_data_view(cell, values);
phi_force.reinit(cell_dofs, unit_points);
for (const auto q : phi_force.quadrature_point_indices())
phi_force.submit_value(FxJxW[q], q);
local_values.resize(cell_dofs->get_fe().n_dofs_per_cell());
local_dof_indices.resize(cell_dofs->get_fe().n_dofs_per_cell());
cell_dofs->get_dof_indices(local_dof_indices);
AffineConstraints<double>().distribute_local_to_global(
local_values, local_dof_indices, force_vector);
}
};
if (it % 10 == 0 || it == n_time_steps)
{
std::vector<
pcout << " - write data (background mesh)" << std::endl;
flags_background.write_higher_order_cells = true;
data_out_background.add_data_vector(
std::vector<std::string>(dim, "force"),
data_out_background.add_data_vector(
std::vector<std::string>(dim, "velocity"),
data_out_background.write_vtu_in_parallel("example_3_background_" +
std::to_string(it) +
".vtu",
pcout << " - write mesh (immersed mesh)" << std::endl;
DataOut<dim - 1, dim> data_out_immersed;
data_out_immersed.attach_triangulation(tria_immersed);
data_out_immersed.write_vtu_in_parallel("example_3_immersed_" +
std::to_string(it) +
".vtu",
}
pcout << std::endl;
}
}
template <int spacedim>
std::vector<Point<spacedim>>
const unsigned int n_subdivisions)
{
Assert(n_subdivisions >= 1, ExcInternalError());
std::vector<Point<spacedim>> points;
points.reserve(n_subdivisions + 1);
points.emplace_back(p0);
for (unsigned int i = 1; i < n_subdivisions; ++i)
points.emplace_back(p0 + (p1 - p0) * static_cast<double>(i) /
static_cast<double>(n_subdivisions));
points.emplace_back(p1);
return points;
}
template <int spacedim, typename T0, typename T1>
void print_along_line(const std::string &file_name,
const std::vector<Point<spacedim>> &points,
const std::vector<T0> &values_0,
const std::vector<T1> &values_1)
{
AssertThrow(points.size() == values_0.size() &&
(values_1.size() == points.size() || values_1.empty()),
ExcMessage("The provided vectors must have the same length."));
std::ofstream file(file_name);
for (unsigned int i = 0; i < points.size(); ++i)
{
file << std::fixed << std::right << std::setw(5) << std::setprecision(3)
<< points[0].distance(points[i]);
for (unsigned int d = 0; d < spacedim; ++d)
file << std::fixed << std::right << std::setw(10)
<< std::setprecision(3) << points[i][d];
file << std::fixed << std::right << std::setw(10)
<< std::setprecision(3) << values_0[i];
if (!values_1.empty())
file << std::fixed << std::right << std::setw(10)
<< std::setprecision(3) << values_1[i];
file << std::endl;
}
}
template <int dim, int spacedim>
const Mapping<dim, spacedim> &mapping,
const DoFHandler<dim, spacedim> &dof_handler,
{
support_points.reinit(dof_handler.locally_owned_dofs(),
dof_handler.get_communicator());
const auto &fe = dof_handler.get_fe();
mapping,
fe,
fe.base_element(0).get_unit_support_points(),
std::vector<types::global_dof_index> local_dof_indices(
fe.n_dofs_per_cell());
std::vector<unsigned int> component_to_system_index(
fe_values.n_quadrature_points * spacedim);
for (unsigned int q = 0, c = 0; q < fe_values.n_quadrature_points; ++q)
for (unsigned int d = 0; d < spacedim; ++d, ++c)
component_to_system_index[c] = fe.component_to_system_index(d, q);
for (const auto &cell : dof_handler.active_cell_iterators() |
IteratorFilters::LocallyOwnedCell())
{
fe_values.reinit(cell);
cell->get_dof_indices(local_dof_indices);
for (unsigned int q = 0, c = 0; q < fe_values.n_quadrature_points; ++q)
for (unsigned int d = 0; d < spacedim; ++d, ++c)
support_points[local_dof_indices[component_to_system_index[c]]] =
fe_values.quadrature_point(q)[d];
}
}
template <int dim, int spacedim, typename T>
std::tuple<std::vector<Point<spacedim>>, std::vector<types::global_dof_index>>
const Mapping<dim, spacedim> &mapping,
const LinearAlgebra::distributed::Vector<T> &signed_distance,
const double narrow_band_threshold)
{
ExcMessage("The narrow band threshold"
" must be larger than or equal to 0."));
const auto &tria = dof_handler_signed_distance.get_triangulation();
.base_element(0)
.get_unit_support_points());
quad,
quad,
std::vector<T> temp_distance(quad.size());
std::vector<types::global_dof_index> local_dof_indices(
dof_handler_support_points.get_fe().n_dofs_per_cell());
std::vector<Point<dim>> support_points;
std::vector<types::global_dof_index> support_points_idx;
const bool has_ghost_elements = signed_distance.has_ghost_elements();
const auto &locally_owned_dofs_req =
dof_handler_support_points.locally_owned_dofs();
std::vector<bool> flags(locally_owned_dofs_req.n_elements(), false);
if (has_ghost_elements == false)
signed_distance.update_ghost_values();
for (const auto &cell :
tria.active_cell_iterators() | IteratorFilters::LocallyOwnedCell())
{
const auto cell_distance =
cell->as_dof_handler_iterator(dof_handler_signed_distance);
distance_values.get_function_values(signed_distance, temp_distance);
const auto cell_req =
cell->as_dof_handler_iterator(dof_handler_support_points);
cell_req->get_dof_indices(local_dof_indices);
for (const auto q : req_values.quadrature_point_indices())
{
const auto idx = local_dof_indices[q];
if (locally_owned_dofs_req.is_element(idx) == false ||
flags[locally_owned_dofs_req.index_within_set(idx)])
continue;
flags[locally_owned_dofs_req.index_within_set(idx)] = true;
support_points_idx.emplace_back(idx);
support_points.emplace_back(req_values.quadrature_point(q));
}
}
if (has_ghost_elements == false)
signed_distance.zero_out_ghost_values();
}
template <int spacedim>
std::vector<Point<spacedim>> convert(
{
const unsigned int n_points =
support_points_unrolled.locally_owned_size() / spacedim;
std::vector<Point<spacedim>> points(n_points);
for (unsigned int i = 0, c = 0; i < n_points; ++i)
for (unsigned int d = 0; d < spacedim; ++d, ++c)
points[i][d] = support_points_unrolled.local_element(c);
return points;
}
} // namespace Step87
int main(int argc, char **argv)
{
using namespace dealii;
std::cout.precision(5);
Step87::example_0(); // only run on root process
}
void reinit(const size_type size, const bool omit_zeroing_entries=false)
std::conditional_t< rank_==1, Number, Tensor< rank_ - 1, dim, Number > > value_type
Definition tensor.h:515
std::conditional_t< rank_==1, std::array< Number, dim >, std::array< Tensor< rank_ - 1, dim, Number >, dim > > values
Definition tensor.h:868
void evaluate_and_process(std::vector< T > &output, std::vector< T > &buffer, const std::function< void(const ArrayView< T > &, const CellData &)> &evaluation_function) const
void process_and_evaluate(const std::vector< T > &input, std::vector< T > &buffer, const std::function< void(const ArrayView< const T > &, const CellData &)> &evaluation_function) const
void reinit(const std::vector< Point< spacedim > > &points, const Triangulation< dim, spacedim > &tria, const Mapping< dim, spacedim > &mapping)
static ::ExceptionBase & ExcInternalError()
static ::ExceptionBase & ExcMessage(std::string arg1)
spacedim & mapping
spacedim const Point< spacedim > & p
Definition grid_tools.h:990
DEAL_II_CXX20_REQUIRES((concepts::is_triangulation_or_dof_handler< MeshType< dim, spacedim > >)) std spacedim ::active_cell_iterator find_active_cell_around_point(const MeshType< dim, spacedim > &mesh, const Point< spacedim > &p, const std::vector< bool > &marked_vertices={}, const double tolerance=1.e-10)
SymmetricTensor< 2, dim, Number > e(const Tensor< 2, dim, Number > &F)
SymmetricTensor< 2, dim, Number > b(const Tensor< 2, dim, Number > &F)