15#ifndef dealii_mapping_q_internal_h
16#define dealii_mapping_q_internal_h
62 template <
int spacedim>
70 return Point<1>((p[0] - vertices[0][0]) /
71 (vertices[1][0] - vertices[0][0]));
76 template <
int spacedim>
88 const long double x = p[0];
89 const long double y = p[1];
91 const long double x0 = vertices[0][0];
92 const long double x1 = vertices[1][0];
93 const long double x2 = vertices[2][0];
94 const long double x3 = vertices[3][0];
96 const long double y0 = vertices[0][1];
97 const long double y1 = vertices[1][1];
98 const long double y2 = vertices[2][1];
99 const long double y3 = vertices[3][1];
101 const long double a = (x1 - x3) * (y0 - y2) - (x0 - x2) * (y1 - y3);
102 const long double b = -(x0 - x1 - x2 + x3) * y + (x - 2 * x1 + x3) * y0 -
103 (x - 2 * x0 + x2) * y1 - (x - x1) * y2 +
105 const long double c = (x0 - x1) * y - (x - x1) * y0 + (x - x0) * y1;
107 const long double discriminant = b * b - 4 * a * c;
116 const long double sqrt_discriminant =
std::sqrt(discriminant);
119 if (b != 0.0 &&
std::abs(b) == sqrt_discriminant)
130 eta1 = 2 * c / (-b - sqrt_discriminant);
131 eta2 = 2 * c / (-b + sqrt_discriminant);
136 eta1 = (-b - sqrt_discriminant) / (2 * a);
137 eta2 = (-b + sqrt_discriminant) / (2 * a);
140 const long double eta =
147 const long double subexpr0 = -eta * x2 + x0 * (eta - 1);
148 const long double xi_denominator0 = eta * x3 - x1 * (eta - 1) + subexpr0;
152 if (
std::abs(xi_denominator0) > 1e-10 * max_x)
154 const double xi = (x + subexpr0) / xi_denominator0;
155 return {xi,
static_cast<double>(eta)};
159 const long double max_y =
162 const long double subexpr1 = -eta * y2 + y0 * (eta - 1);
163 const long double xi_denominator1 =
164 eta * y3 - y1 * (eta - 1) + subexpr1;
165 if (
std::abs(xi_denominator1) > 1e-10 * max_y)
167 const double xi = (subexpr1 + y) / xi_denominator1;
168 return {xi,
static_cast<double>(eta)};
175 spacedim>::ExcTransformationFailed()));
181 return {std::numeric_limits<double>::quiet_NaN(),
182 std::numeric_limits<double>::quiet_NaN()};
187 template <
int spacedim>
196 return {std::numeric_limits<double>::quiet_NaN(),
197 std::numeric_limits<double>::quiet_NaN(),
198 std::numeric_limits<double>::quiet_NaN()};
209 namespace MappingQImplementation
216 std::vector<Point<dim>>
218 const std::vector<unsigned int> &renumbering)
222 std::vector<Point<dim>> points(renumbering.size());
223 const unsigned int n1 = line_support_points.size();
224 for (
unsigned int q2 = 0, q = 0; q2 < (dim > 2 ? n1 : 1); ++q2)
225 for (
unsigned int q1 = 0; q1 < (dim > 1 ? n1 : 1); ++q1)
226 for (
unsigned int q0 = 0; q0 < n1; ++q0, ++q)
228 points[renumbering[q]][0] = line_support_points[q0][0];
230 points[renumbering[q]][1] = line_support_points[q1][0];
232 points[renumbering[q]][2] = line_support_points[q2][0];
246 inline ::Table<2, double>
253 if (polynomial_degree == 1)
256 const unsigned int M = polynomial_degree - 1;
257 const unsigned int n_inner_2d = M * M;
258 const unsigned int n_outer_2d = 4 + 4 * M;
261 loqvs.reinit(n_inner_2d, n_outer_2d);
263 for (
unsigned int i = 0; i < M; ++i)
264 for (
unsigned int j = 0; j < M; ++j)
267 gl.point((i + 1) * (polynomial_degree + 1) + (j + 1));
268 const unsigned int index_table = i * M + j;
269 for (
unsigned int v = 0; v < 4; ++v)
270 loqvs(index_table, v) =
272 loqvs(index_table, 4 + i) = 1. - p[0];
273 loqvs(index_table, 4 + i + M) = p[0];
274 loqvs(index_table, 4 + j + 2 * M) = 1. - p[1];
275 loqvs(index_table, 4 + j + 3 * M) = p[1];
280 for (
unsigned int unit_point = 0; unit_point < n_inner_2d; ++unit_point)
281 Assert(std::fabs(std::accumulate(loqvs[unit_point].begin(),
282 loqvs[unit_point].end(),
284 1) < 1e-13 * polynomial_degree,
298 inline ::Table<2, double>
305 if (polynomial_degree == 1)
308 const unsigned int M = polynomial_degree - 1;
310 const unsigned int n_inner = Utilities::fixed_power<3>(M);
311 const unsigned int n_outer = 8 + 12 * M + 6 * M * M;
314 lohvs.reinit(n_inner, n_outer);
316 for (
unsigned int i = 0; i < M; ++i)
317 for (
unsigned int j = 0; j < M; ++j)
318 for (
unsigned int k = 0; k < M; ++k)
320 const Point<3> &p = gl.point((i + 1) * (M + 2) * (M + 2) +
321 (j + 1) * (M + 2) + (k + 1));
322 const unsigned int index_table = i * M * M + j * M + k;
325 for (
unsigned int v = 0; v < 8; ++v)
326 lohvs(index_table, v) =
331 constexpr std::array<unsigned int, 4> line_coordinates_y(
334 for (
unsigned int l = 0; l < 4; ++l)
335 lohvs(index_table, 8 + line_coordinates_y[l] * M + j) =
340 constexpr std::array<unsigned int, 4> line_coordinates_x(
343 for (
unsigned int l = 0; l < 4; ++l)
344 lohvs(index_table, 8 + line_coordinates_x[l] * M + k) =
349 constexpr std::array<unsigned int, 4> line_coordinates_z(
352 for (
unsigned int l = 0; l < 4; ++l)
353 lohvs(index_table, 8 + line_coordinates_z[l] * M + i) =
358 lohvs(index_table, 8 + 12 * M + 0 * M * M + i * M + j) =
360 lohvs(index_table, 8 + 12 * M + 1 * M * M + i * M + j) = p[0];
361 lohvs(index_table, 8 + 12 * M + 2 * M * M + k * M + i) =
363 lohvs(index_table, 8 + 12 * M + 3 * M * M + k * M + i) = p[1];
364 lohvs(index_table, 8 + 12 * M + 4 * M * M + j * M + k) =
366 lohvs(index_table, 8 + 12 * M + 5 * M * M + j * M + k) = p[2];
371 for (
unsigned int unit_point = 0; unit_point < n_inner; ++unit_point)
372 Assert(std::fabs(std::accumulate(lohvs[unit_point].begin(),
373 lohvs[unit_point].end(),
375 1) < 1e-13 * polynomial_degree,
387 inline std::vector<::Table<2, double>>
389 const unsigned int polynomial_degree,
390 const unsigned int dim)
393 std::vector<::Table<2, double>> output(dim);
394 if (polynomial_degree <= 1)
399 output[0].reinit(polynomial_degree - 1,
401 for (
unsigned int q = 0; q < polynomial_degree - 1; ++q)
422 inline ::Table<2, double>
426 if (polynomial_degree <= 1)
427 return ::Table<2, double>();
430 const std::vector<unsigned int> h2l =
431 FETools::hierarchic_to_lexicographic_numbering<dim>(polynomial_degree);
436 for (
unsigned int q = 0; q < output.size(0); ++q)
453 template <
int dim,
int spacedim>
456 const typename ::MappingQ<dim, spacedim>::InternalData &
data)
459 data.mapping_support_points.size());
463 for (
unsigned int i = 0; i <
data.mapping_support_points.size(); ++i)
464 p_real +=
data.mapping_support_points[i] *
data.shape(0, i);
475 template <
int dim,
int spacedim,
typename Number>
482 const std::vector<unsigned int> &renumber,
483 const bool print_iterations_to_deallog =
false)
485 if (print_iterations_to_deallog)
486 deallog <<
"Start MappingQ::do_transform_real_to_unit_cell for real "
487 <<
"point [ " << p <<
" ] " << std::endl;
504 polynomials_1d, points, p_unit, polynomials_1d.size() == 2, renumber);
513 f.
norm_square() - 1e-24 * p_real.second[0].norm_square()) ==
551 const double eps = 1.e-11;
552 const unsigned int newton_iteration_limit = 20;
555 invalid_point[0] = std::numeric_limits<double>::lowest();
556 bool tried_project_to_unit_cell =
false;
558 unsigned int newton_iteration = 0;
559 Number f_weighted_norm_square = 1.;
560 Number last_f_weighted_norm_square = 1.;
564 if (print_iterations_to_deallog)
565 deallog <<
"Newton iteration " << newton_iteration
566 <<
" for unit point guess " << p_unit << std::endl;
570 for (
unsigned int d = 0; d < spacedim; ++d)
571 for (
unsigned int e = 0; e < dim; ++e)
572 df[d][e] = p_real.second[e][d];
582 Number(std::numeric_limits<double>::min())) ==
583 Number(std::numeric_limits<double>::min())))
591 if (tried_project_to_unit_cell ==
false)
598 polynomials_1d.size() == 2,
600 f = p_real.first - p;
601 f_weighted_norm_square = 1.;
602 last_f_weighted_norm_square = 1;
603 tried_project_to_unit_cell =
true;
607 return invalid_point;
615 if (print_iterations_to_deallog)
616 deallog <<
" delta=" << delta << std::endl;
619 double step_length = 1.0;
627 for (
unsigned int i = 0; i < dim; ++i)
628 p_unit_trial[i] -= step_length * delta[i];
631 const auto p_real_trial =
636 polynomials_1d.size() == 2,
639 p_real_trial.first - p;
640 f_weighted_norm_square = (df_inverse * f_trial).norm_square();
642 if (print_iterations_to_deallog)
644 deallog <<
" step_length=" << step_length << std::endl;
645 if (step_length == 1.0)
646 deallog <<
" ||f || =" << f.norm() << std::endl;
647 deallog <<
" ||f*|| =" << f_trial.
norm() << std::endl
649 <<
std::sqrt(f_weighted_norm_square) << std::endl;
669 if (
std::max(f_weighted_norm_square - 1e-6 * 1e-6, Number(0.)) *
674 p_real = p_real_trial;
675 p_unit = p_unit_trial;
679 else if (step_length > 0.05)
690 if (step_length <= 0.05 && tried_project_to_unit_cell ==
false)
697 polynomials_1d.size() == 2,
699 f = p_real.first - p;
700 f_weighted_norm_square = 1.;
701 last_f_weighted_norm_square = 1;
702 tried_project_to_unit_cell =
true;
705 else if (step_length <= 0.05)
706 return invalid_point;
709 if (newton_iteration > newton_iteration_limit)
710 return invalid_point;
718 !(
std::max(f_weighted_norm_square - eps * eps, Number(0.)) *
719 std::max(last_f_weighted_norm_square -
720 std::min(f_weighted_norm_square, Number(1e-6 * 1e-6)) *
725 if (print_iterations_to_deallog)
726 deallog <<
"Iteration converged for p_unit = [ " << p_unit
727 <<
" ] and iteration error "
728 <<
std::sqrt(f_weighted_norm_square) << std::endl;
745 const std::vector<unsigned int> &renumber)
747 const unsigned int spacedim = dim + 1;
754 const double eps = 1.e-12;
755 const unsigned int loop_limit = 10;
757 unsigned int loop = 0;
758 double f_weighted_norm_square = 1.;
760 while (f_weighted_norm_square > eps * eps && loop++ < loop_limit)
767 polynomials_1d.size() == 2,
773 polynomials_1d, points, p_unit, renumber);
776 for (
unsigned int j = 0; j < dim; ++j)
778 f[j] = DF[j] * p_minus_F;
779 for (
unsigned int l = 0; l < dim; ++l)
780 df[j][l] = -DF[j] * DF[l] +
hessian[j][l] * p_minus_F;
786 f_weighted_norm_square = d.norm_square();
820 template <
int dim,
int spacedim>
828 (spacedim == 1 ? 3 : (spacedim == 2 ? 6 : 10));
846 1. / real_support_points[0].distance(real_support_points[1]))
859 Assert(dim == spacedim || real_support_points.size() ==
864 const auto affine = GridTools::affine_cell_approximation<dim>(
867 affine.first.covariant_form().transpose();
874 for (
unsigned int d = 0; d < spacedim; ++d)
875 for (
unsigned int e = 0; e < dim; ++e)
883 std::array<double, n_functions> shape_values;
889 shape_values[0] = 1.;
893 for (
unsigned int d = 0; d < spacedim; ++d)
894 shape_values[1 + d] = p_scaled[d];
895 for (
unsigned int d = 0, c = 0; d < spacedim; ++d)
896 for (
unsigned int e = 0; e <= d; ++e, ++c)
897 shape_values[1 + spacedim + c] = p_scaled[d] * p_scaled[e];
906 matrix[i][j] += shape_values[i] * shape_values[j];
919 for (
unsigned int j = 0; j < i; ++j)
921 double Lik_Ljk_sum = 0;
922 for (
unsigned int k = 0; k < j; ++k)
923 Lik_Ljk_sum += matrix[i][k] * matrix[j][k];
924 matrix[i][j] = matrix[j][j] * (matrix[i][j] - Lik_Ljk_sum);
925 Lij_sum += matrix[i][j] * matrix[i][j];
928 ExcMessage(
"Matrix of normal equations not positive "
934 matrix[i][i] = 1. /
std::sqrt(matrix[i][i] - Lij_sum);
941 for (
unsigned int j = 0; j < i; ++j)
959 for (
unsigned int i = dim + 1; i <
n_functions; ++i)
976 template <
typename Number>
981 for (
unsigned int d = 0; d < dim; ++d)
989 for (
unsigned int d = 0; d < spacedim; ++d)
992 for (
unsigned int d = 0; d < spacedim; ++d)
998 for (
unsigned int d = 0, c = 0; d < spacedim; ++d)
999 for (
unsigned int e = 0; e <= d; ++e, ++c)
1001 coefficients[1 + spacedim + c] * (p_scaled[d] * p_scaled[e]);
1012 const Number affine_distance_to_unit_cell =
1015 for (
unsigned int d = 0; d < dim; ++d)
1016 result[d] = compare_and_apply_mask<SIMDComparison::greater_than>(
1017 distance_to_unit_cell,
1018 affine_distance_to_unit_cell + 0.5,
1060 template <
int dim,
int spacedim>
1064 const typename ::MappingQ<dim, spacedim>::InternalData &
data,
1072 using VectorizedArrayType =
1073 typename ::MappingQ<dim,
1074 spacedim>::InternalData::VectorizedArrayType;
1075 const unsigned int n_shape_values =
data.n_shape_functions;
1076 const unsigned int n_q_points =
data.shape_info.n_q_points;
1077 constexpr unsigned int n_lanes = VectorizedArrayType::size();
1078 constexpr unsigned int n_comp = 1 + (spacedim - 1) / n_lanes;
1079 constexpr unsigned int n_hessians = (dim * (dim + 1)) / 2;
1086 jacobians.resize(n_q_points);
1088 inverse_jacobians.resize(n_q_points);
1105 n_q_points == quadrature_points.size(),
1108 data.n_shape_functions > 0,
1111 n_q_points == jacobian_grads.size(),
1117 data.shape_info.element_type ==
1120 for (
unsigned int q = 0; q < n_q_points; ++q)
1121 quadrature_points[q] =
1122 data.mapping_support_points[
data.shape_info
1123 .lexicographic_numbering[q]];
1136 for (
unsigned int i = 0; i < n_shape_values * n_comp; ++i)
1139 const std::vector<unsigned int> &renumber_to_lexicographic =
1140 data.shape_info.lexicographic_numbering;
1141 for (
unsigned int i = 0; i < n_shape_values; ++i)
1142 for (
unsigned int d = 0; d < spacedim; ++d)
1144 const unsigned int in_comp = d % n_lanes;
1145 const unsigned int out_comp = d / n_lanes;
1148 data.mapping_support_points[renumber_to_lexicographic[i]][d];
1159 for (
unsigned int out_comp = 0; out_comp < n_comp; ++out_comp)
1160 for (
unsigned int i = 0; i < n_q_points; ++i)
1161 for (
unsigned int in_comp = 0;
1162 in_comp < n_lanes && in_comp < spacedim - out_comp * n_lanes;
1164 quadrature_points[i][out_comp * n_lanes + in_comp] =
1165 eval.
begin_values()[out_comp * n_q_points + i][in_comp];
1171 for (
unsigned int out_comp = 0; out_comp < n_comp; ++out_comp)
1172 for (
unsigned int point = 0; point < n_q_points; ++point)
1173 for (
unsigned int in_comp = 0;
1174 in_comp < n_lanes && in_comp < spacedim - out_comp * n_lanes;
1176 for (
unsigned int j = 0; j < dim; ++j)
1178 jacobians[point][out_comp * n_lanes + in_comp][j] =
1187 for (
unsigned int point = 0; point < n_q_points; ++point)
1188 data.volume_elements[point] = jacobians[point].determinant();
1196 for (
unsigned int point = 0; point < n_q_points; ++point)
1197 inverse_jacobians[point] =
1198 jacobians[point].covariant_form().transpose();
1203 constexpr int desymmetrize_3d[6][2] = {
1204 {0, 0}, {1, 1}, {2, 2}, {0, 1}, {0, 2}, {1, 2}};
1205 constexpr int desymmetrize_2d[3][2] = {{0, 0}, {1, 1}, {0, 1}};
1208 for (
unsigned int out_comp = 0; out_comp < n_comp; ++out_comp)
1209 for (
unsigned int point = 0; point < n_q_points; ++point)
1210 for (
unsigned int j = 0; j < n_hessians; ++j)
1211 for (
unsigned int in_comp = 0;
1212 in_comp < n_lanes &&
1213 in_comp < spacedim - out_comp * n_lanes;
1216 const unsigned int total_number = point * n_hessians + j;
1217 const unsigned int new_point = total_number % n_q_points;
1218 const unsigned int new_hessian_comp =
1219 total_number / n_q_points;
1220 const unsigned int new_hessian_comp_i =
1221 dim == 2 ? desymmetrize_2d[new_hessian_comp][0] :
1222 desymmetrize_3d[new_hessian_comp][0];
1223 const unsigned int new_hessian_comp_j =
1224 dim == 2 ? desymmetrize_2d[new_hessian_comp][1] :
1225 desymmetrize_3d[new_hessian_comp][1];
1226 const double value =
1230 jacobian_grads[new_point][out_comp * n_lanes + in_comp]
1231 [new_hessian_comp_i][new_hessian_comp_j] =
1233 jacobian_grads[new_point][out_comp * n_lanes + in_comp]
1234 [new_hessian_comp_j][new_hessian_comp_i] =
1242 template <
int dim,
int spacedim>
1246 const typename ::MappingQ<dim, spacedim>::InternalData &
data,
1249 const std::vector<unsigned int> &renumber_lexicographic_to_hierarchic,
1256 data.mapping_support_points);
1258 const unsigned int n_points = unit_points.size();
1266 jacobians.resize(n_points);
1268 inverse_jacobians.resize(n_points);
1270 const bool is_translation =
1273 const bool needs_gradient =
1281 for (
unsigned int i = 0; i < n_points; i += n_lanes)
1282 if (n_points - i > 1)
1285 for (
unsigned int j = 0; j < n_lanes; ++j)
1286 if (i + j < n_points)
1287 for (
unsigned int d = 0; d < dim; ++d)
1288 p_vec[d][j] = unit_points[i + j][d];
1290 for (
unsigned int d = 0; d < dim; ++d)
1291 p_vec[d][j] = unit_points[i][d];
1303 polynomials_1d.size() == 2,
1304 renumber_lexicographic_to_hierarchic);
1306 value = result.first;
1308 for (
unsigned int d = 0; d < spacedim; ++d)
1309 for (
unsigned int e = 0; e < dim; ++e)
1310 derivative[d][e] = result.second[e][d];
1317 polynomials_1d.size() == 2,
1318 renumber_lexicographic_to_hierarchic);
1321 for (
unsigned int j = 0; j < n_lanes && i + j < n_points; ++j)
1322 for (
unsigned int d = 0; d < spacedim; ++d)
1323 quadrature_points[i + j][d] =
value[d][j];
1329 for (
unsigned int j = 0; j < n_lanes && i + j < n_points; ++j)
1330 for (
unsigned int d = 0; d < spacedim; ++d)
1331 for (
unsigned int e = 0; e < dim; ++e)
1332 jacobians[i + j][d][e] = derivative[d][e][j];
1337 for (
unsigned int j = 0; j < n_lanes && i + j < n_points; ++j)
1344 for (
unsigned int j = 0; j < n_lanes && i + j < n_points; ++j)
1345 for (
unsigned int d = 0; d < dim; ++d)
1346 for (
unsigned int e = 0; e < spacedim; ++e)
1347 inverse_jacobians[i + j][d][e] = covariant[e][d][j];
1361 polynomials_1d.
size() == 2,
1362 renumber_lexicographic_to_hierarchic);
1364 value = result.first;
1366 for (
unsigned int d = 0; d < spacedim; ++d)
1367 for (
unsigned int e = 0; e < dim; ++e)
1368 derivative[d][e] = result.second[e][d];
1375 polynomials_1d.
size() == 2,
1376 renumber_lexicographic_to_hierarchic);
1379 quadrature_points[i] =
value;
1388 jacobians[i] = derivative;
1403 template <
int dim,
int spacedim>
1407 const typename ::MappingQ<dim, spacedim>::InternalData &
data,
1410 const std::vector<unsigned int> &renumber_lexicographic_to_hierarchic,
1416 data.mapping_support_points);
1417 const unsigned int n_q_points = jacobian_grads.size();
1420 for (
unsigned int point = 0; point < n_q_points; ++point)
1427 renumber_lexicographic_to_hierarchic);
1429 for (
unsigned int i = 0; i < spacedim; ++i)
1430 for (
unsigned int j = 0; j < dim; ++j)
1431 for (
unsigned int l = 0; l < dim; ++l)
1432 jacobian_grads[point][i][j][l] =
second[j][l][i];
1445 template <
int dim,
int spacedim>
1449 const typename ::MappingQ<dim, spacedim>::InternalData &
data,
1452 const std::vector<unsigned int> &renumber_lexicographic_to_hierarchic,
1458 data.mapping_support_points);
1459 const unsigned int n_q_points = jacobian_pushed_forward_grads.size();
1463 double tmp[spacedim][spacedim][spacedim];
1464 for (
unsigned int point = 0; point < n_q_points; ++point)
1471 renumber_lexicographic_to_hierarchic);
1476 for (
unsigned int i = 0; i < spacedim; ++i)
1477 for (
unsigned int j = 0; j < spacedim; ++j)
1478 for (
unsigned int l = 0; l < dim; ++l)
1480 tmp[i][j][l] =
second[0][l][i] * covariant[j][0];
1481 for (
unsigned int jr = 1; jr < dim; ++jr)
1484 second[jr][l][i] * covariant[j][jr];
1489 for (
unsigned int i = 0; i < spacedim; ++i)
1490 for (
unsigned int j = 0; j < spacedim; ++j)
1491 for (
unsigned int l = 0; l < spacedim; ++l)
1493 jacobian_pushed_forward_grads[point][i][j][l] =
1494 tmp[i][j][0] * covariant[l][0];
1495 for (
unsigned int lr = 1; lr < dim; ++lr)
1497 jacobian_pushed_forward_grads[point][i][j][l] +=
1498 tmp[i][j][lr] * covariant[l][lr];
1508 template <
int dim,
int spacedim,
int length_tensor>
1515 for (
unsigned int i = 0; i < spacedim; ++i)
1518 result[i][0][0][0] = compressed[0][i];
1521 for (
unsigned int d = 0; d < 2; ++d)
1522 for (
unsigned int e = 0; e < 2; ++e)
1523 for (
unsigned int f = 0; f < 2; ++f)
1524 result[i][d][e][f] = compressed[d + e + f][i];
1532 for (
unsigned int d = 0; d < 2; ++d)
1533 for (
unsigned int e = 0; e < 2; ++e)
1535 result[i][d][e][2] = compressed[4 + d + e][i];
1536 result[i][d][2][e] = compressed[4 + d + e][i];
1537 result[i][2][d][e] = compressed[4 + d + e][i];
1539 for (
unsigned int d = 0; d < 2; ++d)
1541 result[i][d][2][2] = compressed[7 + d][i];
1542 result[i][2][d][2] = compressed[7 + d][i];
1543 result[i][2][2][d] = compressed[7 + d][i];
1545 result[i][2][2][2] = compressed[9][i];
1560 template <
int dim,
int spacedim>
1564 const typename ::MappingQ<dim, spacedim>::InternalData &
data,
1567 const std::vector<unsigned int> &renumber_lexicographic_to_hierarchic,
1573 data.mapping_support_points);
1574 const unsigned int n_q_points = jacobian_2nd_derivatives.size();
1578 for (
unsigned int point = 0; point < n_q_points; ++point)
1580 jacobian_2nd_derivatives[point] = expand_3rd_derivatives<dim>(
1581 internal::evaluate_tensor_product_higher_derivatives<3>(
1585 renumber_lexicographic_to_hierarchic));
1600 template <
int dim,
int spacedim>
1604 const typename ::MappingQ<dim, spacedim>::InternalData &
data,
1607 const std::vector<unsigned int> &renumber_lexicographic_to_hierarchic,
1613 data.mapping_support_points);
1614 const unsigned int n_q_points =
1615 jacobian_pushed_forward_2nd_derivatives.size();
1621 for (
unsigned int point = 0; point < n_q_points; ++point)
1624 expand_3rd_derivatives<dim>(
1625 internal::evaluate_tensor_product_higher_derivatives<3>(
1629 renumber_lexicographic_to_hierarchic));
1634 for (
unsigned int i = 0; i < spacedim; ++i)
1635 for (
unsigned int j = 0; j < spacedim; ++j)
1636 for (
unsigned int l = 0; l < dim; ++l)
1637 for (
unsigned int m = 0; m < dim; ++m)
1640 third[i][0][l][m] * covariant[j][0];
1641 for (
unsigned int jr = 1; jr < dim; ++jr)
1643 third[i][jr][l][m] * covariant[j][jr];
1647 for (
unsigned int i = 0; i < spacedim; ++i)
1648 for (
unsigned int j = 0; j < spacedim; ++j)
1649 for (
unsigned int l = 0; l < spacedim; ++l)
1650 for (
unsigned int m = 0; m < dim; ++m)
1653 tmp[i][j][0][m] * covariant[l][0];
1654 for (
unsigned int lr = 1; lr < dim; ++lr)
1656 tmp[i][j][lr][m] * covariant[l][lr];
1660 for (
unsigned int i = 0; i < spacedim; ++i)
1661 for (
unsigned int j = 0; j < spacedim; ++j)
1662 for (
unsigned int l = 0; l < spacedim; ++l)
1663 for (
unsigned int m = 0; m < spacedim; ++m)
1665 jacobian_pushed_forward_2nd_derivatives
1666 [point][i][j][l][m] =
1667 tmp2[i][j][l][0] * covariant[m][0];
1668 for (
unsigned int mr = 1; mr < dim; ++mr)
1669 jacobian_pushed_forward_2nd_derivatives[point][i]
1672 tmp2[i][j][l][mr] * covariant[m][mr];
1681 template <
int dim,
int spacedim,
int length_tensor>
1688 for (
unsigned int i = 0; i < spacedim; ++i)
1691 result[i][0][0][0][0] = compressed[0][i];
1694 for (
unsigned int d = 0; d < 2; ++d)
1695 for (
unsigned int e = 0; e < 2; ++e)
1696 for (
unsigned int f = 0; f < 2; ++f)
1697 for (
unsigned int g = 0; g < 2; ++g)
1698 result[i][d][e][f][g] = compressed[d + e + f + g][i];
1706 for (
unsigned int d = 0; d < 2; ++d)
1707 for (
unsigned int e = 0; e < 2; ++e)
1708 for (
unsigned int f = 0; f < 2; ++f)
1710 result[i][d][e][f][2] = compressed[5 + d + e + f][i];
1711 result[i][d][e][2][f] = compressed[5 + d + e + f][i];
1712 result[i][d][2][e][f] = compressed[5 + d + e + f][i];
1713 result[i][2][d][e][f] = compressed[5 + d + e + f][i];
1715 for (
unsigned int d = 0; d < 2; ++d)
1716 for (
unsigned int e = 0; e < 2; ++e)
1718 result[i][d][e][2][2] = compressed[9 + d + e][i];
1719 result[i][d][2][e][2] = compressed[9 + d + e][i];
1720 result[i][d][2][2][e] = compressed[9 + d + e][i];
1721 result[i][2][d][e][2] = compressed[9 + d + e][i];
1722 result[i][2][d][2][e] = compressed[9 + d + e][i];
1723 result[i][2][2][d][e] = compressed[9 + d + e][i];
1725 for (
unsigned int d = 0; d < 2; ++d)
1727 result[i][d][2][2][2] = compressed[12 + d][i];
1728 result[i][2][d][2][2] = compressed[12 + d][i];
1729 result[i][2][2][d][2] = compressed[12 + d][i];
1730 result[i][2][2][2][d] = compressed[12 + d][i];
1732 result[i][2][2][2][2] = compressed[14][i];
1747 template <
int dim,
int spacedim>
1751 const typename ::MappingQ<dim, spacedim>::InternalData &
data,
1754 const std::vector<unsigned int> &renumber_lexicographic_to_hierarchic,
1760 data.mapping_support_points);
1761 const unsigned int n_q_points = jacobian_3rd_derivatives.size();
1765 for (
unsigned int point = 0; point < n_q_points; ++point)
1767 jacobian_3rd_derivatives[point] = expand_4th_derivatives<dim>(
1768 internal::evaluate_tensor_product_higher_derivatives<4>(
1772 renumber_lexicographic_to_hierarchic));
1787 template <
int dim,
int spacedim>
1791 const typename ::MappingQ<dim, spacedim>::InternalData &
data,
1794 const std::vector<unsigned int> &renumber_lexicographic_to_hierarchic,
1800 data.mapping_support_points);
1801 const unsigned int n_q_points =
1802 jacobian_pushed_forward_3rd_derivatives.size();
1807 ndarray<double, spacedim, spacedim, spacedim, spacedim, dim>
1811 for (
unsigned int point = 0; point < n_q_points; ++point)
1814 expand_4th_derivatives<dim>(
1815 internal::evaluate_tensor_product_higher_derivatives<4>(
1819 renumber_lexicographic_to_hierarchic));
1825 for (
unsigned int i = 0; i < spacedim; ++i)
1826 for (
unsigned int j = 0; j < spacedim; ++j)
1827 for (
unsigned int l = 0; l < dim; ++l)
1828 for (
unsigned int m = 0; m < dim; ++m)
1829 for (
unsigned int n = 0; n < dim; ++n)
1831 tmp[i][j][l][m][n] =
1832 fourth[i][0][l][m][n] * covariant[j][0];
1833 for (
unsigned int jr = 1; jr < dim; ++jr)
1834 tmp[i][j][l][m][n] +=
1835 fourth[i][jr][l][m][n] * covariant[j][jr];
1839 for (
unsigned int i = 0; i < spacedim; ++i)
1840 for (
unsigned int j = 0; j < spacedim; ++j)
1841 for (
unsigned int l = 0; l < spacedim; ++l)
1842 for (
unsigned int m = 0; m < dim; ++m)
1843 for (
unsigned int n = 0; n < dim; ++n)
1845 tmp2[i][j][l][m][n] =
1846 tmp[i][j][0][m][n] * covariant[l][0];
1847 for (
unsigned int lr = 1; lr < dim; ++lr)
1848 tmp2[i][j][l][m][n] +=
1849 tmp[i][j][lr][m][n] * covariant[l][lr];
1853 for (
unsigned int i = 0; i < spacedim; ++i)
1854 for (
unsigned int j = 0; j < spacedim; ++j)
1855 for (
unsigned int l = 0; l < spacedim; ++l)
1856 for (
unsigned int m = 0; m < spacedim; ++m)
1857 for (
unsigned int n = 0; n < dim; ++n)
1859 tmp[i][j][l][m][n] =
1860 tmp2[i][j][l][0][n] * covariant[m][0];
1861 for (
unsigned int mr = 1; mr < dim; ++mr)
1862 tmp[i][j][l][m][n] +=
1863 tmp2[i][j][l][mr][n] * covariant[m][mr];
1867 for (
unsigned int i = 0; i < spacedim; ++i)
1868 for (
unsigned int j = 0; j < spacedim; ++j)
1869 for (
unsigned int l = 0; l < spacedim; ++l)
1870 for (
unsigned int m = 0; m < spacedim; ++m)
1871 for (
unsigned int n = 0; n < spacedim; ++n)
1873 jacobian_pushed_forward_3rd_derivatives
1874 [point][i][j][l][m][n] =
1875 tmp[i][j][l][m][0] * covariant[n][0];
1876 for (
unsigned int nr = 1; nr < dim; ++nr)
1877 jacobian_pushed_forward_3rd_derivatives[point]
1880 tmp[i][j][l][m][nr] * covariant[n][nr];
1898 template <
int dim,
int spacedim>
1901 const ::MappingQ<dim, spacedim> &mapping,
1902 const typename ::Triangulation<dim, spacedim>::cell_iterator &cell,
1903 const unsigned int face_no,
1904 const unsigned int subface_no,
1905 const unsigned int n_q_points,
1906 const std::vector<double> &weights,
1907 const typename ::MappingQ<dim, spacedim>::InternalData &
data,
1931 for (
unsigned int d = 0; d != dim - 1; ++d)
1933 const unsigned int vector_index =
1935 Assert(vector_index <
data.unit_tangentials.size(),
1938 data.unit_tangentials[vector_index].size(),
1941 data.unit_tangentials[vector_index]),
1951 if (dim == spacedim)
1953 for (
unsigned int i = 0; i < n_q_points; ++i)
1963 (face_no == 0 ? -1 : +1);
1967 cross_product_2d(
data.aux[0][i]);
1971 cross_product_3d(
data.aux[0][i],
data.aux[1][i]);
1988 for (
unsigned int point = 0; point < n_q_points; ++point)
1991 data.output_data->jacobians[point];
1998 (face_no == 0 ? -1. : +1.) *
2008 cross_product_3d(DX_t[0], DX_t[1]);
2009 cell_normal /= cell_normal.
norm();
2014 cross_product_3d(
data.aux[0][point], cell_normal);
2021 for (
unsigned int i = 0; i < output_data.
boundary_forms.size(); ++i)
2029 cell->subface_case(face_no), subface_no);
2035 for (
unsigned int i = 0; i < output_data.
normal_vectors.size(); ++i)
2050 template <
int dim,
int spacedim>
2053 const ::MappingQ<dim, spacedim> &mapping,
2054 const typename ::Triangulation<dim, spacedim>::cell_iterator &cell,
2055 const unsigned int face_no,
2056 const unsigned int subface_no,
2059 const typename ::MappingQ<dim, spacedim>::InternalData &
data,
2061 const std::vector<unsigned int> &renumber_lexicographic_to_hierarchic,
2066 &
data.quadrature_points[data_set], quadrature.
size());
2067 if (dim > 1 &&
data.tensor_product_quadrature)
2069 maybe_update_q_points_Jacobians_and_grads_tensor<dim, spacedim>(
2085 renumber_lexicographic_to_hierarchic,
2089 maybe_update_jacobian_grads<dim, spacedim>(
2094 renumber_lexicographic_to_hierarchic,
2097 maybe_update_jacobian_pushed_forward_grads<dim, spacedim>(
2102 renumber_lexicographic_to_hierarchic,
2104 maybe_update_jacobian_2nd_derivatives<dim, spacedim>(
2109 renumber_lexicographic_to_hierarchic,
2111 maybe_update_jacobian_pushed_forward_2nd_derivatives<dim, spacedim>(
2116 renumber_lexicographic_to_hierarchic,
2118 maybe_update_jacobian_3rd_derivatives<dim, spacedim>(
2123 renumber_lexicographic_to_hierarchic,
2125 maybe_update_jacobian_pushed_forward_3rd_derivatives<dim, spacedim>(
2130 renumber_lexicographic_to_hierarchic,
2148 template <
int dim,
int spacedim,
int rank>
2158 const typename ::MappingQ<dim, spacedim>::InternalData *
>(
2159 &mapping_data) !=
nullptr),
2161 const typename ::MappingQ<dim, spacedim>::InternalData &
data =
2163 const typename ::MappingQ<dim, spacedim>::InternalData &
>(
2166 switch (mapping_kind)
2172 "update_contravariant_transformation"));
2174 for (
unsigned int i = 0; i < output.size(); ++i)
2185 "update_contravariant_transformation"));
2188 "update_volume_elements"));
2193 for (
unsigned int i = 0; i < output.size(); ++i)
2198 output[i] /=
data.volume_elements[i];
2209 "update_covariant_transformation"));
2211 for (
unsigned int i = 0; i < output.size(); ++i)
2213 data.output_data->inverse_jacobians[i].transpose(), input[i]);
2228 template <
int dim,
int spacedim,
int rank>
2238 const typename ::MappingQ<dim, spacedim>::InternalData *
>(
2239 &mapping_data) !=
nullptr),
2241 const typename ::MappingQ<dim, spacedim>::InternalData &
data =
2243 const typename ::MappingQ<dim, spacedim>::InternalData &
>(
2246 switch (mapping_kind)
2252 "update_covariant_transformation"));
2255 "update_contravariant_transformation"));
2258 for (
unsigned int i = 0; i < output.size(); ++i)
2264 data.output_data->inverse_jacobians[i].transpose(),
2275 "update_covariant_transformation"));
2278 for (
unsigned int i = 0; i < output.size(); ++i)
2294 "update_covariant_transformation"));
2297 "update_contravariant_transformation"));
2300 "update_volume_elements"));
2303 for (
unsigned int i = 0; i < output.size(); ++i)
2314 output[i] /=
data.volume_elements[i];
2330 template <
int dim,
int spacedim>
2340 const typename ::MappingQ<dim, spacedim>::InternalData *
>(
2341 &mapping_data) !=
nullptr),
2343 const typename ::MappingQ<dim, spacedim>::InternalData &
data =
2345 const typename ::MappingQ<dim, spacedim>::InternalData &
>(
2348 switch (mapping_kind)
2354 "update_covariant_transformation"));
2357 "update_contravariant_transformation"));
2359 for (
unsigned int q = 0; q < output.size(); ++q)
2364 data.output_data->jacobians[q];
2366 for (
unsigned int i = 0; i < spacedim; ++i)
2368 double tmp1[dim][dim];
2369 for (
unsigned int J = 0; J < dim; ++J)
2370 for (
unsigned int K = 0; K < dim; ++K)
2373 contravariant[i][0] * input[q][0][J][K];
2374 for (
unsigned int I = 1; I < dim; ++I)
2376 contravariant[i][I] * input[q][I][J][K];
2378 for (
unsigned int j = 0; j < spacedim; ++j)
2381 for (
unsigned int K = 0; K < dim; ++K)
2383 tmp2[K] = covariant[j][0] * tmp1[0][K];
2384 for (
unsigned int J = 1; J < dim; ++J)
2385 tmp2[K] += covariant[j][J] * tmp1[J][K];
2387 for (
unsigned int k = 0; k < spacedim; ++k)
2389 output[q][i][j][k] = covariant[k][0] * tmp2[0];
2390 for (
unsigned int K = 1; K < dim; ++K)
2391 output[q][i][j][k] += covariant[k][K] * tmp2[K];
2403 "update_covariant_transformation"));
2405 for (
unsigned int q = 0; q < output.size(); ++q)
2410 for (
unsigned int i = 0; i < spacedim; ++i)
2412 double tmp1[dim][dim];
2413 for (
unsigned int J = 0; J < dim; ++J)
2414 for (
unsigned int K = 0; K < dim; ++K)
2416 tmp1[J][K] = covariant[i][0] * input[q][0][J][K];
2417 for (
unsigned int I = 1; I < dim; ++I)
2418 tmp1[J][K] += covariant[i][I] * input[q][I][J][K];
2420 for (
unsigned int j = 0; j < spacedim; ++j)
2423 for (
unsigned int K = 0; K < dim; ++K)
2425 tmp2[K] = covariant[j][0] * tmp1[0][K];
2426 for (
unsigned int J = 1; J < dim; ++J)
2427 tmp2[K] += covariant[j][J] * tmp1[J][K];
2429 for (
unsigned int k = 0; k < spacedim; ++k)
2431 output[q][i][j][k] = covariant[k][0] * tmp2[0];
2432 for (
unsigned int K = 1; K < dim; ++K)
2433 output[q][i][j][k] += covariant[k][K] * tmp2[K];
2446 "update_covariant_transformation"));
2449 "update_contravariant_transformation"));
2452 "update_volume_elements"));
2454 for (
unsigned int q = 0; q < output.size(); ++q)
2459 data.output_data->jacobians[q];
2460 for (
unsigned int i = 0; i < spacedim; ++i)
2463 for (
unsigned int I = 0; I < dim; ++I)
2465 contravariant[i][I] * (1. /
data.volume_elements[q]);
2466 double tmp1[dim][dim];
2467 for (
unsigned int J = 0; J < dim; ++J)
2468 for (
unsigned int K = 0; K < dim; ++K)
2470 tmp1[J][K] = factor[0] * input[q][0][J][K];
2471 for (
unsigned int I = 1; I < dim; ++I)
2472 tmp1[J][K] += factor[I] * input[q][I][J][K];
2474 for (
unsigned int j = 0; j < spacedim; ++j)
2477 for (
unsigned int K = 0; K < dim; ++K)
2479 tmp2[K] = covariant[j][0] * tmp1[0][K];
2480 for (
unsigned int J = 1; J < dim; ++J)
2481 tmp2[K] += covariant[j][J] * tmp1[J][K];
2483 for (
unsigned int k = 0; k < spacedim; ++k)
2485 output[q][i][j][k] = covariant[k][0] * tmp2[0];
2486 for (
unsigned int K = 1; K < dim; ++K)
2487 output[q][i][j][k] += covariant[k][K] * tmp2[K];
2507 template <
int dim,
int spacedim,
int rank>
2517 const typename ::MappingQ<dim, spacedim>::InternalData *
>(
2518 &mapping_data) !=
nullptr),
2520 const typename ::MappingQ<dim, spacedim>::InternalData &
data =
2522 const typename ::MappingQ<dim, spacedim>::InternalData &
>(
2525 switch (mapping_kind)
2531 "update_covariant_transformation"));
2533 for (
unsigned int i = 0; i < output.size(); ++i)
2535 data.output_data->inverse_jacobians[i].transpose(), input[i]);
ArrayView< std::remove_reference_t< typename std::iterator_traits< Iterator >::reference >, MemorySpaceType > make_array_view(const Iterator begin, const Iterator end)
void set_data_pointers(AlignedVector< Number > *scratch_data, const unsigned int n_components)
const Number * begin_gradients() const
const Number * begin_values() const
const Number * begin_dof_values() const
const Number * begin_hessians() const
Abstract base class for mapping classes.
constexpr numbers::NumberTraits< Number >::real_type distance_square(const Point< dim, Number > &p) const
const std::vector< double > & get_weights() const
unsigned int size() const
numbers::NumberTraits< Number >::real_type norm() const
constexpr numbers::NumberTraits< Number >::real_type norm_square() const
static constexpr std::size_t size()
const Point< spacedim > normalization_shift
const double normalization_length
InverseQuadraticApproximation(const InverseQuadraticApproximation &)=default
static constexpr unsigned int n_functions
Point< dim, Number > compute(const Point< spacedim, Number > &p) const
InverseQuadraticApproximation(const ArrayView< const Point< spacedim > > &real_support_points, const std::vector< Point< dim > > &unit_support_points)
std::array< Point< dim >, n_functions > coefficients
#define DEAL_II_NAMESPACE_OPEN
#define DEAL_II_NAMESPACE_CLOSE
static ::ExceptionBase & ExcNotImplemented()
#define Assert(cond, exc)
static ::ExceptionBase & ExcImpossibleInDim(int arg1)
#define AssertDimension(dim1, dim2)
static ::ExceptionBase & ExcInternalError()
static ::ExceptionBase & ExcDimensionMismatch(std::size_t arg1, std::size_t arg2)
static ::ExceptionBase & ExcMessage(std::string arg1)
#define AssertThrow(cond, exc)
@ update_jacobian_pushed_forward_2nd_derivatives
@ update_volume_elements
Determinant of the Jacobian.
@ update_contravariant_transformation
Contravariant transformation.
@ update_jacobian_pushed_forward_grads
@ update_jacobian_3rd_derivatives
@ update_jacobian_grads
Gradient of volume element.
@ update_normal_vectors
Normal vectors.
@ update_JxW_values
Transformed quadrature weights.
@ update_covariant_transformation
Covariant transformation.
@ update_quadrature_points
Transformed quadrature points.
@ update_jacobian_pushed_forward_3rd_derivatives
@ update_boundary_forms
Outer normal vector, not normalized.
@ update_jacobian_2nd_derivatives
@ mapping_covariant_gradient
@ mapping_contravariant_hessian
@ mapping_covariant_hessian
@ mapping_contravariant_gradient
@ tensor_symmetric_collocation
#define DEAL_II_ASSERT_UNREACHABLE()
#define DEAL_II_NOT_IMPLEMENTED()
std::vector< index_type > data
EvaluationFlags
The EvaluationFlags enum.
constexpr T pow(const T base, const int iexp)
Point< 1 > transform_real_to_unit_cell(const std::array< Point< spacedim >, GeometryInfo< 1 >::vertices_per_cell > &vertices, const Point< spacedim > &p)
void maybe_update_jacobian_pushed_forward_2nd_derivatives(const CellSimilarity::Similarity cell_similarity, const typename ::MappingQ< dim, spacedim >::InternalData &data, const ArrayView< const Point< dim > > &unit_points, const std::vector< Polynomials::Polynomial< double > > &polynomials_1d, const std::vector< unsigned int > &renumber_lexicographic_to_hierarchic, std::vector< Tensor< 4, spacedim > > &jacobian_pushed_forward_2nd_derivatives)
Point< dim, Number > do_transform_real_to_unit_cell_internal(const Point< spacedim, Number > &p, const Point< dim, Number > &initial_p_unit, const ArrayView< const Point< spacedim > > &points, const std::vector< Polynomials::Polynomial< double > > &polynomials_1d, const std::vector< unsigned int > &renumber, const bool print_iterations_to_deallog=false)
DerivativeForm< 3, dim, spacedim > expand_3rd_derivatives(const Tensor< 1, length_tensor, Tensor< 1, spacedim > > &compressed)
inline ::Table< 2, double > compute_support_point_weights_cell(const unsigned int polynomial_degree)
void transform_differential_forms(const ArrayView< const DerivativeForm< rank, dim, spacedim > > &input, const MappingKind mapping_kind, const typename Mapping< dim, spacedim >::InternalDataBase &mapping_data, const ArrayView< Tensor< rank+1, spacedim > > &output)
void maybe_update_jacobian_grads(const CellSimilarity::Similarity cell_similarity, const typename ::MappingQ< dim, spacedim >::InternalData &data, const ArrayView< const Point< dim > > &unit_points, const std::vector< Polynomials::Polynomial< double > > &polynomials_1d, const std::vector< unsigned int > &renumber_lexicographic_to_hierarchic, std::vector< DerivativeForm< 2, dim, spacedim > > &jacobian_grads)
void do_fill_fe_face_values(const ::MappingQ< dim, spacedim > &mapping, const typename ::Triangulation< dim, spacedim >::cell_iterator &cell, const unsigned int face_no, const unsigned int subface_no, const typename QProjector< dim >::DataSetDescriptor data_set, const Quadrature< dim - 1 > &quadrature, const typename ::MappingQ< dim, spacedim >::InternalData &data, const std::vector< Polynomials::Polynomial< double > > &polynomials_1d, const std::vector< unsigned int > &renumber_lexicographic_to_hierarchic, internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > &output_data)
inline ::Table< 2, double > compute_support_point_weights_on_hex(const unsigned int polynomial_degree)
void transform_fields(const ArrayView< const Tensor< rank, dim > > &input, const MappingKind mapping_kind, const typename Mapping< dim, spacedim >::InternalDataBase &mapping_data, const ArrayView< Tensor< rank, spacedim > > &output)
void maybe_update_jacobian_3rd_derivatives(const CellSimilarity::Similarity cell_similarity, const typename ::MappingQ< dim, spacedim >::InternalData &data, const ArrayView< const Point< dim > > &unit_points, const std::vector< Polynomials::Polynomial< double > > &polynomials_1d, const std::vector< unsigned int > &renumber_lexicographic_to_hierarchic, std::vector< DerivativeForm< 4, dim, spacedim > > &jacobian_3rd_derivatives)
void maybe_update_jacobian_pushed_forward_grads(const CellSimilarity::Similarity cell_similarity, const typename ::MappingQ< dim, spacedim >::InternalData &data, const ArrayView< const Point< dim > > &unit_points, const std::vector< Polynomials::Polynomial< double > > &polynomials_1d, const std::vector< unsigned int > &renumber_lexicographic_to_hierarchic, std::vector< Tensor< 3, spacedim > > &jacobian_pushed_forward_grads)
inline ::Table< 2, double > compute_support_point_weights_on_quad(const unsigned int polynomial_degree)
void maybe_update_q_points_Jacobians_generic(const CellSimilarity::Similarity cell_similarity, const typename ::MappingQ< dim, spacedim >::InternalData &data, const ArrayView< const Point< dim > > &unit_points, const std::vector< Polynomials::Polynomial< double > > &polynomials_1d, const std::vector< unsigned int > &renumber_lexicographic_to_hierarchic, std::vector< Point< spacedim > > &quadrature_points, std::vector< DerivativeForm< 1, dim, spacedim > > &jacobians, std::vector< DerivativeForm< 1, spacedim, dim > > &inverse_jacobians)
std::vector< Point< dim > > unit_support_points(const std::vector< Point< 1 > > &line_support_points, const std::vector< unsigned int > &renumbering)
void transform_gradients(const ArrayView< const Tensor< rank, dim > > &input, const MappingKind mapping_kind, const typename Mapping< dim, spacedim >::InternalDataBase &mapping_data, const ArrayView< Tensor< rank, spacedim > > &output)
void maybe_update_q_points_Jacobians_and_grads_tensor(const CellSimilarity::Similarity cell_similarity, const typename ::MappingQ< dim, spacedim >::InternalData &data, std::vector< Point< spacedim > > &quadrature_points, std::vector< DerivativeForm< 1, dim, spacedim > > &jacobians, std::vector< DerivativeForm< 1, spacedim, dim > > &inverse_jacobians, std::vector< DerivativeForm< 2, dim, spacedim > > &jacobian_grads)
void transform_hessians(const ArrayView< const Tensor< 3, dim > > &input, const MappingKind mapping_kind, const typename Mapping< dim, spacedim >::InternalDataBase &mapping_data, const ArrayView< Tensor< 3, spacedim > > &output)
void maybe_update_jacobian_pushed_forward_3rd_derivatives(const CellSimilarity::Similarity cell_similarity, const typename ::MappingQ< dim, spacedim >::InternalData &data, const ArrayView< const Point< dim > > &unit_points, const std::vector< Polynomials::Polynomial< double > > &polynomials_1d, const std::vector< unsigned int > &renumber_lexicographic_to_hierarchic, std::vector< Tensor< 5, spacedim > > &jacobian_pushed_forward_3rd_derivatives)
std::vector<::Table< 2, double > > compute_support_point_weights_perimeter_to_interior(const unsigned int polynomial_degree, const unsigned int dim)
DerivativeForm< 4, dim, spacedim > expand_4th_derivatives(const Tensor< 1, length_tensor, Tensor< 1, spacedim > > &compressed)
Point< spacedim > compute_mapped_location_of_point(const typename ::MappingQ< dim, spacedim >::InternalData &data)
Point< dim > do_transform_real_to_unit_cell_internal_codim1(const Point< dim+1 > &p, const Point< dim > &initial_p_unit, const ArrayView< const Point< dim+1 > > &points, const std::vector< Polynomials::Polynomial< double > > &polynomials_1d, const std::vector< unsigned int > &renumber)
void maybe_compute_face_data(const ::MappingQ< dim, spacedim > &mapping, const typename ::Triangulation< dim, spacedim >::cell_iterator &cell, const unsigned int face_no, const unsigned int subface_no, const unsigned int n_q_points, const std::vector< double > &weights, const typename ::MappingQ< dim, spacedim >::InternalData &data, internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > &output_data)
void maybe_update_jacobian_2nd_derivatives(const CellSimilarity::Similarity cell_similarity, const typename ::MappingQ< dim, spacedim >::InternalData &data, const ArrayView< const Point< dim > > &unit_points, const std::vector< Polynomials::Polynomial< double > > &polynomials_1d, const std::vector< unsigned int > &renumber_lexicographic_to_hierarchic, std::vector< DerivativeForm< 3, dim, spacedim > > &jacobian_2nd_derivatives)
SymmetricTensor< 2, dim, typename ProductTypeNoPoint< Number, Number2 >::type > evaluate_tensor_product_hessian(const std::vector< Polynomials::Polynomial< double > > &poly, const ArrayView< const Number > &values, const Point< dim, Number2 > &p, const std::vector< unsigned int > &renumber={})
std::pair< typename ProductTypeNoPoint< Number, Number2 >::type, Tensor< 1, dim, typename ProductTypeNoPoint< Number, Number2 >::type > > evaluate_tensor_product_value_and_gradient(const std::vector< Polynomials::Polynomial< double > > &poly, const ArrayView< const Number > &values, const Point< dim, Number2 > &p, const bool d_linear=false, const std::vector< unsigned int > &renumber={})
ProductTypeNoPoint< Number, Number2 >::type evaluate_tensor_product_value(const std::vector< Polynomials::Polynomial< double > > &poly, const ArrayView< const Number > &values, const Point< dim, Number2 > &p, const bool d_linear=false, const std::vector< unsigned int > &renumber={})
static const unsigned int invalid_unsigned_int
::VectorizedArray< Number, width > min(const ::VectorizedArray< Number, width > &, const ::VectorizedArray< Number, width > &)
::VectorizedArray< Number, width > max(const ::VectorizedArray< Number, width > &, const ::VectorizedArray< Number, width > &)
::VectorizedArray< Number, width > sqrt(const ::VectorizedArray< Number, width > &)
::VectorizedArray< Number, width > abs(const ::VectorizedArray< Number, width > &)
typename internal::ndarray::HelperArray< T, Ns... >::type ndarray
static double subface_ratio(const internal::SubfaceCase< dim > &subface_case, const unsigned int subface_no)
static Point< dim, Number > project_to_unit_cell(const Point< dim, Number > &p)
static double d_linear_shape_function(const Point< dim > &xi, const unsigned int i)
static std_cxx20::ranges::iota_view< unsigned int, unsigned int > vertex_indices()
static void evaluate(const unsigned int n_components, const EvaluationFlags::EvaluationFlags evaluation_flag, const Number *values_dofs, FEEvaluationData< dim, Number, false > &fe_eval)
DEAL_II_HOST constexpr Number determinant(const SymmetricTensor< 2, dim, Number > &)
DEAL_II_HOST constexpr SymmetricTensor< 2, dim, Number > invert(const SymmetricTensor< 2, dim, Number > &)