Reference documentation for deal.II version Git d3aed38b93 2021-10-28 13:33:27 +0200
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Public Types | Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Attributes | List of all members
LinearAlgebra::distributed::BlockVector< Number > Class Template Reference

#include <deal.II/lac/la_parallel_block_vector.h>

Inheritance diagram for LinearAlgebra::distributed::BlockVector< Number >:
[legend]

Public Types

using BaseClass = BlockVectorBase< Vector< Number > >
 
using BlockType = typename BaseClass::BlockType
 
using value_type = typename BaseClass::value_type
 
using real_type = typename BaseClass::real_type
 
using pointer = typename BaseClass::pointer
 
using const_pointer = typename BaseClass::const_pointer
 
using reference = typename BaseClass::reference
 
using const_reference = typename BaseClass::const_reference
 
using size_type = typename BaseClass::size_type
 
using iterator = typename BaseClass::iterator
 
using const_iterator = typename BaseClass::const_iterator
 

Public Member Functions

void collect_sizes ()
 
BlockTypeblock (const unsigned int i)
 
const BlockTypeblock (const unsigned int i) const
 
const BlockIndicesget_block_indices () const
 
unsigned int n_blocks () const
 
std::size_t locally_owned_size () const
 
iterator begin ()
 
const_iterator begin () const
 
iterator end ()
 
const_iterator end () const
 
value_type operator() (const size_type i) const
 
reference operator() (const size_type i)
 
value_type operator[] (const size_type i) const
 
reference operator[] (const size_type i)
 
void extract_subvector_to (const std::vector< size_type > &indices, std::vector< OtherNumber > &values) const
 
void extract_subvector_to (ForwardIterator indices_begin, const ForwardIterator indices_end, OutputIterator values_begin) const
 
bool operator== (const BlockVectorBase< VectorType2 > &v) const
 
value_type operator* (const BlockVectorBase &V) const
 
value_type add_and_dot (const value_type a, const BlockVectorBase &V, const BlockVectorBase &W)
 
bool in_local_range (const size_type global_index) const
 
bool is_non_negative () const
 
BlockVectorBaseoperator+= (const BlockVectorBase &V)
 
BlockVectorBaseoperator-= (const BlockVectorBase &V)
 
void add (const std::vector< size_type > &indices, const std::vector< Number > &values)
 
void add (const std::vector< size_type > &indices, const Vector< Number > &values)
 
void add (const size_type n_elements, const size_type *indices, const Number *values)
 
void add (const value_type s)
 
void add (const value_type a, const BlockVectorBase &V)
 
void add (const value_type a, const BlockVectorBase &V, const value_type b, const BlockVectorBase &W)
 
void sadd (const value_type s, const BlockVectorBase &V)
 
void sadd (const value_type s, const value_type a, const BlockVectorBase &V)
 
void sadd (const value_type s, const value_type a, const BlockVectorBase &V, const value_type b, const BlockVectorBase &W)
 
void sadd (const value_type s, const value_type a, const BlockVectorBase &V, const value_type b, const BlockVectorBase &W, const value_type c, const BlockVectorBase &X)
 
BlockVectorBaseoperator*= (const value_type factor)
 
BlockVectorBaseoperator/= (const value_type factor)
 
void scale (const BlockVector2 &v)
 
void equ (const value_type a, const BlockVector2 &V)
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 
virtual void compress (VectorOperation::values)
 
1: Basic operations
 BlockVector (const size_type num_blocks=0, const size_type block_size=0)
 
 BlockVector (const BlockVector< Number > &V)
 
template<typename OtherNumber >
 BlockVector (const BlockVector< OtherNumber > &v)
 
 BlockVector (const std::vector< size_type > &block_sizes)
 
 BlockVector (const std::vector< IndexSet > &local_ranges, const std::vector< IndexSet > &ghost_indices, const MPI_Comm &communicator)
 
 BlockVector (const std::vector< IndexSet > &local_ranges, const MPI_Comm &communicator)
 
virtual ~BlockVector () override=default
 
virtual BlockVectoroperator= (const value_type s) override
 
BlockVectoroperator= (const BlockVector &V)
 
template<class Number2 >
BlockVectoroperator= (const BlockVector< Number2 > &V)
 
BlockVectoroperator= (const Vector< Number > &V)
 
BlockVector< Number > & operator= (const PETScWrappers::MPI::BlockVector &petsc_vec)
 
BlockVector< Number > & operator= (const TrilinosWrappers::MPI::BlockVector &trilinos_vec)
 
void reinit (const size_type num_blocks, const size_type block_size=0, const bool omit_zeroing_entries=false)
 
void reinit (const std::vector< size_type > &N, const bool omit_zeroing_entries=false)
 
template<typename Number2 >
void reinit (const BlockVector< Number2 > &V, const bool omit_zeroing_entries=false)
 
virtual void compress (::VectorOperation::values operation) override
 
void update_ghost_values () const
 
void zero_out_ghosts () const
 
void zero_out_ghost_values () const
 
bool has_ghost_elements () const
 
template<typename OtherNumber >
void add (const std::vector< size_type > &indices, const ::Vector< OtherNumber > &values)
 
void sadd (const Number s, const BlockVector< Number > &V)
 
virtual bool all_zero () const override
 
virtual Number mean_value () const override
 
real_type lp_norm (const real_type p) const
 
void swap (BlockVector< Number > &v)
 
2: Implementation of VectorSpaceVector
virtual void reinit (const VectorSpaceVector< Number > &V, const bool omit_zeroing_entries=false) override
 
virtual BlockVector< Number > & operator*= (const Number factor) override
 
virtual BlockVector< Number > & operator/= (const Number factor) override
 
virtual BlockVector< Number > & operator+= (const VectorSpaceVector< Number > &V) override
 
virtual BlockVector< Number > & operator-= (const VectorSpaceVector< Number > &V) override
 
virtual void import (const LinearAlgebra::ReadWriteVector< Number > &V, VectorOperation::values operation, std::shared_ptr< const Utilities::MPI::CommunicationPatternBase > communication_pattern={}) override
 
virtual Number operator* (const VectorSpaceVector< Number > &V) const override
 
template<typename FullMatrixType >
void multivector_inner_product (FullMatrixType &matrix, const BlockVector< Number > &V, const bool symmetric=false) const
 
template<typename FullMatrixType >
Number multivector_inner_product_with_metric (const FullMatrixType &matrix, const BlockVector< Number > &V, const bool symmetric=false) const
 
template<typename FullMatrixType >
void mmult (BlockVector< Number > &V, const FullMatrixType &matrix, const Number s=Number(0.), const Number b=Number(1.)) const
 
virtual void add (const Number a) override
 
virtual void add (const Number a, const VectorSpaceVector< Number > &V) override
 
virtual void add (const Number a, const VectorSpaceVector< Number > &V, const Number b, const VectorSpaceVector< Number > &W) override
 
virtual void add (const std::vector< size_type > &indices, const std::vector< Number > &values)
 
virtual void sadd (const Number s, const Number a, const VectorSpaceVector< Number > &V) override
 
virtual void scale (const VectorSpaceVector< Number > &scaling_factors) override
 
virtual void equ (const Number a, const VectorSpaceVector< Number > &V) override
 
virtual real_type l1_norm () const override
 
virtual real_type l2_norm () const override
 
real_type norm_sqr () const
 
virtual real_type linfty_norm () const override
 
virtual Number add_and_dot (const Number a, const VectorSpaceVector< Number > &V, const VectorSpaceVector< Number > &W) override
 
virtual size_type size () const override
 
virtual ::IndexSet locally_owned_elements () const override
 
virtual void print (std::ostream &out, const unsigned int precision=3, const bool scientific=true, const bool across=true) const override
 
virtual std::size_t memory_consumption () const override
 
Subscriptor functionality

Classes derived from Subscriptor provide a facility to subscribe to this object. This is mostly used by the SmartPointer class.

void subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
void unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
unsigned int n_subscriptions () const
 
template<typename StreamType >
void list_subscribers (StreamType &stream) const
 
void list_subscribers () const
 

Static Public Member Functions

static ::ExceptionBaseExcVectorTypeNotCompatible ()
 
static ::ExceptionBaseExcIteratorRangeDoesNotMatchVectorSize ()
 
static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 

Static Public Attributes

static constexpr unsigned int communication_block_size = 20
 

Protected Attributes

std::vector< Vector< Number > > components
 
BlockIndices block_indices
 

Detailed Description

template<typename Number>
class LinearAlgebra::distributed::BlockVector< Number >

An implementation of block vectors based on distributed deal.II vectors. While the base class provides for most of the interface, this class handles the actual allocation of vectors and provides functions that are specific to the underlying vector type.

Note
Instantiations for this template are provided for <float> and <double>; others can be generated in application programs (see the section on Template instantiations in the manual).
See also
Block (linear algebra)

Definition at line 84 of file la_parallel_block_vector.h.

Member Typedef Documentation

◆ BaseClass

template<typename Number>
using LinearAlgebra::distributed::BlockVector< Number >::BaseClass = BlockVectorBase<Vector<Number> >

Typedef the base class for simpler access to its own alias.

Definition at line 105 of file la_parallel_block_vector.h.

◆ BlockType

template<typename Number>
using LinearAlgebra::distributed::BlockVector< Number >::BlockType = typename BaseClass::BlockType

Typedef the type of the underlying vector.

Definition at line 110 of file la_parallel_block_vector.h.

◆ value_type

template<typename Number>
using LinearAlgebra::distributed::BlockVector< Number >::value_type = typename BaseClass::value_type

Import the alias from the base class.

Definition at line 115 of file la_parallel_block_vector.h.

◆ real_type

template<typename Number>
using LinearAlgebra::distributed::BlockVector< Number >::real_type = typename BaseClass::real_type

Definition at line 116 of file la_parallel_block_vector.h.

◆ pointer

template<typename Number>
using LinearAlgebra::distributed::BlockVector< Number >::pointer = typename BaseClass::pointer

Definition at line 117 of file la_parallel_block_vector.h.

◆ const_pointer

template<typename Number>
using LinearAlgebra::distributed::BlockVector< Number >::const_pointer = typename BaseClass::const_pointer

Definition at line 118 of file la_parallel_block_vector.h.

◆ reference

template<typename Number>
using LinearAlgebra::distributed::BlockVector< Number >::reference = typename BaseClass::reference

Definition at line 119 of file la_parallel_block_vector.h.

◆ const_reference

template<typename Number>
using LinearAlgebra::distributed::BlockVector< Number >::const_reference = typename BaseClass::const_reference

Definition at line 120 of file la_parallel_block_vector.h.

◆ size_type

template<typename Number>
using LinearAlgebra::distributed::BlockVector< Number >::size_type = typename BaseClass::size_type

Definition at line 121 of file la_parallel_block_vector.h.

◆ iterator

template<typename Number>
using LinearAlgebra::distributed::BlockVector< Number >::iterator = typename BaseClass::iterator

Definition at line 122 of file la_parallel_block_vector.h.

◆ const_iterator

template<typename Number>
using LinearAlgebra::distributed::BlockVector< Number >::const_iterator = typename BaseClass::const_iterator

Definition at line 123 of file la_parallel_block_vector.h.

Constructor & Destructor Documentation

◆ BlockVector() [1/6]

template<typename Number>
LinearAlgebra::distributed::BlockVector< Number >::BlockVector ( const size_type  num_blocks = 0,
const size_type  block_size = 0 
)
explicit

Constructor. There are three ways to use this constructor. First, without any arguments, it generates an object with no blocks. Given one argument, it initializes num_blocks blocks, but these blocks have size zero. The third variant finally initializes all blocks to the same size block_size.

Confer the other constructor further down if you intend to use blocks of different sizes.

◆ BlockVector() [2/6]

template<typename Number>
LinearAlgebra::distributed::BlockVector< Number >::BlockVector ( const BlockVector< Number > &  V)

Copy-Constructor. Dimension set to that of V, all components are copied from V

◆ BlockVector() [3/6]

template<typename Number>
template<typename OtherNumber >
LinearAlgebra::distributed::BlockVector< Number >::BlockVector ( const BlockVector< OtherNumber > &  v)
explicit

Copy constructor taking a BlockVector of another data type. This will fail if there is no conversion path from OtherNumber to Number. Note that you may lose accuracy when copying to a BlockVector with data elements with less accuracy.

Older versions of gcc did not honor the explicit keyword on template constructors. In such cases, it is easy to accidentally write code that can be very inefficient, since the compiler starts performing hidden conversions. To avoid this, this function is disabled if we have detected a broken compiler during configuration.

◆ BlockVector() [4/6]

template<typename Number>
LinearAlgebra::distributed::BlockVector< Number >::BlockVector ( const std::vector< size_type > &  block_sizes)

Constructor. Set the number of blocks to block_sizes.size() and initialize each block with block_sizes[i] zero elements.

◆ BlockVector() [5/6]

template<typename Number>
LinearAlgebra::distributed::BlockVector< Number >::BlockVector ( const std::vector< IndexSet > &  local_ranges,
const std::vector< IndexSet > &  ghost_indices,
const MPI_Comm communicator 
)

Construct a block vector with an IndexSet for the local range and ghost entries for each block.

◆ BlockVector() [6/6]

template<typename Number>
LinearAlgebra::distributed::BlockVector< Number >::BlockVector ( const std::vector< IndexSet > &  local_ranges,
const MPI_Comm communicator 
)

Same as above but the ghost indices are assumed to be empty.

◆ ~BlockVector()

template<typename Number>
virtual LinearAlgebra::distributed::BlockVector< Number >::~BlockVector ( )
overridevirtualdefault

Destructor.

Note
We need to explicitly provide a destructor, otherwise the linker may think it is unused and discards it, although required in a different section. The Intel compiler is prone to this behavior.

Member Function Documentation

◆ operator=() [1/6]

template<typename Number>
virtual BlockVector& LinearAlgebra::distributed::BlockVector< Number >::operator= ( const value_type  s)
overridevirtual

Copy operator: fill all components of the vector with the given scalar value.

◆ operator=() [2/6]

template<typename Number>
BlockVector& LinearAlgebra::distributed::BlockVector< Number >::operator= ( const BlockVector< Number > &  V)

Copy operator for arguments of the same type. Resize the present vector if necessary.

◆ operator=() [3/6]

template<typename Number>
template<class Number2 >
BlockVector& LinearAlgebra::distributed::BlockVector< Number >::operator= ( const BlockVector< Number2 > &  V)

Copy operator for template arguments of different types. Resize the present vector if necessary.

◆ operator=() [4/6]

template<typename Number>
BlockVector& LinearAlgebra::distributed::BlockVector< Number >::operator= ( const Vector< Number > &  V)

Copy a regular vector into a block vector.

◆ operator=() [5/6]

template<typename Number>
BlockVector<Number>& LinearAlgebra::distributed::BlockVector< Number >::operator= ( const PETScWrappers::MPI::BlockVector< Number > &  petsc_vec)

Copy the content of a PETSc vector into the calling vector. This function assumes that the vectors layouts have already been initialized to match.

This operator is only available if deal.II was configured with PETSc.

◆ operator=() [6/6]

template<typename Number>
BlockVector<Number>& LinearAlgebra::distributed::BlockVector< Number >::operator= ( const TrilinosWrappers::MPI::BlockVector< Number > &  trilinos_vec)

Copy the content of a Trilinos vector into the calling vector. This function assumes that the vectors layouts have already been initialized to match.

This operator is only available if deal.II was configured with Trilinos.

◆ reinit() [1/4]

template<typename Number>
void LinearAlgebra::distributed::BlockVector< Number >::reinit ( const size_type  num_blocks,
const size_type  block_size = 0,
const bool  omit_zeroing_entries = false 
)

Reinitialize the BlockVector to contain num_blocks blocks of size block_size each.

If the second argument is left at its default value, then the block vector allocates the specified number of blocks but leaves them at zero size. You then need to later reinitialize the individual blocks, and call collect_sizes() to update the block system's knowledge of its individual block's sizes.

If omit_zeroing_entries==false, the vector is filled with zeros.

◆ reinit() [2/4]

template<typename Number>
void LinearAlgebra::distributed::BlockVector< Number >::reinit ( const std::vector< size_type > &  N,
const bool  omit_zeroing_entries = false 
)

Reinitialize the BlockVector such that it contains block_sizes.size() blocks. Each block is reinitialized to dimension block_sizes[i].

If the number of blocks is the same as before this function was called, all vectors remain the same and reinit() is called for each vector.

If omit_zeroing_entries==false, the vector is filled with zeros.

Note that you must call this (or the other reinit() functions) function, rather than calling the reinit() functions of an individual block, to allow the block vector to update its caches of vector sizes. If you call reinit() on one of the blocks, then subsequent actions on this object may yield unpredictable results since they may be routed to the wrong block.

◆ reinit() [3/4]

template<typename Number>
template<typename Number2 >
void LinearAlgebra::distributed::BlockVector< Number >::reinit ( const BlockVector< Number2 > &  V,
const bool  omit_zeroing_entries = false 
)

Change the dimension to that of the vector V. The same applies as for the other reinit() function.

The elements of V are not copied, i.e. this function is the same as calling reinit (V.size(), omit_zeroing_entries).

Note that you must call this (or the other reinit() functions) function, rather than calling the reinit() functions of an individual block, to allow the block vector to update its caches of vector sizes. If you call reinit() of one of the blocks, then subsequent actions of this object may yield unpredictable results since they may be routed to the wrong block.

◆ compress() [1/2]

template<typename Number>
virtual void LinearAlgebra::distributed::BlockVector< Number >::compress ( ::VectorOperation::values  operation)
overridevirtual

This function copies the data that has accumulated in the data buffer for ghost indices to the owning processor. For the meaning of the argument operation, see the entry on Compressing distributed vectors and matrices in the glossary.

There are two variants for this function. If called with argument VectorOperation::add adds all the data accumulated in ghost elements to the respective elements on the owning processor and clears the ghost array afterwards. If called with argument VectorOperation::insert, a set operation is performed. Since setting elements in a vector with ghost elements is ambiguous (as one can set both the element on the ghost site as well as the owning site), this operation makes the assumption that all data is set correctly on the owning processor. Upon call of compress(VectorOperation::insert), all ghost entries are therefore simply zeroed out (using zero_ghost_values()). In debug mode, a check is performed that makes sure that the data set is actually consistent between processors, i.e., whenever a non-zero ghost element is found, it is compared to the value on the owning processor and an exception is thrown if these elements do not agree.

◆ update_ghost_values()

template<typename Number>
void LinearAlgebra::distributed::BlockVector< Number >::update_ghost_values ( ) const

Fills the data field for ghost indices with the values stored in the respective positions of the owning processor. This function is needed before reading from ghosts. The function is const even though ghost data is changed. This is needed to allow functions with a const vector to perform the data exchange without creating temporaries.

◆ zero_out_ghosts()

template<typename Number>
void LinearAlgebra::distributed::BlockVector< Number >::zero_out_ghosts ( ) const

This method zeros the entries on ghost dofs, but does not touch locally owned DoFs.

After calling this method, read access to ghost elements of the vector is forbidden and an exception is thrown. Only write access to ghost elements is allowed in this state.

Deprecated:
Use zero_out_ghost_values() instead.

◆ zero_out_ghost_values()

template<typename Number>
void LinearAlgebra::distributed::BlockVector< Number >::zero_out_ghost_values ( ) const

This method zeros the entries on ghost dofs, but does not touch locally owned DoFs.

After calling this method, read access to ghost elements of the vector is forbidden and an exception is thrown. Only write access to ghost elements is allowed in this state.

◆ has_ghost_elements()

template<typename Number>
bool LinearAlgebra::distributed::BlockVector< Number >::has_ghost_elements ( ) const

Return if this Vector contains ghost elements.

◆ add() [1/11]

template<typename Number>
template<typename OtherNumber >
void LinearAlgebra::distributed::BlockVector< Number >::add ( const std::vector< size_type > &  indices,
const ::Vector< OtherNumber > &  values 
)

This is a collective add operation that adds a whole set of values stored in values to the vector components specified by indices.

◆ sadd() [1/6]

template<typename Number>
void LinearAlgebra::distributed::BlockVector< Number >::sadd ( const Number  s,
const BlockVector< Number > &  V 
)

Scaling and simple vector addition, i.e. *this = s*(*this)+V.

◆ all_zero()

template<typename Number>
virtual bool LinearAlgebra::distributed::BlockVector< Number >::all_zero ( ) const
overridevirtual

Return whether the vector contains only elements with value zero. This function is mainly for internal consistency checks and should seldom be used when not in debug mode since it uses quite some time.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ mean_value()

template<typename Number>
virtual Number LinearAlgebra::distributed::BlockVector< Number >::mean_value ( ) const
overridevirtual

Compute the mean value of all the entries in the vector.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ lp_norm()

template<typename Number>
real_type LinearAlgebra::distributed::BlockVector< Number >::lp_norm ( const real_type  p) const

\(l_p\)-norm of the vector. The pth root of the sum of the pth powers of the absolute values of the elements.

◆ swap()

template<typename Number>
void LinearAlgebra::distributed::BlockVector< Number >::swap ( BlockVector< Number > &  v)

Swap the contents of this vector and the other vector v. One could do this operation with a temporary variable and copying over the data elements, but this function is significantly more efficient since it only swaps the pointers to the data of the two vectors and therefore does not need to allocate temporary storage and move data around.

Limitation: right now this function only works if both vectors have the same number of blocks. If needed, the numbers of blocks should be exchanged, too.

This function is analogous to the swap() function of all C++ standard containers. Also, there is a global function swap(u,v) that simply calls u.swap(v), again in analogy to standard functions.

◆ reinit() [4/4]

template<typename Number>
virtual void LinearAlgebra::distributed::BlockVector< Number >::reinit ( const VectorSpaceVector< Number > &  V,
const bool  omit_zeroing_entries = false 
)
overridevirtual

Change the dimension to that of the vector V. The elements of V are not copied.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ operator*=() [1/2]

template<typename Number>
virtual BlockVector<Number>& LinearAlgebra::distributed::BlockVector< Number >::operator*= ( const Number  factor)
overridevirtual

Multiply the entire vector by a fixed factor.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ operator/=() [1/2]

template<typename Number>
virtual BlockVector<Number>& LinearAlgebra::distributed::BlockVector< Number >::operator/= ( const Number  factor)
overridevirtual

Divide the entire vector by a fixed factor.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ operator+=() [1/2]

template<typename Number>
virtual BlockVector<Number>& LinearAlgebra::distributed::BlockVector< Number >::operator+= ( const VectorSpaceVector< Number > &  V)
overridevirtual

Add the vector V to the present one.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ operator-=() [1/2]

template<typename Number>
virtual BlockVector<Number>& LinearAlgebra::distributed::BlockVector< Number >::operator-= ( const VectorSpaceVector< Number > &  V)
overridevirtual

Subtract the vector V from the present one.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ import()

template<typename Number>
virtual void LinearAlgebra::distributed::BlockVector< Number >::import ( const LinearAlgebra::ReadWriteVector< Number > &  V,
VectorOperation::values  operation,
std::shared_ptr< const Utilities::MPI::CommunicationPatternBase communication_pattern = {} 
)
overridevirtual

Import all the elements present in the vector's IndexSet from the input vector V. VectorOperation::values operation is used to decide if the elements in V should be added to the current vector or replace the current elements. The last parameter can be used if the same communication pattern is used multiple times. This can be used to improve performance.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ operator*() [1/2]

template<typename Number>
virtual Number LinearAlgebra::distributed::BlockVector< Number >::operator* ( const VectorSpaceVector< Number > &  V) const
overridevirtual

Return the scalar product of two vectors.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ multivector_inner_product()

template<typename Number>
template<typename FullMatrixType >
void LinearAlgebra::distributed::BlockVector< Number >::multivector_inner_product ( FullMatrixType &  matrix,
const BlockVector< Number > &  V,
const bool  symmetric = false 
) const

Calculate the scalar product between each block of this vector and V and store the result in a full matrix matrix. This function computes the result by forming \(A_{ij}=U_i \cdot V_j\) where \(U_i\) and \(V_j\) indicate the \(i\)th block (not element!) of \(U\) and the \(j\)th block of \(V\), respectively. If symmetric is true, it is assumed that inner product results in a square symmetric matrix and almost half of the scalar products can be avoided.

Obviously, this function can only be used if all blocks of both vectors are of the same size.

Note
Internally, a single global reduction will be called to accumulate scalar product between locally owned degrees of freedom.

◆ multivector_inner_product_with_metric()

template<typename Number>
template<typename FullMatrixType >
Number LinearAlgebra::distributed::BlockVector< Number >::multivector_inner_product_with_metric ( const FullMatrixType &  matrix,
const BlockVector< Number > &  V,
const bool  symmetric = false 
) const

Calculate the scalar product between each block of this vector and V using a metric tensor matrix. This function computes the result of \( \sum_{ij} A^{ij} U_i \cdot V_j\) where \(U_i\) and \(V_j\) indicate the \(i\)th block (not element) of \(U\) and the \(j\)th block of \(V\), respectively. If symmetric is true, it is assumed that \(U_i \cdot V_j\) and \(A^{ij}\) are symmetric matrices and almost half of the scalar products can be avoided.

Obviously, this function can only be used if all blocks of both vectors are of the same size.

Note
Internally, a single global reduction will be called to accumulate the scalar product between locally owned degrees of freedom.

◆ mmult()

template<typename Number>
template<typename FullMatrixType >
void LinearAlgebra::distributed::BlockVector< Number >::mmult ( BlockVector< Number > &  V,
const FullMatrixType &  matrix,
const Number  s = Number(0.),
const Number  b = Number(1.) 
) const

Set each block of this vector as follows: \(V^i = s V^i + b \sum_{j} U_j A^{ji}\) where \(V^i\) and \(U_j\) indicate the \(i\)th block (not element) of \(V\) and the \(j\)th block of \(U\), respectively.

Obviously, this function can only be used if all blocks of both vectors are of the same size.

◆ add() [2/11]

template<typename Number>
virtual void LinearAlgebra::distributed::BlockVector< Number >::add ( const Number  a)
overridevirtual

Add a to all components. Note that a is a scalar not a vector.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ add() [3/11]

template<typename Number>
virtual void LinearAlgebra::distributed::BlockVector< Number >::add ( const Number  a,
const VectorSpaceVector< Number > &  V 
)
overridevirtual

Simple addition of a multiple of a vector, i.e. *this += a*V.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ add() [4/11]

template<typename Number>
virtual void LinearAlgebra::distributed::BlockVector< Number >::add ( const Number  a,
const VectorSpaceVector< Number > &  V,
const Number  b,
const VectorSpaceVector< Number > &  W 
)
overridevirtual

Multiple addition of scaled vectors, i.e. *this += a*V+b*W.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ add() [5/11]

template<typename Number>
virtual void LinearAlgebra::distributed::BlockVector< Number >::add ( const std::vector< size_type > &  indices,
const std::vector< Number > &  values 
)
virtual

A collective add operation: This function adds a whole set of values stored in values to the vector components specified by indices.

◆ sadd() [2/6]

template<typename Number>
virtual void LinearAlgebra::distributed::BlockVector< Number >::sadd ( const Number  s,
const Number  a,
const VectorSpaceVector< Number > &  V 
)
overridevirtual

Scaling and simple addition of a multiple of a vector, i.e. *this = s*(*this)+a*V.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ scale() [1/2]

template<typename Number>
virtual void LinearAlgebra::distributed::BlockVector< Number >::scale ( const VectorSpaceVector< Number > &  scaling_factors)
overridevirtual

Scale each element of this vector by the corresponding element in the argument. This function is mostly meant to simulate multiplication (and immediate re-assignment) by a diagonal scaling matrix.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ equ() [1/2]

template<typename Number>
virtual void LinearAlgebra::distributed::BlockVector< Number >::equ ( const Number  a,
const VectorSpaceVector< Number > &  V 
)
overridevirtual

Assignment *this = a*V.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ l1_norm()

template<typename Number>
virtual real_type LinearAlgebra::distributed::BlockVector< Number >::l1_norm ( ) const
overridevirtual

Return the l1 norm of the vector (i.e., the sum of the absolute values of all entries among all processors).

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ l2_norm()

template<typename Number>
virtual real_type LinearAlgebra::distributed::BlockVector< Number >::l2_norm ( ) const
overridevirtual

Return the \(l_2\) norm of the vector (i.e., the square root of the sum of the square of all entries among all processors).

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ norm_sqr()

template<typename Number>
real_type LinearAlgebra::distributed::BlockVector< Number >::norm_sqr ( ) const

Return the square of the \(l_2\) norm of the vector.

◆ linfty_norm()

template<typename Number>
virtual real_type LinearAlgebra::distributed::BlockVector< Number >::linfty_norm ( ) const
overridevirtual

Return the maximum norm of the vector (i.e., the maximum absolute value among all entries and among all processors).

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ add_and_dot() [1/2]

template<typename Number>
virtual Number LinearAlgebra::distributed::BlockVector< Number >::add_and_dot ( const Number  a,
const VectorSpaceVector< Number > &  V,
const VectorSpaceVector< Number > &  W 
)
overridevirtual

Perform a combined operation of a vector addition and a subsequent inner product, returning the value of the inner product. In other words, the result of this function is the same as if the user called

this->add(a, V);
return_value = *this * W;

The reason this function exists is that this operation involves less memory transfer than calling the two functions separately. This method only needs to load three vectors, this, V, W, whereas calling separate methods means to load the calling vector this twice. Since most vector operations are memory transfer limited, this reduces the time by 25% (or 50% if W equals this).

For complex-valued vectors, the scalar product in the second step is implemented as \(\left<v,w\right>=\sum_i v_i \bar{w_i}\).

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ size()

template<typename Number>
virtual size_type LinearAlgebra::distributed::BlockVector< Number >::size ( ) const
overridevirtual

Return the global size of the vector, equal to the sum of the number of locally owned indices among all processors.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ locally_owned_elements()

template<typename Number>
virtual ::IndexSet LinearAlgebra::distributed::BlockVector< Number >::locally_owned_elements ( ) const
overridevirtual

Return an index set that describes which elements of this vector are owned by the current processor. As a consequence, the index sets returned on different processors if this is a distributed vector will form disjoint sets that add up to the complete index set. Obviously, if a vector is created on only one processor, then the result would satisfy

vec.locally_owned_elements() == complete_index_set(vec.size())

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ print()

template<typename Number>
virtual void LinearAlgebra::distributed::BlockVector< Number >::print ( std::ostream &  out,
const unsigned int  precision = 3,
const bool  scientific = true,
const bool  across = true 
) const
overridevirtual

Print the vector to the output stream out.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ memory_consumption()

template<typename Number>
virtual std::size_t LinearAlgebra::distributed::BlockVector< Number >::memory_consumption ( ) const
overridevirtual

Return the memory consumption of this class in bytes.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ collect_sizes()

void BlockVectorBase< Vector< Number > >::collect_sizes ( )
inherited

Update internal structures after resizing vectors. Whenever you reinited a block of a block vector, the internal data structures are corrupted. Therefore, you should call this function after all blocks got their new size.

◆ block() [1/2]

BlockType& BlockVectorBase< Vector< Number > >::block ( const unsigned int  i)
inherited

Access to a single block.

◆ block() [2/2]

const BlockType& BlockVectorBase< Vector< Number > >::block ( const unsigned int  i) const
inherited

Read-only access to a single block.

◆ get_block_indices()

const BlockIndices& BlockVectorBase< Vector< Number > >::get_block_indices ( ) const
inherited

Return a reference on the object that describes the mapping between block and global indices. The use of this function is highly deprecated and it should vanish in one of the next versions

◆ n_blocks()

unsigned int BlockVectorBase< Vector< Number > >::n_blocks ( ) const
inherited

Number of blocks.

◆ locally_owned_size()

std::size_t BlockVectorBase< Vector< Number > >::locally_owned_size ( ) const
inherited

Return local dimension of the vector. This is the sum of the local dimensions (i.e., values stored on the current processor) of all components.

◆ begin() [1/2]

iterator BlockVectorBase< Vector< Number > >::begin ( )
inherited

Return an iterator pointing to the first element.

◆ begin() [2/2]

const_iterator BlockVectorBase< Vector< Number > >::begin ( ) const
inherited

Return an iterator pointing to the first element of a constant block vector.

◆ end() [1/2]

iterator BlockVectorBase< Vector< Number > >::end ( )
inherited

Return an iterator pointing to the element past the end.

◆ end() [2/2]

const_iterator BlockVectorBase< Vector< Number > >::end ( ) const
inherited

Return an iterator pointing to the element past the end of a constant block vector.

◆ operator()() [1/2]

value_type BlockVectorBase< Vector< Number > >::operator() ( const size_type  i) const
inherited

Access components, returns U(i).

◆ operator()() [2/2]

reference BlockVectorBase< Vector< Number > >::operator() ( const size_type  i)
inherited

Access components, returns U(i) as a writeable reference.

◆ operator[]() [1/2]

value_type BlockVectorBase< Vector< Number > >::operator[] ( const size_type  i) const
inherited

Access components, returns U(i).

Exactly the same as operator().

◆ operator[]() [2/2]

reference BlockVectorBase< Vector< Number > >::operator[] ( const size_type  i)
inherited

Access components, returns U(i) as a writeable reference.

Exactly the same as operator().

◆ extract_subvector_to() [1/2]

void BlockVectorBase< Vector< Number > >::extract_subvector_to ( const std::vector< size_type > &  indices,
std::vector< OtherNumber > &  values 
) const
inherited

Instead of getting individual elements of a vector via operator(), this function allows getting a whole set of elements at once. The indices of the elements to be read are stated in the first argument, the corresponding values are returned in the second.

If the current vector is called v, then this function is the equivalent to the code

for (unsigned int i=0; i<indices.size(); ++i)
values[i] = v[indices[i]];
Precondition
The sizes of the indices and values arrays must be identical.

◆ extract_subvector_to() [2/2]

void BlockVectorBase< Vector< Number > >::extract_subvector_to ( ForwardIterator  indices_begin,
const ForwardIterator  indices_end,
OutputIterator  values_begin 
) const
inherited

Instead of getting individual elements of a vector via operator(), this function allows getting a whole set of elements at once. In contrast to the previous function, this function obtains the indices of the elements by dereferencing all elements of the iterator range provided by the first two arguments, and puts the vector values into memory locations obtained by dereferencing a range of iterators starting at the location pointed to by the third argument.

If the current vector is called v, then this function is the equivalent to the code

ForwardIterator indices_p = indices_begin;
OutputIterator values_p = values_begin;
while (indices_p != indices_end)
{
*values_p = v[*indices_p];
++indices_p;
++values_p;
}
Precondition
It must be possible to write into as many memory locations starting at values_begin as there are iterators between indices_begin and indices_end.

◆ operator==()

bool BlockVectorBase< Vector< Number > >::operator== ( const BlockVectorBase< VectorType2 > &  v) const
inherited

Check for equality of two block vector types. This operation is only allowed if the two vectors already have the same block structure.

◆ operator*() [2/2]

value_type BlockVectorBase< Vector< Number > >::operator* ( const BlockVectorBase< Vector< Number > > &  V) const
inherited

\(U = U * V\): scalar product.

◆ add_and_dot() [2/2]

value_type BlockVectorBase< Vector< Number > >::add_and_dot ( const value_type  a,
const BlockVectorBase< Vector< Number > > &  V,
const BlockVectorBase< Vector< Number > > &  W 
)
inherited

Performs a combined operation of a vector addition and a subsequent inner product, returning the value of the inner product. In other words, the result of this function is the same as if the user called

this->add(a, V);
return_value = *this * W;

The reason this function exists is that this operation involves less memory transfer than calling the two functions separately on deal.II's vector classes (Vector<Number> and LinearAlgebra::distributed::Vector<double>). This method only needs to load three vectors, this, V, W, whereas calling separate methods means to load the calling vector this twice. Since most vector operations are memory transfer limited, this reduces the time by 25% (or 50% if W equals this).

For complex-valued vectors, the scalar product in the second step is implemented as \(\left<v,w\right>=\sum_i v_i \bar{w_i}\).

◆ in_local_range()

bool BlockVectorBase< Vector< Number > >::in_local_range ( const size_type  global_index) const
inherited

Return true if the given global index is in the local range of this processor. Asks the corresponding block.

◆ is_non_negative()

bool BlockVectorBase< Vector< Number > >::is_non_negative ( ) const
inherited

Return true if the vector has no negative entries, i.e. all entries are zero or positive. This function is used, for example, to check whether refinement indicators are really all positive (or zero).

◆ operator+=() [2/2]

BlockVectorBase& BlockVectorBase< Vector< Number > >::operator+= ( const BlockVectorBase< Vector< Number > > &  V)
inherited

Addition operator. Fast equivalent to U.add(1, V).

◆ operator-=() [2/2]

BlockVectorBase& BlockVectorBase< Vector< Number > >::operator-= ( const BlockVectorBase< Vector< Number > > &  V)
inherited

Subtraction operator. Fast equivalent to U.add(-1, V).

◆ add() [6/11]

void BlockVectorBase< Vector< Number > >::add ( const std::vector< size_type > &  indices,
const std::vector< Number > &  values 
)
inherited

A collective add operation: This function adds a whole set of values stored in values to the vector components specified by indices.

◆ add() [7/11]

void BlockVectorBase< Vector< Number > >::add ( const std::vector< size_type > &  indices,
const Vector< Number > &  values 
)
inherited

This is a second collective add operation. As a difference, this function takes a deal.II vector of values.

◆ add() [8/11]

void BlockVectorBase< Vector< Number > >::add ( const size_type  n_elements,
const size_type indices,
const Number *  values 
)
inherited

Take an address where n_elements are stored contiguously and add them into the vector. Handles all cases which are not covered by the other two add() functions above.

◆ add() [9/11]

void BlockVectorBase< Vector< Number > >::add ( const value_type  s)
inherited

\(U(0-DIM)+=s\). Addition of s to all components. Note that s is a scalar and not a vector.

◆ add() [10/11]

void BlockVectorBase< Vector< Number > >::add ( const value_type  a,
const BlockVectorBase< Vector< Number > > &  V 
)
inherited

U+=a*V. Simple addition of a scaled vector.

◆ add() [11/11]

void BlockVectorBase< Vector< Number > >::add ( const value_type  a,
const BlockVectorBase< Vector< Number > > &  V,
const value_type  b,
const BlockVectorBase< Vector< Number > > &  W 
)
inherited

U+=a*V+b*W. Multiple addition of scaled vectors.

◆ sadd() [3/6]

void BlockVectorBase< Vector< Number > >::sadd ( const value_type  s,
const BlockVectorBase< Vector< Number > > &  V 
)
inherited

U=s*U+V. Scaling and simple vector addition.

◆ sadd() [4/6]

void BlockVectorBase< Vector< Number > >::sadd ( const value_type  s,
const value_type  a,
const BlockVectorBase< Vector< Number > > &  V 
)
inherited

U=s*U+a*V. Scaling and simple addition.

◆ sadd() [5/6]

void BlockVectorBase< Vector< Number > >::sadd ( const value_type  s,
const value_type  a,
const BlockVectorBase< Vector< Number > > &  V,
const value_type  b,
const BlockVectorBase< Vector< Number > > &  W 
)
inherited

U=s*U+a*V+b*W. Scaling and multiple addition.

◆ sadd() [6/6]

void BlockVectorBase< Vector< Number > >::sadd ( const value_type  s,
const value_type  a,
const BlockVectorBase< Vector< Number > > &  V,
const value_type  b,
const BlockVectorBase< Vector< Number > > &  W,
const value_type  c,
const BlockVectorBase< Vector< Number > > &  X 
)
inherited

U=s*U+a*V+b*W+c*X. Scaling and multiple addition.

◆ operator*=() [2/2]

BlockVectorBase& BlockVectorBase< Vector< Number > >::operator*= ( const value_type  factor)
inherited

Scale each element of the vector by a constant value.

◆ operator/=() [2/2]

BlockVectorBase& BlockVectorBase< Vector< Number > >::operator/= ( const value_type  factor)
inherited

Scale each element of the vector by the inverse of the given value.

◆ scale() [2/2]

void BlockVectorBase< Vector< Number > >::scale ( const BlockVector2 &  v)
inherited

Multiply each element of this vector by the corresponding element of v.

◆ equ() [2/2]

void BlockVectorBase< Vector< Number > >::equ ( const value_type  a,
const BlockVector2 &  V 
)
inherited

U=a*V. Assignment.

◆ subscribe()

void Subscriptor::subscribe ( std::atomic< bool > *const  validity,
const std::string &  identifier = "" 
) const
inherited

Subscribes a user of the object by storing the pointer validity. The subscriber may be identified by text supplied as identifier.

Definition at line 136 of file subscriptor.cc.

◆ unsubscribe()

void Subscriptor::unsubscribe ( std::atomic< bool > *const  validity,
const std::string &  identifier = "" 
) const
inherited

Unsubscribes a user from the object.

Note
The identifier and the validity pointer must be the same as the one supplied to subscribe().

Definition at line 156 of file subscriptor.cc.

◆ n_subscriptions()

unsigned int Subscriptor::n_subscriptions ( ) const
inlineinherited

Return the present number of subscriptions to this object. This allows to use this class for reference counted lifetime determination where the last one to unsubscribe also deletes the object.

Definition at line 301 of file subscriptor.h.

◆ list_subscribers() [1/2]

template<typename StreamType >
void Subscriptor::list_subscribers ( StreamType &  stream) const
inlineinherited

List the subscribers to the input stream.

Definition at line 318 of file subscriptor.h.

◆ list_subscribers() [2/2]

void Subscriptor::list_subscribers ( ) const
inherited

List the subscribers to deallog.

Definition at line 204 of file subscriptor.cc.

◆ serialize()

template<class Archive >
void Subscriptor::serialize ( Archive &  ar,
const unsigned int  version 
)
inlineinherited

Read or write the data of this object to or from a stream for the purpose of serialization using the BOOST serialization library.

This function does not actually serialize any of the member variables of this class. The reason is that what this class stores is only who subscribes to this object, but who does so at the time of storing the contents of this object does not necessarily have anything to do with who subscribes to the object when it is restored. Consequently, we do not want to overwrite the subscribers at the time of restoring, and then there is no reason to write the subscribers out in the first place.

Definition at line 310 of file subscriptor.h.

◆ compress() [2/2]

template<typename Number>
virtual void LinearAlgebra::VectorSpaceVector< Number >::compress ( VectorOperation::values  )
inlinevirtualinherited

This function does nothing and only exists for backward compatibility.

Definition at line 226 of file vector_space_vector.h.

Member Data Documentation

◆ communication_block_size

template<typename Number>
constexpr unsigned int LinearAlgebra::distributed::BlockVector< Number >::communication_block_size = 20
static

The chunks size to split communication in update_ghost_values() and compress() calls.

Most common MPI implementations will get slow when too many messages/requests are outstanding. Even when messages are small, say 1 kB only, we should collect enough data with communication_block_size to cover typical infiniband latencies which are around a few microseconds. Sending 20 kB at a throughput of 5 GB/s takes 4 microseconds, so we should arrive at the bandwidth dominated regime then which is good enough.

Definition at line 100 of file la_parallel_block_vector.h.

◆ components

std::vector<Vector< Number > > BlockVectorBase< Vector< Number > >::components
protectedinherited

Pointer to the array of components.

Definition at line 955 of file block_vector_base.h.

◆ block_indices

BlockIndices BlockVectorBase< Vector< Number > >::block_indices
protectedinherited

Object managing the transformation between global indices and indices within the different blocks.

Definition at line 961 of file block_vector_base.h.


The documentation for this class was generated from the following file: