Reference documentation for deal.II version GIT relicensing-407-g162f6fe865 2024-04-17 02:30:02+00:00
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
Public Types | Public Member Functions | Static Public Member Functions | Protected Attributes | Private Types | Private Member Functions | Private Attributes | Static Private Attributes | List of all members
LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace > Class Template Referenceabstract

#include <deal.II/lac/trilinos_tpetra_block_vector.h>

Inheritance diagram for LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >:
Inheritance graph
[legend]

Public Types

using BaseClass = ::BlockVectorBase< TpetraWrappers::Vector< Number, MemorySpace > >
 
using BlockType = typename BaseClass::BlockType
 
using value_type = typename BaseClass::value_type
 
using pointer = typename BaseClass::pointer
 
using const_pointer = typename BaseClass::const_pointer
 
using reference = typename BaseClass::reference
 
using const_reference = typename BaseClass::const_reference
 
using size_type = typename BaseClass::size_type
 
using iterator = typename BaseClass::iterator
 
using const_iterator = typename BaseClass::const_iterator
 
using real_type = typename BlockType::real_type
 

Public Member Functions

 BlockVector ()=default
 
 BlockVector (const std::vector< IndexSet > &parallel_partitioning, const MPI_Comm communicator=MPI_COMM_WORLD)
 
 BlockVector (const std::vector< IndexSet > &parallel_partitioning, const std::vector< IndexSet > &ghost_values, const MPI_Comm communicator, const bool vector_writable=false)
 
 BlockVector (const BlockVector< Number, MemorySpace > &v)
 
 BlockVector (const size_type num_blocks)
 
 ~BlockVector () override=default
 
BlockVector< Number, MemorySpace > & operator= (const Number s)
 
BlockVector< Number, MemorySpace > & operator= (const BlockVector< Number, MemorySpace > &v)
 
void reinit (const std::vector< IndexSet > &parallel_partitioning, const MPI_Comm communicator=MPI_COMM_WORLD, const bool omit_zeroing_entries=false)
 
void reinit (const std::vector< IndexSet > &partitioning, const std::vector< IndexSet > &ghost_values, const MPI_Comm communicator=MPI_COMM_WORLD, const bool vector_writable=false)
 
void reinit (const BlockVector< Number, MemorySpace > &V, const bool omit_zeroing_entries=false)
 
void reinit (const size_type num_blocks)
 
bool has_ghost_elements () const
 
void print (std::ostream &out, const unsigned int precision=3, const bool scientific=true, const bool across=true) const
 
void collect_sizes ()
 
void compress (VectorOperation::values operation)
 
BlockTypeblock (const unsigned int i)
 
const BlockTypeblock (const unsigned int i) const
 
const BlockIndicesget_block_indices () const
 
unsigned int n_blocks () const
 
virtual size_type size () const override
 
std::size_t locally_owned_size () const
 
IndexSet locally_owned_elements () const
 
iterator begin ()
 
const_iterator begin () const
 
iterator end ()
 
const_iterator end () const
 
value_type operator() (const size_type i) const
 
reference operator() (const size_type i)
 
value_type operator[] (const size_type i) const
 
reference operator[] (const size_type i)
 
template<typename OtherNumber >
void extract_subvector_to (const std::vector< size_type > &indices, std::vector< OtherNumber > &values) const
 
virtual void extract_subvector_to (const ArrayView< const types::global_dof_index > &indices, ArrayView< value_type > &entries) const override
 
template<typename ForwardIterator , typename OutputIterator >
void extract_subvector_to (ForwardIterator indices_begin, const ForwardIterator indices_end, OutputIterator values_begin) const
 
virtual void extract_subvector_to (const ArrayView< const types::global_dof_index > &indices, ArrayView< VectorType::value_type > &elements) const=0
 
template<typename VectorType2 >
bool operator== (const BlockVectorBase< VectorType2 > &v) const
 
value_type operator* (const BlockVectorBase &V) const
 
real_type norm_sqr () const
 
value_type mean_value () const
 
real_type l1_norm () const
 
real_type l2_norm () const
 
real_type linfty_norm () const
 
value_type add_and_dot (const value_type a, const BlockVectorBase &V, const BlockVectorBase &W)
 
bool in_local_range (const size_type global_index) const
 
bool all_zero () const
 
bool is_non_negative () const
 
BlockVectorBaseoperator+= (const BlockVectorBase &V)
 
BlockVectorBaseoperator-= (const BlockVectorBase &V)
 
template<typename Number >
void add (const std::vector< size_type > &indices, const std::vector< Number > &values)
 
template<typename Number >
void add (const std::vector< size_type > &indices, const Vector< Number > &values)
 
template<typename Number >
void add (const size_type n_elements, const size_type *indices, const Number *values)
 
void add (const value_type s)
 
void add (const value_type a, const BlockVectorBase &V)
 
void add (const value_type a, const BlockVectorBase &V, const value_type b, const BlockVectorBase &W)
 
void sadd (const value_type s, const BlockVectorBase &V)
 
void sadd (const value_type s, const value_type a, const BlockVectorBase &V)
 
void sadd (const value_type s, const value_type a, const BlockVectorBase &V, const value_type b, const BlockVectorBase &W)
 
void sadd (const value_type s, const value_type a, const BlockVectorBase &V, const value_type b, const BlockVectorBase &W, const value_type c, const BlockVectorBase &X)
 
BlockVectorBaseoperator*= (const value_type factor)
 
BlockVectorBaseoperator/= (const value_type factor)
 
template<class BlockVector2 >
void scale (const BlockVector2 &v)
 
template<class BlockVector2 >
void equ (const value_type a, const BlockVector2 &V)
 
void update_ghost_values () const
 
std::size_t memory_consumption () const
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 
Subscriptor functionality

Classes derived from Subscriptor provide a facility to subscribe to this object. This is mostly used by the SmartPointer class.

void subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
void unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
unsigned int n_subscriptions () const
 
template<typename StreamType >
void list_subscribers (StreamType &stream) const
 
void list_subscribers () const
 

Static Public Member Functions

static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 

Protected Attributes

std::vector< VectorType > components
 
BlockIndices block_indices
 

Private Types

using map_value_type = decltype(counter_map)::value_type
 
using map_iterator = decltype(counter_map)::iterator
 

Private Member Functions

void check_no_subscribers () const noexcept
 

Private Attributes

std::atomic< unsigned intcounter
 
std::map< std::string, unsigned intcounter_map
 
std::vector< std::atomic< bool > * > validity_pointers
 
const std::type_info * object_info
 

Static Private Attributes

static std::mutex mutex
 

Detailed Description

template<typename Number, typename MemorySpace = ::MemorySpace::Host>
class LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >

An implementation of block vectors based on the vector class implemented in LinearAlgebra::TpetraWrappers. While the base class provides for most of the interface, this class handles the actual allocation of vectors and provides functions that are specific to the underlying vector type.

The model of distribution of data is such that each of the blocks is distributed across all MPI processes named in the MPI communicator. I.e. we don't just distribute the whole vector, but each component. In the constructors and reinit() functions, one therefore not only has to specify the sizes of the individual blocks, but also the number of elements of each of these blocks to be stored on the local process.

@ Block (linear algebra)

Definition at line 75 of file trilinos_tpetra_block_vector.h.

Member Typedef Documentation

◆ BaseClass

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
using LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::BaseClass = ::BlockVectorBase<TpetraWrappers::Vector<Number, MemorySpace> >

Typedef the base class for simpler access to its own alias.

Definition at line 82 of file trilinos_tpetra_block_vector.h.

◆ BlockType

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
using LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::BlockType = typename BaseClass::BlockType

Typedef the type of the underlying vector.

Definition at line 88 of file trilinos_tpetra_block_vector.h.

◆ value_type

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
using LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::value_type = typename BaseClass::value_type

Import the alias from the base class.

Definition at line 93 of file trilinos_tpetra_block_vector.h.

◆ pointer

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
using LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::pointer = typename BaseClass::pointer

Definition at line 94 of file trilinos_tpetra_block_vector.h.

◆ const_pointer

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
using LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::const_pointer = typename BaseClass::const_pointer

Definition at line 95 of file trilinos_tpetra_block_vector.h.

◆ reference

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
using LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::reference = typename BaseClass::reference

Definition at line 96 of file trilinos_tpetra_block_vector.h.

◆ const_reference

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
using LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::const_reference = typename BaseClass::const_reference

Definition at line 97 of file trilinos_tpetra_block_vector.h.

◆ size_type

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
using LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::size_type = typename BaseClass::size_type

Definition at line 98 of file trilinos_tpetra_block_vector.h.

◆ iterator

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
using LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::iterator = typename BaseClass::iterator

Definition at line 99 of file trilinos_tpetra_block_vector.h.

◆ const_iterator

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
using LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::const_iterator = typename BaseClass::const_iterator

Definition at line 100 of file trilinos_tpetra_block_vector.h.

◆ real_type

template<typename VectorType >
using BlockVectorBase< VectorType >::real_type = typename BlockType::real_type
inherited

Declare a type that has holds real-valued numbers with the same precision as the template argument to this class. If the template argument of this class is a real data type, then real_type equals the template argument. If the template argument is a std::complex type then real_type equals the type underlying the complex numbers.

This alias is used to represent the return type of norms.

Definition at line 480 of file block_vector_base.h.

◆ map_value_type

using Subscriptor::map_value_type = decltype(counter_map)::value_type
privateinherited

The data type used in counter_map.

Definition at line 229 of file subscriptor.h.

◆ map_iterator

using Subscriptor::map_iterator = decltype(counter_map)::iterator
privateinherited

The iterator type used in counter_map.

Definition at line 234 of file subscriptor.h.

Constructor & Destructor Documentation

◆ BlockVector() [1/5]

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::BlockVector ( )
default

Default constructor. Generate an empty vector without any blocks.

◆ BlockVector() [2/5]

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::BlockVector ( const std::vector< IndexSet > &  parallel_partitioning,
const MPI_Comm  communicator = MPI_COMM_WORLD 
)

Constructor. Generate a block vector with as many blocks as there are entries in partitioning. Each IndexSet together with the MPI communicator contains the layout of the distribution of data among the MPI processes.

◆ BlockVector() [3/5]

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::BlockVector ( const std::vector< IndexSet > &  parallel_partitioning,
const std::vector< IndexSet > &  ghost_values,
const MPI_Comm  communicator,
const bool  vector_writable = false 
)

Creates a BlockVector with ghost elements. See the respective reinit() method for more details. ghost_values may contain any elements in parallel_partitioning, they will be ignored.

◆ BlockVector() [4/5]

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::BlockVector ( const BlockVector< Number, MemorySpace > &  v)

Copy-Constructor. Set all the properties of the parallel vector to those of the given argument and copy the elements.

◆ BlockVector() [5/5]

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::BlockVector ( const size_type  num_blocks)
explicit

Creates a block vector consisting of num_blocks components, but there is no content in the individual components and the user has to fill appropriate data using a reinit of the blocks.

◆ ~BlockVector()

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::~BlockVector ( )
overridedefault

Destructor. Clears memory

Member Function Documentation

◆ operator=() [1/2]

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
BlockVector< Number, MemorySpace > & LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::operator= ( const Number  s)

Copy operator: fill all components of the vector that are locally stored with the given scalar value.

◆ operator=() [2/2]

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
BlockVector< Number, MemorySpace > & LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::operator= ( const BlockVector< Number, MemorySpace > &  v)

Copy operator for arguments of the same type. Resize the present vector if necessary to the correct number of blocks, then copy the individual blocks from v using the copy-assignment operator of the class that represents the individual blocks.

Copying the vectors that make up individual blocks can have complex semantics in parallel vector classes. See the information provided by the class used to represent the individual blocks.

◆ reinit() [1/4]

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
void LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::reinit ( const std::vector< IndexSet > &  parallel_partitioning,
const MPI_Comm  communicator = MPI_COMM_WORLD,
const bool  omit_zeroing_entries = false 
)

Reinitialize the BlockVector to contain as many blocks as there are index sets given in the input argument, according to the parallel distribution of the individual components described in the maps.

If omit_zeroing_entries==false, the vector is filled with zeros.

◆ reinit() [2/4]

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
void LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::reinit ( const std::vector< IndexSet > &  partitioning,
const std::vector< IndexSet > &  ghost_values,
const MPI_Comm  communicator = MPI_COMM_WORLD,
const bool  vector_writable = false 
)

Reinit functionality. This function destroys the old vector content and generates a new one based on the input partitioning. In addition to just specifying one index set as in all the other methods above, this method allows to supply an additional set of ghost entries. There are two different versions of a vector that can be created. If the flag vector_writable is set to false, the vector only allows read access to the joint set of parallel_partitioning and ghost_entries. The effect of the reinit method is then equivalent to calling the other reinit method with an index set containing both the locally owned entries and the ghost entries.

If the flag vector_writable is set to true, this creates an alternative storage scheme for ghost elements that allows multiple threads to write into the vector (for the other reinit methods, only one thread is allowed to write into the ghost entries at a time).

◆ reinit() [3/4]

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
void LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::reinit ( const BlockVector< Number, MemorySpace > &  V,
const bool  omit_zeroing_entries = false 
)

Change the dimension to that of the vector V. The same applies as for the other reinit() function.

The elements of V are not copied, i.e. this function is the same as calling reinit (V.size(), omit_zeroing_entries).

Note that you must call this (or the other reinit() functions) function, rather than calling the reinit() functions of an individual block, to allow the block vector to update its caches of vector sizes. If you call reinit() on one of the blocks, then subsequent actions on this object may yield unpredictable results since they may be routed to the wrong block.

◆ reinit() [4/4]

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
void LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::reinit ( const size_type  num_blocks)

Change the number of blocks to num_blocks. The individual blocks will get initialized with zero size, so it is assumed that the user resizes the individual blocks by herself in an appropriate way, and calls collect_sizes afterwards.

◆ has_ghost_elements()

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
bool LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::has_ghost_elements ( ) const

Return if this Vector contains ghost elements.

See also
vectors with ghost elements

◆ print()

template<typename Number , typename MemorySpace = ::MemorySpace::Host>
void LinearAlgebra::TpetraWrappers::BlockVector< Number, MemorySpace >::print ( std::ostream &  out,
const unsigned int  precision = 3,
const bool  scientific = true,
const bool  across = true 
) const

Print to a stream.

◆ collect_sizes()

template<typename VectorType >
void BlockVectorBase< VectorType >::collect_sizes ( )
inherited

Update internal structures after resizing vectors. Whenever you reinited a block of a block vector, the internal data structures are corrupted. Therefore, you should call this function after all blocks got their new size.

◆ compress()

template<typename VectorType >
void BlockVectorBase< VectorType >::compress ( VectorOperation::values  operation)
inherited

Call the compress() function on all the subblocks of the vector.

This functionality only needs to be called if using MPI based vectors and exists in other objects for compatibility.

See Compressing distributed objects for more information.

◆ block() [1/2]

template<typename VectorType >
BlockType & BlockVectorBase< VectorType >::block ( const unsigned int  i)
inherited

Access to a single block.

◆ block() [2/2]

template<typename VectorType >
const BlockType & BlockVectorBase< VectorType >::block ( const unsigned int  i) const
inherited

Read-only access to a single block.

◆ get_block_indices()

template<typename VectorType >
const BlockIndices & BlockVectorBase< VectorType >::get_block_indices ( ) const
inherited

Return a reference on the object that describes the mapping between block and global indices. The use of this function is highly deprecated and it should vanish in one of the next versions

◆ n_blocks()

template<typename VectorType >
unsigned int BlockVectorBase< VectorType >::n_blocks ( ) const
inherited

Number of blocks.

◆ size()

template<typename VectorType >
virtual size_type BlockVectorBase< VectorType >::size ( ) const
overridevirtualinherited

Return dimension of the vector. This is the sum of the dimensions of all components.

Implements ReadVector< VectorType::value_type >.

Reimplemented in LinearAlgebra::distributed::BlockVector< Number >.

◆ locally_owned_size()

template<typename VectorType >
std::size_t BlockVectorBase< VectorType >::locally_owned_size ( ) const
inherited

Return local dimension of the vector. This is the sum of the local dimensions (i.e., values stored on the current processor) of all components.

◆ locally_owned_elements()

template<typename VectorType >
IndexSet BlockVectorBase< VectorType >::locally_owned_elements ( ) const
inherited

Return an index set that describes which elements of this vector are owned by the current processor. Note that this index set does not include elements this vector may store locally as ghost elements but that are in fact owned by another processor. As a consequence, the index sets returned on different processors if this is a distributed vector will form disjoint sets that add up to the complete index set. Obviously, if a vector is created on only one processor, then the result would satisfy

vec.locally_owned_elements() == complete_index_set (vec.size())
IndexSet complete_index_set(const IndexSet::size_type N)
Definition index_set.h:1193

For block vectors, this function returns the union of the locally owned elements of the individual blocks, shifted by their respective index offsets.

◆ begin() [1/2]

template<typename VectorType >
iterator BlockVectorBase< VectorType >::begin ( )
inherited

Return an iterator pointing to the first element.

◆ begin() [2/2]

template<typename VectorType >
const_iterator BlockVectorBase< VectorType >::begin ( ) const
inherited

Return an iterator pointing to the first element of a constant block vector.

◆ end() [1/2]

template<typename VectorType >
iterator BlockVectorBase< VectorType >::end ( )
inherited

Return an iterator pointing to the element past the end.

◆ end() [2/2]

template<typename VectorType >
const_iterator BlockVectorBase< VectorType >::end ( ) const
inherited

Return an iterator pointing to the element past the end of a constant block vector.

◆ operator()() [1/2]

template<typename VectorType >
value_type BlockVectorBase< VectorType >::operator() ( const size_type  i) const
inherited

Access components, returns U(i).

◆ operator()() [2/2]

template<typename VectorType >
reference BlockVectorBase< VectorType >::operator() ( const size_type  i)
inherited

Access components, returns U(i) as a writeable reference.

◆ operator[]() [1/2]

template<typename VectorType >
value_type BlockVectorBase< VectorType >::operator[] ( const size_type  i) const
inherited

Access components, returns U(i).

Exactly the same as operator().

◆ operator[]() [2/2]

template<typename VectorType >
reference BlockVectorBase< VectorType >::operator[] ( const size_type  i)
inherited

Access components, returns U(i) as a writeable reference.

Exactly the same as operator().

◆ extract_subvector_to() [1/4]

template<typename VectorType >
template<typename OtherNumber >
void BlockVectorBase< VectorType >::extract_subvector_to ( const std::vector< size_type > &  indices,
std::vector< OtherNumber > &  values 
) const
inherited

Instead of getting individual elements of a vector via operator(), this function allows getting a whole set of elements at once. The indices of the elements to be read are stated in the first argument, the corresponding values are returned in the second.

If the current vector is called v, then this function is the equivalent to the code

for (unsigned int i=0; i<indices.size(); ++i)
values[i] = v[indices[i]];
Precondition
The sizes of the indices and values arrays must be identical.

◆ extract_subvector_to() [2/4]

template<typename VectorType >
virtual void BlockVectorBase< VectorType >::extract_subvector_to ( const ArrayView< const types::global_dof_index > &  indices,
ArrayView< value_type > &  entries 
) const
overridevirtualinherited

◆ extract_subvector_to() [3/4]

template<typename VectorType >
template<typename ForwardIterator , typename OutputIterator >
void BlockVectorBase< VectorType >::extract_subvector_to ( ForwardIterator  indices_begin,
const ForwardIterator  indices_end,
OutputIterator  values_begin 
) const
inherited

Instead of getting individual elements of a vector via operator(), this function allows getting a whole set of elements at once. In contrast to the previous function, this function obtains the indices of the elements by dereferencing all elements of the iterator range provided by the first two arguments, and puts the vector values into memory locations obtained by dereferencing a range of iterators starting at the location pointed to by the third argument.

If the current vector is called v, then this function is the equivalent to the code

ForwardIterator indices_p = indices_begin;
OutputIterator values_p = values_begin;
while (indices_p != indices_end)
{
*values_p = v[*indices_p];
++indices_p;
++values_p;
}
Precondition
It must be possible to write into as many memory locations starting at values_begin as there are iterators between indices_begin and indices_end.

◆ extract_subvector_to() [4/4]

virtual void ReadVector< VectorType::value_type >::extract_subvector_to ( const ArrayView< const types::global_dof_index > &  indices,
ArrayView< VectorType::value_type > &  elements 
) const
pure virtualinherited

Extract a subset of the vector specified by indices into the output array elements.

◆ operator==()

template<typename VectorType >
template<typename VectorType2 >
bool BlockVectorBase< VectorType >::operator== ( const BlockVectorBase< VectorType2 > &  v) const
inherited

Check for equality of two block vector types. This operation is only allowed if the two vectors already have the same block structure.

◆ operator*()

template<typename VectorType >
value_type BlockVectorBase< VectorType >::operator* ( const BlockVectorBase< VectorType > &  V) const
inherited

\(U = U * V\): scalar product.

◆ norm_sqr()

template<typename VectorType >
real_type BlockVectorBase< VectorType >::norm_sqr ( ) const
inherited

Return the square of the \(l_2\)-norm.

◆ mean_value()

template<typename VectorType >
value_type BlockVectorBase< VectorType >::mean_value ( ) const
inherited

Return the mean value of the elements of this vector.

◆ l1_norm()

template<typename VectorType >
real_type BlockVectorBase< VectorType >::l1_norm ( ) const
inherited

Return the \(l_1\)-norm of the vector, i.e. the sum of the absolute values.

◆ l2_norm()

template<typename VectorType >
real_type BlockVectorBase< VectorType >::l2_norm ( ) const
inherited

Return the \(l_2\)-norm of the vector, i.e. the square root of the sum of the squares of the elements.

◆ linfty_norm()

template<typename VectorType >
real_type BlockVectorBase< VectorType >::linfty_norm ( ) const
inherited

Return the maximum absolute value of the elements of this vector, which is the \(l_\infty\)-norm of a vector.

◆ add_and_dot()

template<typename VectorType >
value_type BlockVectorBase< VectorType >::add_and_dot ( const value_type  a,
const BlockVectorBase< VectorType > &  V,
const BlockVectorBase< VectorType > &  W 
)
inherited

Performs a combined operation of a vector addition and a subsequent inner product, returning the value of the inner product. In other words, the result of this function is the same as if the user called

this->add(a, V);
return_value = *this * W;
void add(const std::vector< size_type > &indices, const std::vector< Number > &values)

The reason this function exists is that this operation involves less memory transfer than calling the two functions separately on deal.II's vector classes (Vector<Number> and LinearAlgebra::distributed::Vector<double>). This method only needs to load three vectors, this, V, W, whereas calling separate methods means to load the calling vector this twice. Since most vector operations are memory transfer limited, this reduces the time by 25% (or 50% if W equals this).

For complex-valued vectors, the scalar product in the second step is implemented as \(\left<v,w\right>=\sum_i v_i \bar{w_i}\).

◆ in_local_range()

template<typename VectorType >
bool BlockVectorBase< VectorType >::in_local_range ( const size_type  global_index) const
inherited

Return true if the given global index is in the local range of this processor. Asks the corresponding block.

◆ all_zero()

template<typename VectorType >
bool BlockVectorBase< VectorType >::all_zero ( ) const
inherited

Return whether the vector contains only elements with value zero. This function is mainly for internal consistency check and should seldom be used when not in debug mode since it uses quite some time.

◆ is_non_negative()

template<typename VectorType >
bool BlockVectorBase< VectorType >::is_non_negative ( ) const
inherited

Return true if the vector has no negative entries, i.e. all entries are zero or positive. This function is used, for example, to check whether refinement indicators are really all positive (or zero).

◆ operator+=()

template<typename VectorType >
BlockVectorBase & BlockVectorBase< VectorType >::operator+= ( const BlockVectorBase< VectorType > &  V)
inherited

Addition operator. Fast equivalent to U.add(1, V).

◆ operator-=()

template<typename VectorType >
BlockVectorBase & BlockVectorBase< VectorType >::operator-= ( const BlockVectorBase< VectorType > &  V)
inherited

Subtraction operator. Fast equivalent to U.add(-1, V).

◆ add() [1/6]

template<typename VectorType >
template<typename Number >
void BlockVectorBase< VectorType >::add ( const std::vector< size_type > &  indices,
const std::vector< Number > &  values 
)
inherited

A collective add operation: This function adds a whole set of values stored in values to the vector components specified by indices.

◆ add() [2/6]

template<typename VectorType >
template<typename Number >
void BlockVectorBase< VectorType >::add ( const std::vector< size_type > &  indices,
const Vector< Number > &  values 
)
inherited

This is a second collective add operation. As a difference, this function takes a deal.II vector of values.

◆ add() [3/6]

template<typename VectorType >
template<typename Number >
void BlockVectorBase< VectorType >::add ( const size_type  n_elements,
const size_type indices,
const Number *  values 
)
inherited

Take an address where n_elements are stored contiguously and add them into the vector. Handles all cases which are not covered by the other two add() functions above.

◆ add() [4/6]

template<typename VectorType >
void BlockVectorBase< VectorType >::add ( const value_type  s)
inherited

\(U(0-DIM)+=s\). Addition of s to all components. Note that s is a scalar and not a vector.

◆ add() [5/6]

template<typename VectorType >
void BlockVectorBase< VectorType >::add ( const value_type  a,
const BlockVectorBase< VectorType > &  V 
)
inherited

U+=a*V. Simple addition of a scaled vector.

◆ add() [6/6]

template<typename VectorType >
void BlockVectorBase< VectorType >::add ( const value_type  a,
const BlockVectorBase< VectorType > &  V,
const value_type  b,
const BlockVectorBase< VectorType > &  W 
)
inherited

U+=a*V+b*W. Multiple addition of scaled vectors.

◆ sadd() [1/4]

template<typename VectorType >
void BlockVectorBase< VectorType >::sadd ( const value_type  s,
const BlockVectorBase< VectorType > &  V 
)
inherited

U=s*U+V. Scaling and simple vector addition.

◆ sadd() [2/4]

template<typename VectorType >
void BlockVectorBase< VectorType >::sadd ( const value_type  s,
const value_type  a,
const BlockVectorBase< VectorType > &  V 
)
inherited

U=s*U+a*V. Scaling and simple addition.

◆ sadd() [3/4]

template<typename VectorType >
void BlockVectorBase< VectorType >::sadd ( const value_type  s,
const value_type  a,
const BlockVectorBase< VectorType > &  V,
const value_type  b,
const BlockVectorBase< VectorType > &  W 
)
inherited

U=s*U+a*V+b*W. Scaling and multiple addition.

◆ sadd() [4/4]

template<typename VectorType >
void BlockVectorBase< VectorType >::sadd ( const value_type  s,
const value_type  a,
const BlockVectorBase< VectorType > &  V,
const value_type  b,
const BlockVectorBase< VectorType > &  W,
const value_type  c,
const BlockVectorBase< VectorType > &  X 
)
inherited

U=s*U+a*V+b*W+c*X. Scaling and multiple addition.

◆ operator*=()

template<typename VectorType >
BlockVectorBase & BlockVectorBase< VectorType >::operator*= ( const value_type  factor)
inherited

Scale each element of the vector by a constant value.

◆ operator/=()

template<typename VectorType >
BlockVectorBase & BlockVectorBase< VectorType >::operator/= ( const value_type  factor)
inherited

Scale each element of the vector by the inverse of the given value.

◆ scale()

template<typename VectorType >
template<class BlockVector2 >
void BlockVectorBase< VectorType >::scale ( const BlockVector2 &  v)
inherited

Multiply each element of this vector by the corresponding element of v.

◆ equ()

template<typename VectorType >
template<class BlockVector2 >
void BlockVectorBase< VectorType >::equ ( const value_type  a,
const BlockVector2 &  V 
)
inherited

U=a*V. Assignment.

◆ update_ghost_values()

template<typename VectorType >
void BlockVectorBase< VectorType >::update_ghost_values ( ) const
inherited

Update the ghost values by calling update_ghost_values for each block.

◆ memory_consumption()

template<typename VectorType >
std::size_t BlockVectorBase< VectorType >::memory_consumption ( ) const
inherited

Determine an estimate for the memory consumption (in bytes) of this object.

◆ subscribe()

void Subscriptor::subscribe ( std::atomic< bool > *const  validity,
const std::string &  identifier = "" 
) const
inherited

Subscribes a user of the object by storing the pointer validity. The subscriber may be identified by text supplied as identifier.

Definition at line 135 of file subscriptor.cc.

◆ unsubscribe()

void Subscriptor::unsubscribe ( std::atomic< bool > *const  validity,
const std::string &  identifier = "" 
) const
inherited

Unsubscribes a user from the object.

Note
The identifier and the validity pointer must be the same as the one supplied to subscribe().

Definition at line 155 of file subscriptor.cc.

◆ n_subscriptions()

unsigned int Subscriptor::n_subscriptions ( ) const
inlineinherited

Return the present number of subscriptions to this object. This allows to use this class for reference counted lifetime determination where the last one to unsubscribe also deletes the object.

Definition at line 300 of file subscriptor.h.

◆ list_subscribers() [1/2]

template<typename StreamType >
void Subscriptor::list_subscribers ( StreamType &  stream) const
inlineinherited

List the subscribers to the input stream.

Definition at line 317 of file subscriptor.h.

◆ list_subscribers() [2/2]

void Subscriptor::list_subscribers ( ) const
inherited

List the subscribers to deallog.

Definition at line 203 of file subscriptor.cc.

◆ serialize()

template<class Archive >
void Subscriptor::serialize ( Archive &  ar,
const unsigned int  version 
)
inlineinherited

Read or write the data of this object to or from a stream for the purpose of serialization using the BOOST serialization library.

This function does not actually serialize any of the member variables of this class. The reason is that what this class stores is only who subscribes to this object, but who does so at the time of storing the contents of this object does not necessarily have anything to do with who subscribes to the object when it is restored. Consequently, we do not want to overwrite the subscribers at the time of restoring, and then there is no reason to write the subscribers out in the first place.

Definition at line 309 of file subscriptor.h.

◆ check_no_subscribers()

void Subscriptor::check_no_subscribers ( ) const
privatenoexceptinherited

Check that there are no objects subscribing to this object. If this check passes then it is safe to destroy the current object. It this check fails then this function will either abort or print an error message to deallog (by using the AssertNothrow mechanism), but will not throw an exception.

Note
Since this function is just a consistency check it does nothing in release mode.
If this function is called when there is an uncaught exception then, rather than aborting, this function prints an error message to the standard error stream and returns.

Definition at line 52 of file subscriptor.cc.

Member Data Documentation

◆ components

template<typename VectorType >
std::vector<VectorType> BlockVectorBase< VectorType >::components
protectedinherited

Pointer to the array of components.

Definition at line 963 of file block_vector_base.h.

◆ block_indices

template<typename VectorType >
BlockIndices BlockVectorBase< VectorType >::block_indices
protectedinherited

Object managing the transformation between global indices and indices within the different blocks.

Definition at line 969 of file block_vector_base.h.

◆ counter

std::atomic<unsigned int> Subscriptor::counter
mutableprivateinherited

Store the number of objects which subscribed to this object. Initially, this number is zero, and upon destruction it shall be zero again (i.e. all objects which subscribed should have unsubscribed again).

The creator (and owner) of an object is counted in the map below if HE manages to supply identification.

We use the mutable keyword in order to allow subscription to constant objects also.

This counter may be read from and written to concurrently in multithreaded code: hence we use the std::atomic class template.

Definition at line 218 of file subscriptor.h.

◆ counter_map

std::map<std::string, unsigned int> Subscriptor::counter_map
mutableprivateinherited

In this map, we count subscriptions for each different identification string supplied to subscribe().

Definition at line 224 of file subscriptor.h.

◆ validity_pointers

std::vector<std::atomic<bool> *> Subscriptor::validity_pointers
mutableprivateinherited

In this vector, we store pointers to the validity bool in the SmartPointer objects that subscribe to this class.

Definition at line 240 of file subscriptor.h.

◆ object_info

const std::type_info* Subscriptor::object_info
mutableprivateinherited

Pointer to the typeinfo object of this object, from which we can later deduce the class name. Since this information on the derived class is neither available in the destructor, nor in the constructor, we obtain it in between and store it here.

Definition at line 248 of file subscriptor.h.

◆ mutex

std::mutex Subscriptor::mutex
staticprivateinherited

A mutex used to ensure data consistency when accessing the mutable members of this class. This lock is used in the subscribe() and unsubscribe() functions, as well as in list_subscribers().

Definition at line 271 of file subscriptor.h.


The documentation for this class was generated from the following file: