Reference documentation for deal.II version Git 42dd89c428 2021-07-27 06:40:55 +0200
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Bibliography
[1]

R. Agelek, M. Anderson, W. Bangerth, and W.L. Barth. On orienting edges of unstructured two- and three-dimensional meshes. ACM Transactions on Mathematical Software, 44(1):5/1–22, 2017.

[2]

M. Ainsworth and B. Senior. An adaptive refinement strategy for hp-finite element computations. Applied Numerical Mathematics, 26(1–2):165–178, 1998.

[3]

M. Ainsworth. A posteriori error estimation for discontinuous Galerkin finite element approximation. SIAM Journal on Numerical Analysis, 45(4):1777–1798, 2007.

[4]

P. Angot, C.-H. Bruneau, and P. Fabrie. A penalization method to take into account obstacles in incompressible viscous flows. Numerische Mathematik, 81(4):497–520, 1999.

[5]

I. Babuska and J.M. Melenk. The partition of unity method. International Journal for Numerical Methods in Engineering, 40(4):727–758, 1997.

[6]

W. Bangerth and R. Rannacher. Finite element approximation of the acoustic wave equation: Error control and mesh adaptation. East–West Journal of Numerical Mathematics, 7(4):263–282, 1999.

[7]

W. Bangerth and R. Rannacher. Adaptive finite element techniques for the acoustic wave equation. Journal of Computational Acoustics, 9(2):575–591, 2001.

[8]

W. Bangerth and R. Rannacher. Adaptive Finite Element Methods for Differential Equations. Birkhäuser Verlag, 2003.

[9]

W. Bangerth. Mesh adaptivity and error control for a finite element approximation of the elastic wave equation. In Alfredo Bermúdez, Dolores Gómez, Christophe Hazard, Patrick Joly, and Jean E. Roberts, editors, Proceedings of the Fifth International Conference on Mathematical and Numerical Aspects of Wave Propagation (Waves2000), Santiago de Compostela, Spain, 2000, pages 725–729, 2000.

[10]

W. Bangerth. Adaptive Finite Element Methods for the Identification of Distributed Parameters in Partial Differential Equations. PhD thesis, University of Heidelberg, 2002.

[11]

S. Bartels, C. Carstensen, and G. Dolzmann. Inhomogeneous dirichlet conditions in a priori and a posteriori finite element error analysis. Numerische Mathematik, 99(1):1–24, 2004.

[12]

J. Bebernes and D. Eberly. Mathematical Problems from Combustion Theory, volume 83 of Applied Mathematical Sciences. Springer-Verlag, New York, NY, 1989.

[13]

R. Becker and R. Rannacher. A feed-back approach to error control in finite element methods: Basic analysis and examples. East–West Journal of Numerical Mathematics, 4:237–264, 1996.

[14]

R. Becker and R. Rannacher. Weighted a posteriori error control in FE methods. In H. G. Bock et al., editor, ENUMATH 97, pages 621–637. World Scientific Publishing, Singapore, 1998.

[15]

R. Becker and R. Rannacher. An optimal control approach to error estimation and mesh adaptation in finite element methods. Acta Numerica, 10:1–102, 2001.

[16]

R. Becker. An Adaptive Finite Element Method for the Incompressible Navier–Stokes Equations on Time-dependent Domains. Dissertation, Universität Heidelberg, 1995.

[17]

R. Becker. Weighted error estimators for the incompressible Navier–Stokes equations. Preprint 98-20, Universität Heidelberg, 1998.

[18]

M.P. Bendsøe and O. Sigmund. Topology Optimization. Springer Berlin Heidelberg, 2004.

[19]

H.Y. Benson, R.J. Vanderbei, and D.F. Shanno. Interior-point methods for nonconvex nonlinear programs: Filter methods and merit functions. Computational Optimization and Applications, 23(2):257–272, 2002.

[20]

F. Black and M. Scholes. The pricing of options and corporate liabilities. The Journal of Political Economy, 81(3):637–654, 1973.

[21]

B. Blais, J.-P. Braeunig, D. Chauveheid, J.-M. Ghidaglia, and R. Loubère. Dealing with more than two materials in the FVCF–ENIP method. European Journal of Mechanics-B/Fluids, 42:1–9, 2013.

[22]

B. Blais, D. Vidal, F. Bertrand, G.S. Patience, and J. Chaouki. Experimental methods in chemical engineering: Discrete element method–DEM. The Canadian Journal of Chemical Engineering, 97(7):1964–1973, 2019.

[23]

D. Boffi, L. Gastaldi, L. Heltai, and Ch.S. Peskin. On the hyper-elastic formulation of the immersed boundary method. Computer Methods in Applied Mechanics and Engineering, 197(25-28):2210–2231, 2008.

[24]

S. Brenner and R. Scott. The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. Springer-Verlag, 3 edition, 2008.

[25]

S.C. Brenner and L.-Y. Sung. C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. Journal of Scientific Computing, 22(1):83–118, 2005.

[26]

S.C. Brenner, T. Gudi, and L.-Y. Sung. An a posteriori error estimator for a quadratic c0-interior penalty method for the biharmonic problem. IMA Journal of Numerical Analysis, 30(3):777–798, 2009.

[27]

S.C. Brenner. C0 interior penalty methods. In Lecture Notes in Computational Science and Engineering, pages 79–147. Springer Berlin Heidelberg, 2011.

[28]

A.N. Brooks and T.J.R. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 32(1-3):199–259, 1982. FENOMECH ''81, Part I (Stuttgart, 1981).

[29]

A. Cangiani, J. Chapman, E.H. Georgoulis, and M. Jensen. Implementation of the continuous-discontinuous Galerkin finite element method. In Numerical Mathematics and Advanced Applications 2011, pages 315–322. Springer Berlin Heidelberg, 2012.

[30]

G. F. Castelli. Numerical Investigation of Cahn–Hilliard-Type Phase-Field Models for Battery Active Particles. PhD thesis, Karlsruhe Institute of Technology (KIT), 2021. (To be published).

[31]

T.C. Clevenger, T. Heister, G. Kanschat, and M. Kronbichler. A flexible, parallel, adaptive geometric multigrid method for FEM. submitted, 2019.

[32]

B. Cockburn, J. Gopalakrishnan, and R. Lazarov. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM Journal on Numerical Analysis, 47(2):1319–1365, 2009.

[33]

B.D. Coleman and M.E. Gurtin. Thermodynamics with internal state variables. The Journal of Chemical Physics, 47(2):597–613, 1967.

[34]

B.D. Coleman and W. Noll. The thermodynamics of elastic materials with heat conduction and viscosity. Archive for Rational Mechanics and Analysis, 13(1):167–178, 1963.

[35]

S. Commend, A. Truty, and T. Zimmermann. Stabilized finite elements applied to elastoplasticity: I. Mixed displacement–pressure formulation. Computer Methods in Applied Mechanics and Engineering, 193(33):3559–3586, 2004.

[36]

D. Davydov, T. Gerasimov, J.-P. Pelteret, and P. Steinmann. Convergence study of the h-adaptive PUM and the hp-adaptive FEM applied to eigenvalue problems in quantum mechanics. Advanced Modeling and Simulation in Engineering Sciences, 4(1):7, 2017.

[37]

B.X. Fraeijs de Veubeke. Displacement and equilibrium models in the finite element method. In O.C. Zienkiewicz and G.S. Holister, editors, Stress Analysis, pages 275–284. Wiley, New York, 1965.

[38]

H.-Y. Duan and Q. Lin. Mixed finite elements of least-squares type for elasticity. Computer Methods in Applied Mechanics and Engineering, 194(9):1093–1112, 2005.

[39]

T. Eibner and J.M. Melenk. An adaptive strategy for hp-FEM based on testing for analyticity. Computational Mechanics, 39(5):575–595, 2007.

[40]

F.T. Eleuterio. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag, Berlin, Heidelberg, 2009.

[41]

H.C. Elman, D.J. Silvester, and A.J. Wathen. Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford, New York, 2005.

[42]

G. Engel, K. Garikipati, T.J.R. Hughes, M.G. Larson, L. Mazzei, and R.L. Taylor. Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Computer Methods in Applied Mechanics and Engineering, 191(34):3669–3750, 2002.

[43]

A. Ern and J.-L. Guermond. Theory and practice of finite elements, volume 159 of Applied Mathematical Sciences. Springer-Verlag, New York, 2004.

[44]

M. Fehling. Algorithms for massively parallel generic hp-adaptive finite element methods. PhD thesis, Bergische Universität Wuppertal, 2020.

[45]

N. Fehn, W.A. Wall, and M. Kronbichler. A matrix-free high-order discontinuous Galerkin compressible Navier–Stokes solver: A performance comparison of compressible and incompressible formulations for turbulent incompressible flows. International Journal for Numerical Methods in Fluids, 89(3):71–102, 2019.

[46]

J. Freund and R. Stenberg. On weakly imposed boundary conditions for second order problems. In Proceedings of the Ninth International Conference on Finite Elements in Fluids, pages 327–336, 1995.

[47]

I. Fried and D.S. Malkus. Finite element mass matrix lumping by numerical integration with no convergence rate loss. International Journal of Solids and Structures, 11(4):461–466, 1975.

[48]

C. Führer and G. Kanschat. A posteriori error control in radiative transfer. Computing, 58(4):317–334, 1997.

[49]

R. Gassmöller, H. Lokavarapu, E. Heien, E.G. Puckett, and W. Bangerth. Flexible and scalable particle-in-cell methods with adaptive mesh refinement for geodynamic computations. Geochemistry, Geophysics, Geosystems, 19(9):3596–3604, 2018.

[50]

R. Gassmöller, H. Lokavarapu, W. Bangerth, and E.G. Puckett. Evaluating the accuracy of hybrid finite element/particle-in-cell methods for modelling incompressible Stokes flow. Geophysical Journal International, 219(3):1915–1938, 2019.

[51]

G.J. Gassner. A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM Journal on Scientific Computing, 35(3):A1233–A1253, 2013.

[52]

S. Geevers, W.A. Mulder, and J.J.W. van der Vegt. New higher-order mass-lumped tetrahedral elements for wave propagation modelling. SIAM Journal on Scientific Computing, 40(5):A2830–A2857, 2018.

[53]

R. Glowinski, T.-W. Pan, T.I. Hesla, and D.D. Joseph. A distributed lagrange multiplier/fictitious domain method for particulate flows. International Journal of Multiphase Flow, 25(5):755–794, 1999.

[54]

S. Gottlieb, C.-W. Shu, and E. Tadmor. Strong stability-preserving high-order time discretization methods. SIAM review, 43(1):89–112, 2001.

[55]

I. Griva, S.G. Nash, and A. Sofer. Linear and nonlinear optimization. 2nd edition, 2008.

[56]

J.-L. Guermond and B. Popov. Fast estimation of the maximum wave speed in the Riemann problem for the Euler equations. Journal of Computational Physics, 321:908–926, 2016.

[57]

J.-L. Guermond and B. Popov. Invariant domains and first-order continuous finite element approximation for hyperbolic systems. SIAM Journal on Numerical Analysis, 54(4):2466–2489, 2016.

[58]

J.-L. Guermond, M. Nazarov, B. Popov, and I. Tomas. Second-order invariant domain preserving approximation of the Euler equations using convex limiting. SIAM Journal on Scientific Computing, 40(5):A3211–A3239, 2018.

[59]

R.J. Guyan. Reduction of stiffness and mass matrices. AIAA Journal, 3(2):380–380, 1965.

[60]

R. Hartmann and P. Houston. Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations. Journal of Computational Physics, 183(2):508–532, 2002.

[61]

R. Hartmann and P. Houston. Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws. Journal on Scientific Computing, 24(3):979–1004, 2003.

[62]

R. Hartmann. Adaptive Finite Element Methods for the Compressible Euler Equations. PhD thesis, Universität Heidelberg, 2002.

[63]

L. Heltai and F. Costanzo. Variational implementation of immersed finite element methods. Computer Methods in Applied Mechanics and Engineering, 229-232:110–127, 2012.

[64]

T. Hoefler, C. Siebert, and A. Lumsdaine. Scalable communication protocols for dynamic sparse data exchange. ACM Sigplan Notices, 45(5):159–168, 2010.

[65]

G.A. Holzapfel and J.C. Simo. A new viscoelastic constitutive model for continuous media at finite thermomechanical changes. International Journal of Solids and Structures, 33(20–22):3019–3034, 1996.

[66]

G.A. Holzapfel. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. John Wiley & Sons Ltd., West Sussex, England, 2007.

[67]

P. Houston and E. Süli. A note on the design of hp-adaptive finite element methods for elliptic partial differential equations. Computer Methods in Applied Mechanics and Engineering, 194(2):229–243, 2005.

[68]

V. John and P. Knobloch. On discontinuity—capturing methods for convection—diffusion equations. In Numerical Mathematics and Advanced Applications, pages 336–344. Springer, 2006.

[69]

C. Johnson and J. Pitkäranta. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Mathematics of Computation, 46(173):1–26, 1986.

[70]

G. Kanschat. Parallel and Adaptive Galerkin Methods for Radiative Transfer Problems. Dissertation, Universität Heidelberg, 1996.

[71]

G. Kanschat. Notes on applied mathematics: Iterative methods, schwarz preconditioners and multigrid. 2015.

[72]

O.A. Karakashian and F. Pascal. A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM Journal on Numerical Analysis, 41(6):2374–2399, 2003.

[73]

R.B. Kellogg. On the Poisson equation with intersecting interfaces. Applicable Analysis, 4(2):101–129, 1974.

[74]

D.W. Kelly, J.P. De S. R. Gago, O.C. Zienkiewicz, and I. Babuska. A posteriori error analysis and adaptive processes in the finite element method: Part I–error analysis. International Journal for Numerical Methods in Engineering, 19:1593–1619, 1983.

[75]

C.A. Kennedy, M.H. Carpenter, and R.M. Lewis. Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Applied Numerical Mathematics, 35:177–219, 2000.

[76]

N. Koprowski-Theiss, M. Johlitz, and S. Diebels. Characterizing the time dependence of filled EPDM. Rubber Chemistry and Technology, 84(2):147–165, 2011.

[77]

J. Korelc and P. Wriggers. Automation of Finite Element Methods. Springer Nature, 2016.

[78]

L.I.G. Kovasznay. Laminar flow behind a two-dimensional grid. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 44, pages 58–62. Cambridge University Press, 1948.

[79]

M. Kronbichler and K. Kormann. Fast matrix-free evaluation of discontinuous Galerkin finite element operators. ACM Transactions on Mathematical Software, 45(3):29:1–29:40, 2019.

[80]

M. Kronbichler, S. Schoeder, C. Müller, and W.A. Wall. Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation. International Journal for Numerical Methods in Engineering, 2016.

[81]

H. Li and X. Zhang. Superconvergence of C0-Qk finite element method for elliptic equations with approximated coefficients. Journal of Scientific Computing, 82(1), 2020.

[82]

C. Linder, M. Tkachuk, and C. Miehe. A micromechanically motivated diffusion-based transient network model and its incorporation into finite rubber viscoelasticity. Journal of the Mechanics and Physics of Solids, 59(10):2134–2156, 2011.

[83]

A. Logg, K.-A. Mardal, and G. Wells, editors. Automated Solution of Differential Equations by the Finite Element Method. Springer Berlin Heidelberg, 2012.

[84]

R. Lohner. Edge-Based Compressible Flow Solvers. John Wiley & Sons, Ltd, 2008.

[85]

C. Mavriplis. Adaptive mesh strategies for the spectral element method. Computer Methods in Applied Mechanics and Engineering, 116(1):77–86, 1994.

[86]

S. McConnell. Code Complete. Microsoft Press, second edition, 2004.

[87]

J.M. Melenk and I. Babuska. The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139(1–4):289–314, 1996.

[88]

J.M. Melenk and B.I. Wohlmuth. On residual-based a posteriori error estimation in hp-FEM. Advances in Computational Mathematics, 15(1):311–331, 2001.

[89]

W.F. Mitchell and M.A. McClain. A comparison of hp-adaptive strategies for elliptic partial differential equations. ACM Transactions on Mathematical Software, 41(1), 2014.

[90]

W.F. Mitchell. The hp‐multigrid method applied to hp‐adaptive refinement of triangular grids. Numerical Linear Algebra with Applications, 17(2-3), 2010.

[91]

M. Mu. PDE.Mart: A network-based problem-solving environment for PDEs. ACM Transactions on Mathematical Software, 31(4):508–531, 2005.

[92]

P. Munch, K. Kormann, and M. Kronbichler. hyper.deal: An efficient, matrix-free finite-element library for high-dimensional partial differential equations, 2020.

[93]

N.C. Nguyen and J. Peraire. Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics. Journal of Computational Physics, 231(18):5955–5988, 2012.

[94]

J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in Operations Research. Springer, New York, 1999.

[95]

J. Nocedal and S. Wright. Numerical Optimization. Springer New York, 2006.

[96]

J. Nocedal, A. Wächter, and R.A. Waltz. Adaptive barrier update strategies for nonlinear interior methods. SIAM Journal on Optimization, 19(4):1674–1693, 2009.

[97]

Y.H. Pao. Electromagnetic forces in deformable continua. In S. Nemat-Nasser, editor, Mechanics Today, volume 4 of Pergamon Mechanics Today Series, chapter IV, pages 209–305. Elsevier, New York, 1978.

[98]

C. Park and D. Sheen. P1-nonconforming quadrilateral finite element methods for second-order elliptic problems. SIAM Journal on Numerical Analysis, 41(2):624–640, 2003.

[99]

J.-P. Pelteret and P. Steinmann. Magneto-active polymers: Fabrication, characterisation, modelling and simulation at the micro- and macro-scale. De Gruyter Mouton, 1 edition, 2019.

[100]

J.-P. Pelteret, B. Walter, and P. Steinmann. Application of metaheuristic algorithms to the identification of nonlinear magneto-viscoelastic constitutive parameters. Journal of Magnetism and Magnetic Materials, 464:116–131, 2018.

[101]

D.A. Di Pietro and A. Ern. Mathematical aspects of discontinuous Galerkin methods, volume 69. Springer Science & Business Media, 2011.

[102]

R. Rannacher and F.-T. Suttmeier. A feed-back approach to error control in finite element methods: Application to linear elasticity. Computational Mechanics, 19(5):434–446, 1997.

[103]

R. Rannacher and F.-T. Suttmeier. A posteriori error control in finite element methods via duality techniques: Application to perfect plasticity. Computational Mechanics, 21(2):123–133, 1998.

[104]

R. Rannacher and F.-T. Suttmeier. A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 176(1):333–361, 1999.

[105]

B. Rivière, M.F. Wheeler, and V. Girault. Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I. Computational Geosciences, 3(3):337–360, 1999.

[106]

Y. Saad. A Flexible Inner-Outer Preconditioned GMRES Algorithm. Technical Report 91-279, Minnesota Supercomputer Institute, University of Minnesota, 1991.

[107]

N. Schlömer. quadpy: Your one-stop shop for numerical integration in Python, 2021.

[108]

S. Schoeder, K. Kormann, W.A. Wall, and M. Kronbichler. Efficient explicit time stepping of high order discontinuous Galerkin schemes for waves. SIAM Journal on Scientific Computing, 40(6):C803–C826, 2018.

[109]

D. Silvester and A. Wathen. Fast iterative solution of stabilised Stokes systems. Part II: Using general block preconditioners. SIAM Journal on Numerical Analysis, 31:1352–1367, 1994.

[110]

B. Smith, P. Bjorstad, and W. Gropp. Domain decomposition: parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, 2004.

[111]

C.E. Stanley and F.W. Homer. Choosing the forcing terms in an inexact Newton method. SIAM Journal on Scientific Computing, 17(1):16–32, 1996.

[112]

H.R. Stoll. The relationship between put and call option prices. The Journal of Finance, 24(5):801–824, 1969.

[113]

F.-T. Suttmeier. Adaptive Finite Element Approximation of Problems in Elasto-Plasticity Theory. Dissertation, Universität Heidelberg, 1996.

[114]

A. Toselli and O. Widlund. Domain decomposition methods-algorithms and theory, volume 34. Springer Science & Business Media, 2006.

[115]

C. Truesdell and R. Toupin. Encyclopedia of Physics: Principles of Thermodynamics and Statics, volume 1, chapter 2: The classical field theories, pages 226–794. Springer-Verlag Berlin Heidelberg, 1960.

[116]

K. Tselios and T.E. Simos. Optimized Runge–Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. Physics Letters A, 363:38–48, 2007.

[117]

A. Wächter and L.T. Biegler. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25–57, 2005.

[118]

Z. Wang, G. Harper, P. O'Leary, J. Liu, and S. Tavener. deal.II implementation of a weak Galerkin finite element solver for darcy flow. In Lecture Notes in Computer Science, pages 495–509. Springer International Publishing, 2019.

[119]

G.N. Wells and N.T. Dung. A C0 discontinuous Galerkin formulation for Kirchhoff plates. Computer Methods in Applied Mechanics and Engineering, 196(35-36):3370–3380, 2007.

[120]

F.D. Witherden and P.E. Vincent. On the identification of symmetric quadrature rules for finite element methods. Computers & Mathematics with Applications, 69(10):1232–1241, 2015.