154 * #include <deal.II/base/quadrature_lib.h>
155 * #include <deal.II/base/logstream.h>
156 * #include <deal.II/base/function.h>
157 * #include <deal.II/base/utilities.h>
159 * #include <deal.II/lac/block_vector.h>
160 * #include <deal.II/lac/full_matrix.h>
161 * #include <deal.II/lac/block_sparse_matrix.h>
162 * #include <deal.II/lac/solver_cg.h>
163 * #include <deal.II/lac/precondition.h>
164 * #include <deal.II/lac/affine_constraints.h>
166 * #include <deal.II/grid/tria.h>
167 * #include <deal.II/grid/grid_generator.h>
168 * #include <deal.II/grid/tria_accessor.h>
169 * #include <deal.II/grid/tria_iterator.h>
170 * #include <deal.II/grid/grid_tools.h>
171 * #include <deal.II/grid/manifold_lib.h>
172 * #include <deal.II/grid/grid_refinement.h>
173 * #include <deal.II/grid/grid_in.h>
175 * #include <deal.II/dofs/dof_handler.h>
176 * #include <deal.II/dofs/dof_renumbering.h>
177 * #include <deal.II/dofs/dof_accessor.h>
178 * #include <deal.II/dofs/dof_tools.h>
180 * #include <deal.II/fe/fe_q.h>
181 * #include <deal.II/fe/fe_system.h>
182 * #include <deal.II/fe/fe_values.h>
184 * #include <deal.II/numerics/vector_tools.h>
185 * #include <deal.II/numerics/matrix_tools.h>
186 * #include <deal.II/numerics/data_out.h>
187 * #include <deal.II/numerics/error_estimator.h>
188 * #include <deal.II/numerics/derivative_approximation.h>
189 * #include <deal.II/numerics/fe_field_function.h>
191 * #include <deal.II/lac/sparse_direct.h>
192 * #include <deal.II/lac/sparse_ilu.h>
194 * #include <iostream>
202 * #include <armadillo>
205 * #include
"../support_code/ellipsoid_grav.h"
206 * #include
"../support_code/ellipsoid_fit.h"
207 * #include
"../support_code/config_in.h"
211 * As in all programs, the
namespace dealii
219 *
using namespace arma;
222 *
struct InnerPreconditioner;
225 *
struct InnerPreconditioner<2>
231 *
struct InnerPreconditioner<3>
255 *
const double curl = (grad_u[1][0] - grad_u[0][1]);
259 *
const double t[2][2] = { {
cos(angle),
sin(angle) }, {
269 * Class
for remembering material state/properties at each quadrature
point
276 *
struct PointHistory
279 *
double old_phiphi_stress;
287 * Primary
class of this problem
294 *
class StokesProblem
297 * StokesProblem(
const unsigned int degree);
302 *
void assemble_system();
304 *
void output_results()
const;
305 *
void refine_mesh();
306 *
void solution_stesses();
307 *
void smooth_eta_field(std::vector<bool> failing_cells);
309 *
void setup_initial_mesh();
310 *
void do_elastic_steps();
311 *
void do_flow_step();
312 *
void update_time_interval();
313 *
void initialize_eta_and_G();
315 *
void do_ellipse_fits();
316 *
void append_physical_times(
int max_plastic);
317 *
void write_vertices(
unsigned char);
319 *
void setup_quadrature_point_history();
320 *
void update_quadrature_point_history();
322 *
const unsigned int degree;
328 *
unsigned int n_u = 0, n_p = 0;
329 *
unsigned int plastic_iteration = 0;
330 *
unsigned int last_max_plasticity = 0;
333 * std::vector< std::vector <Vector<double> > > quad_viscosities;
334 * std::vector<double> cell_viscosities;
335 * std::vector<PointHistory<dim> > quadrature_point_history;
345 * std::shared_ptr<typename InnerPreconditioner<dim>::type> A_preconditioner;
347 * ellipsoid_fit<dim> ellipsoid;
352 * Class
for boundary conditions and rhs
359 *
class BoundaryValuesP:
public Function<dim>
362 * BoundaryValuesP() :
368 * const unsigned
int component = 0) const override;
374 *
double BoundaryValuesP<dim>::value(
const Point<dim> &p,
375 *
const unsigned int component)
const
377 *
Assert(component < this->n_components,
378 * ExcIndexRange (component, 0, this->n_components));
382 *
Assert(p[0] >= -10.0, ExcLowerRangeType<double>(p[0], -10.0));
388 *
void BoundaryValuesP<dim>::vector_value(
const Point<dim> &p,
391 *
for (
unsigned int c = 0; c < this->n_components; ++c)
392 *
values(c) = BoundaryValuesP<dim>::value(p, c);
396 *
class RightHandSide:
public Function<dim>
399 * RightHandSide () :
Function<dim>(dim+1) {}
405 *
virtual double value(
const Point<dim> &p,
const unsigned int component,
406 * A_Grav_namespace::AnalyticGravity<dim> *aGrav)
const;
409 * A_Grav_namespace::AnalyticGravity<dim> *aGrav)
const;
413 * A_Grav_namespace::AnalyticGravity<dim> *aGrav)
const;
418 *
double RightHandSide<dim>::value(
const Point<dim> &p,
419 *
const unsigned int component,
420 * A_Grav_namespace::AnalyticGravity<dim> *aGrav)
const
423 * std::vector<double> temp_vector(2);
424 * aGrav->get_gravity(p, temp_vector);
426 *
if (component == 0)
428 *
return temp_vector[0] + system_parameters::omegasquared * p[0];
432 *
if (component == 1)
433 *
return temp_vector[1];
440 *
void RightHandSide<dim>::vector_value(
const Point<dim> &p,
442 * A_Grav_namespace::AnalyticGravity<dim> *aGrav)
const
444 *
for (
unsigned int c = 0; c < this->n_components; ++c)
445 *
values(c) = RightHandSide<dim>::value(p, c, aGrav);
449 *
void RightHandSide<dim>::vector_value_list(
452 * A_Grav_namespace::AnalyticGravity<dim> *aGrav)
const
456 *
check whether component is in
457 * the
valid range is up to the
462 * ExcDimensionMismatch(
values.size(), points.size()));
464 *
for (
unsigned int i = 0; i < points.size(); ++i)
465 * this->vector_value(points[i], values[i], aGrav);
470 * Class
for linear solvers and preconditioners
476 *
template<
class Matrix,
class Preconditioner>
480 * InverseMatrix(
const Matrix &m,
const Preconditioner &preconditioner);
489 *
template<
class Matrix,
class Preconditioner>
490 * InverseMatrix<Matrix, Preconditioner>::InverseMatrix(
const Matrix &m,
491 *
const Preconditioner &preconditioner) :
492 *
matrix(&m), preconditioner(&preconditioner)
496 * template<class Matrix, class Preconditioner>
497 * void InverseMatrix<Matrix, Preconditioner>::vmult(
Vector<double> &dst,
498 * const
Vector<double> &src) const
506 * cg.solve(*matrix, dst, src, *preconditioner);
511 * Class
for the SchurComplement
517 *
template<
class Preconditioner>
533 *
template<
class Preconditioner>
534 * SchurComplement<Preconditioner>::SchurComplement(
537 * system_matrix(&system_matrix), A_inverse(&A_inverse), tmp1(
538 * system_matrix.block(0, 0).m()), tmp2(
539 * system_matrix.block(0, 0).m())
543 * template<class Preconditioner>
544 * void SchurComplement<Preconditioner>::vmult(
Vector<double> &dst,
545 * const
Vector<double> &src) const
547 * system_matrix->block(0, 1).vmult(tmp1, src);
548 * A_inverse->vmult(tmp2, tmp1);
549 * system_matrix->block(1, 0).vmult(dst, tmp2);
554 * StokesProblem::StokesProblem
561 * StokesProblem<dim>::StokesProblem(
const unsigned int degree) :
565 * fe(
FE_Q<dim>(degree + 1), dim,
FE_Q<dim>(degree), 1),
567 * quadrature_formula(degree + 2),
580 * void StokesProblem<dim>::setup_dofs()
582 * A_preconditioner.reset();
583 * system_matrix.clear();
585 * dof_handler.distribute_dofs(fe);
588 * std::vector<unsigned int> block_component(dim + 1, 0);
589 * block_component[dim] = 1;
594 * ========================================Apply Boundary Conditions=====================================
598 * constraints.clear();
599 * std::vector<bool> component_maskP(dim + 1,
false);
600 * component_maskP[dim] =
true;
603 * BoundaryValuesP<dim>(), constraints, component_maskP);
606 * std::set<types::boundary_id> no_normal_flux_boundaries;
607 * no_normal_flux_boundaries.insert(99);
609 * no_normal_flux_boundaries, constraints);
612 * constraints.close();
615 * n_u = dofs_per_block[0];
616 * n_p = dofs_per_block[1];
618 * std::cout <<
" Number of active cells: " <<
triangulation.n_active_cells()
619 * << std::endl <<
" Number of degrees of freedom: "
620 * << dof_handler.n_dofs() <<
" (" << n_u <<
'+' << n_p <<
')'
626 * csp.block(0, 0).reinit(n_u, n_u);
627 * csp.block(1, 0).reinit(n_p, n_u);
628 * csp.block(0, 1).reinit(n_u, n_p);
629 * csp.block(1, 1).reinit(n_p, n_p);
631 * csp.collect_sizes();
634 * sparsity_pattern.copy_from(csp);
637 * system_matrix.reinit(sparsity_pattern);
639 * solution.reinit(2);
640 * solution.block(0).reinit(n_u);
641 * solution.block(1).reinit(n_p);
642 * solution.collect_sizes();
644 * system_rhs.reinit(2);
645 * system_rhs.block(0).reinit(n_u);
646 * system_rhs.block(1).reinit(n_p);
647 * system_rhs.collect_sizes();
663 *
double get_eta(
double &r,
double &z);
664 *
double get_G(
unsigned int mat_id);
667 * std::vector<double> get_manual_eta_profile();
672 * std::vector<double> Rheology<dim>::get_manual_eta_profile()
674 * vector<double> etas;
676 *
for (
unsigned int i=0; i < system_parameters::sizeof_depths_eta; ++i)
678 * etas.push_back(system_parameters::depths_eta[i]);
679 * etas.push_back(system_parameters::eta_kinks[i]);
685 *
double Rheology<dim>::get_eta(
double &r,
double &z)
689 * compute local depth
692 *
double ecc = system_parameters::q_axes[0] / system_parameters::p_axes[0];
693 *
double Rminusr = system_parameters::q_axes[0] - system_parameters::p_axes[0];
694 *
double approx_a =
std::sqrt(r * r + z * z * ecc * ecc);
695 *
double group1 = r * r + z * z - Rminusr * Rminusr;
697 *
double a0 = approx_a;
698 *
double error = 10000;
701 * While
loop finds the a axis of the
"isodepth" ellipse
for which the input
point is on the surface.
702 * An
"isodepth" ellipse is defined as one whose axes a,
b are related to the global axes A, B by: A-h = B-h
708 *
if ((r > system_parameters::q_axes[0] - system_parameters::depths_eta.back()) ||
709 * (z > system_parameters::p_axes[0] - system_parameters::depths_eta.back()))
713 *
while (error >= eps)
715 *
double a02 = a0 * a0;
716 *
double a03 = a0 * a02;
717 *
double a04 = a0 * a03;
718 *
double fofa = a04 - (2 * Rminusr * a03) - (group1 * a02)
719 * + (2 * r * r * Rminusr * a0) - (r * r * Rminusr * Rminusr);
720 *
double fprimeofa = 4 * a03 - (6 * Rminusr * a02) - (2 * group1 * a0)
721 * + (2 * r * r * Rminusr);
722 *
double deltaa = -fofa / fprimeofa;
727 * cout <<
"error = " << error << endl;
737 *
double local_depth = system_parameters::q_axes[0] - a0;
738 *
if (local_depth < 0)
741 *
if (local_depth > system_parameters::depths_eta.back())
743 *
if (system_parameters::eta_kinks.back() < system_parameters::eta_floor)
744 *
return system_parameters::eta_floor;
745 *
else if (system_parameters::eta_kinks.back() > system_parameters::eta_ceiling)
746 *
return system_parameters::eta_ceiling;
748 *
return system_parameters::eta_kinks.back();
751 * std::vector<double> viscosity_function = get_manual_eta_profile();
753 *
unsigned int n_visc_kinks = viscosity_function.size() / 2;
757 * find the correct interval to
do the interpolation in
760 *
int n_minus_one = -1;
761 *
for (
unsigned int n = 1; n <= n_visc_kinks; ++n)
763 *
unsigned int ndeep = 2 * n - 2;
764 *
unsigned int nshallow = 2 * n;
765 *
if (local_depth >= viscosity_function[ndeep] && local_depth <= viscosity_function[nshallow])
766 * n_minus_one = ndeep;
771 * find the viscosity interpolation
774 *
if (n_minus_one == -1)
775 *
return system_parameters::eta_ceiling;
778 *
double visc_exponent =
779 * (viscosity_function[n_minus_one]
781 * / (viscosity_function[n_minus_one]
782 * - viscosity_function[n_minus_one + 2]);
783 *
double visc_base = viscosity_function[n_minus_one + 3]
784 * / viscosity_function[n_minus_one + 1];
787 * This is the
true viscosity given the thermal profile
790 *
double true_eta = viscosity_function[n_minus_one + 1] *
std::pow(visc_base, visc_exponent);
794 * Implement latitude-dependence viscosity
797 *
if (system_parameters::lat_dependence)
799 *
double lat = 180 / PI *
std::atan(z / r);
804 *
double taper_depth = 40000;
805 *
double surface_taper = (taper_depth - local_depth) / taper_depth;
806 *
if (surface_taper < 0)
808 *
double log_eta_contrast = surface_taper * system_parameters::eta_Ea * 52.5365 * (T_eq - T_surf) / T_eq / T_surf;
809 * true_eta *=
std::pow(10, log_eta_contrast);
812 *
if (true_eta > system_parameters::eta_ceiling)
813 *
return system_parameters::eta_ceiling;
814 *
else if (true_eta < system_parameters::eta_floor)
815 *
return system_parameters::eta_floor;
823 *
double Rheology<dim>::get_G(
unsigned int mat_id)
825 *
return system_parameters::G[mat_id];
831 * Initialize the eta and G parts of the quadrature_point_history
object
838 *
void StokesProblem<dim>::initialize_eta_and_G()
842 *
const unsigned int n_q_points = quadrature_formula.size();
843 * Rheology<dim> rheology;
846 * dof_handler.begin_active(); cell != dof_handler.end(); ++cell)
848 * PointHistory<dim> *local_quadrature_points_history =
849 *
reinterpret_cast<PointHistory<dim> *
>(cell->user_pointer());
851 * local_quadrature_points_history >= &quadrature_point_history.front(),
852 * ExcInternalError());
854 * local_quadrature_points_history < &quadrature_point_history.back(),
855 * ExcInternalError());
856 * fe_values.reinit(cell);
858 *
for (
unsigned int q = 0; q < n_q_points; ++q)
861 *
double r_value = fe_values.quadrature_point(q)[0];
862 *
double z_value = fe_values.quadrature_point(q)[1];
866 * defines local viscosity
869 *
double local_viscosity = 0;
871 * local_viscosity = rheology.get_eta(r_value, z_value);
873 * local_quadrature_points_history[q].first_eta = local_viscosity;
874 * local_quadrature_points_history[q].new_eta = local_viscosity;
878 * defines local shear modulus
881 *
double local_G = 0;
883 *
unsigned int mat_id = cell->material_id();
885 * local_G = rheology.get_G(mat_id);
886 * local_quadrature_points_history[q].G = local_G;
890 * initializes the phi-phi stress
893 * local_quadrature_points_history[q].old_phiphi_stress = 0;
900 * ====================== ASSEMBLE THE SYSTEM ======================
907 *
void StokesProblem<dim>::assemble_system()
916 *
const unsigned int dofs_per_cell = fe.dofs_per_cell;
918 *
const unsigned int n_q_points = quadrature_formula.size();
923 * std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
927 * runs the gravity script function
930 *
const RightHandSide<dim> right_hand_side;
932 * A_Grav_namespace::AnalyticGravity<dim> *aGrav =
933 *
new A_Grav_namespace::AnalyticGravity<dim>;
934 * std::vector<double> grav_parameters;
935 * grav_parameters.push_back(system_parameters::q_axes[system_parameters::present_timestep * 2 + 0]);
936 * grav_parameters.push_back(system_parameters::p_axes[system_parameters::present_timestep * 2 + 0]);
937 * grav_parameters.push_back(system_parameters::q_axes[system_parameters::present_timestep * 2 + 1]);
938 * grav_parameters.push_back(system_parameters::p_axes[system_parameters::present_timestep * 2 + 1]);
939 * grav_parameters.push_back(system_parameters::rho[0]);
940 * grav_parameters.push_back(system_parameters::rho[1]);
942 * std::cout <<
"Body parameters are: " ;
943 *
for (
int i=0; i<6; ++i)
944 * std::cout << grav_parameters[i] <<
" ";
947 * aGrav->setup_vars(grav_parameters);
949 * std::vector<Vector<double> > rhs_values(n_q_points,
955 * std::vector<SymmetricTensor<2, dim> > phi_grads_u(dofs_per_cell);
956 * std::vector<double> div_phi_u(dofs_per_cell);
957 * std::vector<Tensor<1, dim> > phi_u(dofs_per_cell);
958 * std::vector<double> phi_p(dofs_per_cell);
961 * dof_handler.begin_active(), first_cell = dof_handler.begin_active(),
962 * endc = dof_handler.end();
964 *
for (; cell != endc; ++cell)
966 * PointHistory<dim> *local_quadrature_points_history =
967 *
reinterpret_cast<PointHistory<dim> *
>(cell->user_pointer());
969 * local_quadrature_points_history >= &quadrature_point_history.front(),
970 * ExcInternalError());
972 * local_quadrature_points_history < &quadrature_point_history.back(),
973 * ExcInternalError());
975 *
double cell_area = cell->measure();
978 * append_physical_times(-1);
981 * ExcInternalError());
984 *
unsigned int m_id = cell->material_id();
988 * initializes the rhs vector to the correct g
values
991 * fe_values.reinit(cell);
992 * right_hand_side.vector_value_list(fe_values.get_quadrature_points(),
993 * rhs_values, aGrav);
995 * std::vector<Vector<double> > new_viscosities(quadrature_formula.size(),
Vector<double>(dim + 1));
999 * Finds vertices where the radius is zero DIM
1002 *
bool is_singular =
false;
1003 *
for (
unsigned int f = 0; f < GeometryInfo<dim>::faces_per_cell; ++f)
1004 *
if (cell->face(f)->center()[0] == 0)
1005 * is_singular =
true;
1007 *
if (is_singular ==
false || system_parameters::cylindrical ==
false)
1014 * ===== outputs the local gravity
1017 * std::vector<Point<dim> > quad_points_list(n_q_points);
1018 * quad_points_list = fe_values.get_quadrature_points();
1020 *
if (plastic_iteration
1021 * == (system_parameters::max_plastic_iterations - 1))
1023 *
if (cell != first_cell)
1025 * std::ofstream fout(
"gravity_field.txt", std::ios::app);
1026 * fout << quad_points_list[0] <<
" " << rhs_values[0];
1031 * std::ofstream fout(
"gravity_field.txt");
1032 * fout << quad_points_list[0] <<
" " << rhs_values[0];
1037 *
for (
unsigned int q = 0; q < n_q_points; ++q)
1040 * local_quadrature_points_history[q].old_stress;
1041 *
double &local_old_phiphi_stress =
1042 * local_quadrature_points_history[q].old_phiphi_stress;
1043 *
double r_value = fe_values.quadrature_point(q)[0];
1047 * get local density based on mat
id
1050 *
double local_density = system_parameters::rho[m_id];
1054 * defines local viscosities
1057 *
double local_viscosity = 0;
1058 *
if (plastic_iteration == 0)
1059 * local_viscosity = local_quadrature_points_history[q].first_eta;
1061 * local_viscosity = local_quadrature_points_history[q].new_eta;
1065 * Define the local viscoelastic constants
1068 *
double local_eta_ve = 2
1069 * / ((1 / local_viscosity)
1070 * + (1 / local_quadrature_points_history[q].G
1071 * / system_parameters::current_time_interval));
1072 *
double local_chi_ve = 1
1074 * + (local_quadrature_points_history[q].G
1075 * * system_parameters::current_time_interval
1076 * / local_viscosity));
1078 *
for (
unsigned int k = 0; k < dofs_per_cell; ++k)
1080 * phi_grads_u[k] = fe_values[velocities].symmetric_gradient(k,
1082 * div_phi_u[k] = (fe_values[velocities].divergence(k, q));
1083 * phi_u[k] = (fe_values[velocities].value(k, q));
1084 *
if (system_parameters::cylindrical ==
true)
1086 * div_phi_u[k] *= (r_value);
1087 * div_phi_u[k] += (phi_u[k][0]);
1089 * phi_p[k] = fe_values[pressure].value(k, q);
1092 *
for (
unsigned int i = 0; i < dofs_per_cell; ++i)
1094 *
for (
unsigned int j = 0; j <= i; ++j)
1096 *
if (system_parameters::cylindrical ==
true)
1098 * local_matrix(i, j) += (phi_grads_u[i]
1099 * * phi_grads_u[j] * 2 * local_eta_ve
1101 * + 2 * phi_u[i][0] * phi_u[j][0]
1102 * * local_eta_ve / r_value
1103 * - div_phi_u[i] * phi_p[j]
1104 * * system_parameters::pressure_scale
1105 * - phi_p[i] * div_phi_u[j]
1106 * * system_parameters::pressure_scale
1107 * + phi_p[i] * phi_p[j] * r_value
1108 * * system_parameters::pressure_scale)
1109 * * fe_values.JxW(q);
1113 * local_matrix(i, j) += (phi_grads_u[i]
1114 * * phi_grads_u[j] * 2 * local_eta_ve
1115 * - div_phi_u[i] * phi_p[j]
1116 * * system_parameters::pressure_scale
1117 * - phi_p[i] * div_phi_u[j]
1118 * * system_parameters::pressure_scale
1119 * + phi_p[i] * phi_p[j]) * fe_values.JxW(q);
1122 *
if (system_parameters::cylindrical ==
true)
1124 *
const unsigned int component_i =
1125 * fe.system_to_component_index(i).first;
1126 * local_rhs(i) += (fe_values.shape_value(i, q)
1127 * * rhs_values[q](component_i) * r_value
1129 * - local_chi_ve * phi_grads_u[i] * old_stress
1131 * - local_chi_ve * phi_u[i][0]
1132 * * local_old_phiphi_stress)
1133 * * fe_values.JxW(q);
1137 *
const unsigned int component_i =
1138 * fe.system_to_component_index(i).first;
1139 * local_rhs(i) += fe_values.shape_value(i, q)
1140 * * rhs_values[q](component_i) * fe_values.JxW(q)
1153 * ===== outputs the local gravity
1156 * std::vector<Point<dim> > quad_points_list(n_q_points);
1157 * quad_points_list = fe_values.get_quadrature_points();
1159 *
for (
unsigned int q = 0; q < n_q_points; ++q)
1162 * local_quadrature_points_history[q].old_stress;
1163 *
double &local_old_phiphi_stress =
1164 * local_quadrature_points_history[q].old_phiphi_stress;
1165 *
double r_value = fe_values.quadrature_point(q)[0];
1167 *
double local_density = system_parameters::rho[m_id];
1171 * defines local viscosities
1174 *
double local_viscosity = 0;
1175 *
if (plastic_iteration == 0)
1177 * local_viscosity = local_quadrature_points_history[q].first_eta;
1180 * local_viscosity = local_quadrature_points_history[q].new_eta;
1184 * Define the local viscoelastic constants
1187 *
double local_eta_ve = 2
1188 * / ((1 / local_viscosity)
1189 * + (1 / local_quadrature_points_history[q].G
1190 * / system_parameters::current_time_interval));
1191 *
double local_chi_ve = 1
1193 * + (local_quadrature_points_history[q].G
1194 * * system_parameters::current_time_interval
1195 * / local_viscosity));
1197 *
for (
unsigned int k = 0; k < dofs_per_cell; ++k)
1199 * phi_grads_u[k] = fe_values[velocities].symmetric_gradient(k,
1201 * div_phi_u[k] = (fe_values[velocities].divergence(k, q));
1202 * phi_u[k] = (fe_values[velocities].value(k, q));
1203 *
if (system_parameters::cylindrical ==
true)
1205 * div_phi_u[k] *= (r_value);
1206 * div_phi_u[k] += (phi_u[k][0]);
1208 * phi_p[k] = fe_values[pressure].value(k, q);
1211 *
for (
unsigned int i = 0; i < dofs_per_cell; ++i)
1213 *
for (
unsigned int j = 0; j <= i; ++j)
1215 *
if (system_parameters::cylindrical ==
true)
1217 * local_matrix(i, j) += (phi_grads_u[i]
1218 * * phi_grads_u[j] * 2 * local_eta_ve
1220 * + 2 * phi_u[i][0] * phi_u[j][0]
1221 * * local_eta_ve / r_value
1222 * - div_phi_u[i] * phi_p[j]
1223 * * system_parameters::pressure_scale
1224 * - phi_p[i] * div_phi_u[j]
1225 * * system_parameters::pressure_scale
1226 * + phi_p[i] * phi_p[j] * r_value
1227 * * system_parameters::pressure_scale)
1228 * * fe_values.JxW(q);
1232 * local_matrix(i, j) += (phi_grads_u[i]
1233 * * phi_grads_u[j] * 2 * local_eta_ve
1234 * - div_phi_u[i] * phi_p[j]
1235 * * system_parameters::pressure_scale
1236 * - phi_p[i] * div_phi_u[j]
1237 * * system_parameters::pressure_scale
1238 * + phi_p[i] * phi_p[j]) * fe_values.JxW(q);
1241 *
if (system_parameters::cylindrical ==
true)
1243 *
const unsigned int component_i =
1244 * fe.system_to_component_index(i).first;
1245 * local_rhs(i) += (fe_values.shape_value(i, q)
1246 * * rhs_values[q](component_i) * r_value
1248 * - local_chi_ve * phi_grads_u[i] * old_stress
1250 * - local_chi_ve * phi_u[i][0]
1251 * * local_old_phiphi_stress)
1252 * * fe_values.JxW(q);
1256 *
const unsigned int component_i =
1257 * fe.system_to_component_index(i).first;
1258 * local_rhs(i) += fe_values.shape_value(i, q)
1259 * * rhs_values[q](component_i) * fe_values.JxW(q)
1266 *
for (
unsigned int i = 0; i < dofs_per_cell; ++i)
1267 *
for (
unsigned int j = i + 1; j < dofs_per_cell; ++j)
1268 * local_matrix(i, j) = local_matrix(j, i);
1270 * cell->get_dof_indices(local_dof_indices);
1271 * constraints.distribute_local_to_global(local_matrix, local_rhs,
1272 * local_dof_indices, system_matrix, system_rhs);
1275 * std::cout <<
" Computing preconditioner..." << std::endl << std::flush;
1277 * A_preconditioner = std::shared_ptr<
1278 *
typename InnerPreconditioner<dim>::type>(
1279 *
new typename InnerPreconditioner<dim>::type());
1280 * A_preconditioner->initialize(system_matrix.block(0, 0),
1281 *
typename InnerPreconditioner<dim>::type::AdditionalData());
1288 * ====================== SOLVER ======================
1295 *
void StokesProblem<dim>::solve()
1297 *
const InverseMatrix<SparseMatrix<double>,
1298 *
typename InnerPreconditioner<dim>::type> A_inverse(
1299 * system_matrix.block(0, 0), *A_preconditioner);
1304 * A_inverse.vmult(tmp, system_rhs.block(0));
1305 * system_matrix.block(1, 0).vmult(schur_rhs, tmp);
1306 * schur_rhs -= system_rhs.block(1);
1308 * SchurComplement<typename InnerPreconditioner<dim>::type>
schur_complement(
1309 * system_matrix, A_inverse);
1311 *
int n_iterations = system_parameters::iteration_coefficient
1312 * * solution.block(1).size();
1313 *
double tolerance_goal = system_parameters::tolerance_coefficient
1314 * * schur_rhs.l2_norm();
1316 *
SolverControl solver_control(n_iterations, tolerance_goal);
1319 * std::cout <<
"\nMax iterations and tolerance are: " << n_iterations
1320 * <<
" and " << tolerance_goal << std::endl;
1323 * preconditioner.
initialize(system_matrix.block(1, 1),
1327 * system_matrix.block(1, 1), preconditioner);
1331 * constraints.distribute(solution);
1334 * std::cout <<
" " << solver_control.last_step()
1335 * <<
" outer CG Schur complement iterations for pressure"
1340 * system_matrix.block(0, 1).vmult(tmp, solution.block(1));
1342 * tmp += system_rhs.block(0);
1344 * A_inverse.vmult(solution.block(0), tmp);
1345 * constraints.distribute(solution);
1346 * solution.block(1) *= (system_parameters::pressure_scale);
1352 * ====================== OUTPUT RESULTS ======================
1356 *
void StokesProblem<dim>::output_results() const
1358 * std::vector < std::string > solution_names(dim,
"velocity");
1359 * solution_names.push_back(
"pressure");
1361 * std::vector<DataComponentInterpretation::DataComponentInterpretation> data_component_interpretation(
1363 * data_component_interpretation.push_back(
1368 * data_out.add_data_vector(solution, solution_names,
1370 * data_out.build_patches();
1372 * std::ostringstream filename;
1373 *
if (system_parameters::present_timestep < system_parameters::initial_elastic_iterations)
1375 * filename << system_parameters::output_folder <<
"/time"
1377 * <<
"_elastic_displacements" <<
".txt";
1381 * filename << system_parameters::output_folder <<
"/time"
1386 * std::ofstream output(filename.str().c_str());
1387 * data_out.write_gnuplot(output);
1392 * ====================== FIND AND WRITE TO FILE THE STRESS TENSOR; IMPLEMENT PLASTICITY ======================
1399 *
void StokesProblem<dim>::solution_stesses()
1403 * note most of
this section only works with dim=2
1407 * name the output text files
1410 * std::ostringstream stress_output;
1411 * stress_output << system_parameters::output_folder <<
"/time"
1415 * std::ofstream fout_snew(stress_output.str().c_str());
1416 * fout_snew.close();
1418 * std::ostringstream stresstensor_output;
1419 * stresstensor_output << system_parameters::output_folder <<
"/time"
1423 * std::ofstream fout_sfull(stresstensor_output.str().c_str());
1424 * fout_sfull.close();
1426 * std::ostringstream failed_cells_output;
1427 * failed_cells_output << system_parameters::output_folder <<
"/time"
1431 * std::ofstream fout_failed_cells(failed_cells_output.str().c_str());
1432 * fout_failed_cells.close();
1434 * std::ostringstream plastic_eta_output;
1435 * plastic_eta_output << system_parameters::output_folder <<
"/time"
1439 * std::ofstream fout_vrnew(plastic_eta_output.str().c_str());
1440 * fout_vrnew.close();
1442 * std::ostringstream initial_eta_output;
1443 *
if (plastic_iteration == 0)
1445 * initial_eta_output << system_parameters::output_folder <<
"/time"
1447 * <<
"_baseviscosities.txt";
1448 * std::ofstream fout_baseeta(initial_eta_output.str().c_str());
1449 * fout_baseeta.close();
1452 * std::cout <<
"Running stress calculations for plasticity iteration "
1453 * << plastic_iteration <<
"...\n";
1457 * This makes the set of points at which the stress tensor is calculated
1460 * std::vector<Point<dim> > points_list(0);
1461 * std::vector<unsigned int> material_list(0);
1463 * dof_handler.begin_active(), endc = dof_handler.end();
1466 * This
loop gets the
gradients of the velocity field and saves it in the tensor_gradient_? objects DIM
1469 *
for (; cell != endc; ++cell)
1471 * points_list.push_back(cell->center());
1472 * material_list.push_back(cell->material_id());
1476 * Make the
FEValues object to evaluate
values and derivatives at quadrature points
1484 * Make the
object that will hold the velocities and velocity
gradients at the quadrature points
1487 * std::vector < std::vector<Tensor<1, dim> >> velocity_grads(quadrature_formula.size(),
1489 * std::vector<Vector<double> > velocities(quadrature_formula.size(),
1493 * Make the
object to find rheology
1496 * Rheology<dim> rheology;
1500 * Write the solution flow velocity and derivative
for each cell
1503 * std::vector<Vector<double> > vector_values(0);
1504 * std::vector < std::vector<Tensor<1, dim> > > gradient_values(0);
1505 * std::vector<bool> failing_cells;
1508 * Write the stresses from the previous step into vectors
1511 * std::vector<SymmetricTensor<2, dim>> old_stress;
1512 * std::vector<double> old_phiphi_stress;
1513 * std::vector<double> cell_Gs;
1515 * dof_handler.begin_active(); cell != dof_handler.end(); ++cell)
1519 * Makes pointer to
data in quadrature_point_history
1522 * PointHistory<dim> *local_quadrature_points_history =
1523 *
reinterpret_cast<PointHistory<dim> *
>(cell->user_pointer());
1525 * fe_values.reinit(cell);
1526 * fe_values.get_function_gradients(solution, velocity_grads);
1527 * fe_values.get_function_values(solution, velocities);
1529 * std::vector<Tensor<1, dim>> current_cell_grads(dim+1);
1531 * current_cell_old_stress = 0;
1532 *
double current_cell_old_phiphi_stress = 0;
1533 *
double cell_area = 0;
1537 * Averages across each cell to find
mean velocities,
gradients, and old stresses
1540 *
for (
unsigned int q = 0; q < quadrature_formula.size(); ++q)
1542 * cell_area += fe_values.JxW(q);
1543 * velocities[q] *= fe_values.JxW(q);
1544 * current_cell_velocity += velocities[q];
1545 *
for (
unsigned int i = 0; i < (dim+1); ++i)
1547 * velocity_grads[q][i] *= fe_values.JxW(q);
1548 * current_cell_grads[i] += velocity_grads[q][i];
1550 * current_cell_old_stress += local_quadrature_points_history[q].old_stress * fe_values.JxW(q);
1551 * current_cell_old_phiphi_stress += local_quadrature_points_history[q].old_phiphi_stress * fe_values.JxW(q);
1553 * current_cell_velocity /= cell_area;
1554 *
for (
unsigned int i = 0; i < (dim+1); ++i)
1555 * current_cell_grads[i] /= cell_area;
1556 * current_cell_old_stress /= cell_area;
1557 * current_cell_old_phiphi_stress /= cell_area;
1559 * vector_values.push_back(current_cell_velocity);
1560 * gradient_values.push_back(current_cell_grads);
1561 * old_stress.push_back(current_cell_old_stress);
1562 * old_phiphi_stress.push_back(current_cell_old_phiphi_stress);
1566 * Get cell shear modulus: assumes it
's constant for the cell
1569 * unsigned int mat_id = cell->material_id();
1570 * double local_G = rheology.get_G(mat_id);
1571 * cell_Gs.push_back(local_G);
1576 * tracks where failure occurred
1579 * std::vector<double> reduction_factor;
1580 * unsigned int total_fails = 0;
1581 * if (plastic_iteration == 0)
1582 * cell_viscosities.resize(0);
1585 * loop across all the cells to find and adjust eta of failing cells
1588 * for (unsigned int i = 0; i < triangulation.n_active_cells(); ++i)
1590 * double current_cell_viscosity = 0;
1594 * Fill viscosities vector, analytically if plastic_iteration == 0 and from previous viscosities for later iteration
1597 * if (plastic_iteration == 0)
1599 * double local_viscosity;
1600 * local_viscosity = rheology.get_eta(points_list[i][0], points_list[i][1]);
1601 * current_cell_viscosity = local_viscosity;
1602 * cell_viscosities.push_back(current_cell_viscosity);
1606 * current_cell_viscosity = cell_viscosities[i];
1610 * double cell_eta_ve = 2
1611 * / ((1 / current_cell_viscosity)
1613 * / system_parameters::current_time_interval));
1614 * double cell_chi_ve = 1
1617 * * system_parameters::current_time_interval
1618 * / current_cell_viscosity));
1622 * find local pressure
1625 * double cell_p = vector_values[i].operator()(2);
1628 * find stresses tensor
1629 * makes non-diagonalized local matrix A
1632 * double sigma13 = 0.5
1633 * * (gradient_values[i][0][1] + gradient_values[i][1][0]);
1635 * A << gradient_values[i][0][0] << 0 << sigma13 << endr
1636 * << 0 << vector_values[i].operator()(0) / points_list[i].operator()(0)<< 0 << endr
1637 * << sigma13 << 0 << gradient_values[i][1][1] << endr;
1639 * olddevstress << old_stress[i][0][0] << 0 << old_stress[i][0][1] << endr
1640 * << 0 << old_phiphi_stress[i] << 0 << endr
1641 * << old_stress[i][0][1] << 0 << old_stress[i][1][1] << endr;
1643 * P << cell_p << cell_p << cell_p;
1644 * mat Pmat = diagmat(P);
1646 * B = (cell_eta_ve * A + cell_chi_ve * olddevstress) - Pmat;
1650 * finds principal stresses
1655 * eig_sym(eigval, eigvec, B);
1656 * double sigma1 = -min(eigval);
1657 * double sigma3 = -max(eigval);
1661 * Writes text files for principal stresses, full stress tensor, base viscosities
1664 * std::ofstream fout_snew(stress_output.str().c_str(), std::ios::app);
1665 * fout_snew << " " << sigma1 << " " << sigma3 << "\n";
1666 * fout_snew.close();
1668 * std::ofstream fout_sfull(stresstensor_output.str().c_str(), std::ios::app);
1669 * fout_sfull << A(0,0) << " " << A(1,1) << " " << A(2,2) << " " << A(0,2) << "\n";
1670 * fout_sfull.close();
1672 * if (plastic_iteration == 0)
1674 * std::ofstream fout_baseeta(initial_eta_output.str().c_str(), std::ios::app);
1675 * fout_baseeta << points_list[i]<< " " << current_cell_viscosity << "\n";
1676 * fout_baseeta.close();
1681 * Finds adjusted effective viscosity
1684 * if (system_parameters::plasticity_on)
1686 * if (system_parameters::failure_criterion == 0) //Apply Byerlee's rule
1688 *
if (sigma1 >= 5 * sigma3)
1690 * failing_cells.push_back(
true);
1691 *
double temp_reductionfactor = 1;
1693 * temp_reductionfactor = 100;
1695 * temp_reductionfactor = 1.9 * sigma1 / 5 / sigma3;
1697 * reduction_factor.push_back(temp_reductionfactor);
1702 * Text file of all failure locations
1705 * std::ofstream fout_failed_cells(failed_cells_output.str().c_str(), std::ios::app);
1706 * fout_failed_cells << points_list[i] <<
"\n";
1707 * fout_failed_cells.close();
1711 * reduction_factor.push_back(1);
1712 * failing_cells.push_back(
false);
1717 *
if (system_parameters::failure_criterion == 1)
1719 *
double temp_reductionfactor = 1;
1720 *
if (sigma3 < -114037)
1724 * std::cout <<
" ext ";
1727 * failing_cells.push_back(
true);
1728 * temp_reductionfactor = 10;
1729 * reduction_factor.push_back(temp_reductionfactor);
1734 * Text file of all failure locations
1737 * std::ofstream fout_failed_cells(failed_cells_output.str().c_str(), std::ios::app);
1738 * fout_failed_cells << points_list[i] <<
"\n";
1739 * fout_failed_cells.close();
1743 *
double sigma_c = 160e6;
1744 *
double yield_sigma1 = sigma3 +
std::sqrt( (3.086 * sigma_c * sigma3) + (0.002 * sigma3 * sigma3) );
1745 *
if (sigma1 >= yield_sigma1)
1749 * std::cout <<
" comp ";
1752 * failing_cells.push_back(
true);
1753 * temp_reductionfactor = 1.0 * sigma1 / 5 / sigma3;
1755 * reduction_factor.push_back(temp_reductionfactor);
1760 * Text file of all failure locations
1763 * std::ofstream fout_failed_cells(failed_cells_output.str().c_str(), std::ios::app);
1764 * fout_failed_cells << points_list[i] <<
"\n";
1765 * fout_failed_cells.close();
1769 * reduction_factor.push_back(1);
1770 * failing_cells.push_back(
false);
1776 * std::cout <<
"Specified failure criterion not found\n";
1781 * reduction_factor.push_back(1);
1786 * If there are enough failed cells, update eta at all quadrature points and perform smoothing
1789 * std::cout <<
" Number of failing cells: " << total_fails <<
"\n";
1790 *
double last_max_plasticity_double = last_max_plasticity;
1791 *
double total_fails_double = total_fails;
1792 *
double decrease_in_plasticity = ((last_max_plasticity_double - total_fails_double) / last_max_plasticity_double);
1793 *
if (plastic_iteration == 0)
1794 * decrease_in_plasticity = 1;
1795 * last_max_plasticity = total_fails;
1796 *
if (total_fails <= 100 || decrease_in_plasticity <= 0.2)
1798 * system_parameters::continue_plastic_iterations =
false;
1799 *
for (
unsigned int j=0; j <
triangulation.n_active_cells(); ++j)
1803 * Writes to file the undisturbed cell viscosities
1806 * std::ofstream fout_vrnew(plastic_eta_output.str().c_str(), std::ios::app);
1807 * fout_vrnew <<
" " << cell_viscosities[j] <<
"\n";
1808 * fout_vrnew.close();
1816 * Decrease the eta at quadrature points in failing cells
1819 *
unsigned int cell_no = 0;
1821 * dof_handler.begin_active(); cell != dof_handler.end(); ++cell)
1823 * fe_values.reinit(cell);
1826 * Make local_quadrature_points_history pointer to the cell
data
1829 * PointHistory<dim> *local_quadrature_points_history =
1830 *
reinterpret_cast<PointHistory<dim> *
>(cell->user_pointer());
1832 * local_quadrature_points_history >= &quadrature_point_history.front(),
1833 * ExcInternalError());
1835 * local_quadrature_points_history < &quadrature_point_history.back(),
1836 * ExcInternalError());
1838 * quad_viscosities[cell_no].resize(quadrature_formula.size());
1840 *
for (
unsigned int q = 0; q < quadrature_formula.size(); ++q)
1842 *
if (plastic_iteration == 0)
1843 * local_quadrature_points_history[q].new_eta = local_quadrature_points_history[q].first_eta;
1844 * local_quadrature_points_history[q].new_eta /= reduction_factor[cell_no];
1847 * Prevents viscosities from dropping below the
floor necessary
for numerical stability
1850 *
if (local_quadrature_points_history[q].new_eta < system_parameters::eta_floor)
1851 * local_quadrature_points_history[q].new_eta = system_parameters::eta_floor;
1853 * quad_viscosities[cell_no][q].reinit(dim+1);
1854 *
for (
unsigned int ii=0; ii<dim; ++ii)
1855 * quad_viscosities[cell_no][q](ii) = fe_values.quadrature_point(q)[ii];
1856 * quad_viscosities[cell_no][q](dim) = local_quadrature_points_history[q].new_eta;
1860 * smooth_eta_field(failing_cells);
1864 * Writes to file the smoothed eta field (which is defined at each quadrature point)
for each cell
1870 * cell_viscosities.resize(
triangulation.n_active_cells(), 0);
1874 * dof_handler.begin_active(); cell != dof_handler.end(); ++cell)
1876 *
if (failing_cells[cell_no])
1878 * fe_values.reinit(cell);
1881 * Averages across each cell to find
mean eta
1884 *
double cell_area = 0;
1885 *
for (
unsigned int q = 0; q < quadrature_formula.size(); ++q)
1887 * cell_area += fe_values.JxW(q);
1888 * cell_viscosities[cell_no] += quad_viscosities[cell_no][q][dim] * fe_values.JxW(q);
1890 * cell_viscosities[cell_no] /= cell_area;
1897 * std::ofstream fout_vrnew(plastic_eta_output.str().c_str(), std::ios::app);
1898 * fout_vrnew <<
" " << cell_viscosities[cell_no] <<
"\n";
1899 * fout_vrnew.close();
1903 * std::ofstream fout_vrnew(plastic_eta_output.str().c_str(), std::ios::app);
1904 * fout_vrnew <<
" " << cell_viscosities[cell_no] <<
"\n";
1905 * fout_vrnew.close();
1914 * ====================== SMOOTHES THE VISCOSITY FIELD AT ALL QUADRATURE POINTS ======================
1921 *
void StokesProblem<dim>::smooth_eta_field(std::vector<bool> failing_cells)
1923 * std::cout <<
" Smoothing viscosity field...\n";
1924 *
unsigned int cell_no = 0;
1926 * dof_handler.begin_active(); cell != dof_handler.end(); ++cell)
1928 *
if (failing_cells[cell_no])
1931 * PointHistory<dim> *local_quadrature_points_history =
1932 *
reinterpret_cast<PointHistory<dim> *
>(cell->user_pointer());
1936 * Currently
this algorithm does not permit refinement. To permit refinement, daughter cells of neighbors must be identified
1937 * Find pointers and indices of all cells within certain radius
1940 *
bool find_more_cells =
true;
1941 * std::vector<bool> cell_touched(
triangulation.n_active_cells(),
false);
1942 * std::vector< TriaIterator< CellAccessor<dim> > > neighbor_cells;
1943 * std::vector<int> neighbor_indices;
1944 *
unsigned int start_cell = 0;
1945 *
int new_cells_found = 0;
1946 * neighbor_cells.push_back(cell);
1947 * neighbor_indices.push_back(cell_no);
1948 * cell_touched[cell_no] =
true;
1949 *
while (find_more_cells)
1951 * new_cells_found = 0;
1952 *
for (
unsigned int i = start_cell; i<neighbor_cells.size(); ++i)
1954 *
for (
unsigned int f = 0; f < GeometryInfo<dim>::faces_per_cell; ++f)
1956 *
if (!neighbor_cells[i]->face(f)->at_boundary())
1958 *
int test_cell_no = neighbor_cells[i]->neighbor_index(f);
1959 *
if (!cell_touched[test_cell_no])
1960 *
if (cell->center().distance(neighbor_cells[i]->neighbor(f)->center()) < 2 * system_parameters::smoothing_radius)
1964 * What to
do if another nearby cell is found that hasn
't been found before
1967 * neighbor_cells.push_back(neighbor_cells[i]->neighbor(f));
1968 * neighbor_indices.push_back(test_cell_no);
1969 * cell_touched[test_cell_no] = true;
1971 * new_cells_found++;
1976 * if (new_cells_found == 0)
1978 * find_more_cells = false;
1981 * start_cell = neighbor_cells.size() - new_cells_found;
1984 * fe_values.reinit(cell);
1987 * Collect the viscosities at nearby quadrature points
1990 * for (unsigned int q = 0; q < quadrature_formula.size(); ++q)
1992 * std::vector<double> nearby_etas_q;
1993 * for (unsigned int i = 0; i<neighbor_indices.size(); ++i)
1994 * for (unsigned int j=0; j<quadrature_formula.size(); ++j)
1996 * Point<dim> test_q;
1997 * for (unsigned int d=0; d<dim; ++d)
1998 * test_q(d) = quad_viscosities[neighbor_indices[i]][j][d];
1999 * double qq_distance = fe_values.quadrature_point(q).distance(test_q);
2000 * if (qq_distance < system_parameters::smoothing_radius)
2001 * nearby_etas_q.push_back(quad_viscosities[neighbor_indices[i]][j][dim]);
2005 * Write smoothed viscosities to quadrature_points_history; simple boxcar function is the smoothing kernel
2008 * double mean_eta = 0;
2009 * for (unsigned int l = 0; l<nearby_etas_q.size(); ++l)
2011 * mean_eta += nearby_etas_q[l];
2013 * mean_eta /= nearby_etas_q.size();
2014 * local_quadrature_points_history[q].new_eta = mean_eta;
2017 * std::cout << local_quadrature_points_history[q].new_eta << " ";
2028 * ====================== SAVE STRESS TENSOR AT QUADRATURE POINTS ======================
2035 * void StokesProblem<dim>::update_quadrature_point_history()
2037 * std::cout << " Updating stress field...";
2039 * FEValues<dim> fe_values(fe, quadrature_formula,
2040 * update_values | update_gradients | update_quadrature_points);
2044 * Make the object that will hold the velocity gradients
2047 * std::vector < std::vector<Tensor<1, dim> >> velocity_grads(quadrature_formula.size(),
2048 * std::vector < Tensor<1, dim> > (dim + 1));
2049 * std::vector<Vector<double> > velocities(quadrature_formula.size(),
2050 * Vector<double>(dim + 1));
2052 * for (typename DoFHandler<dim>::active_cell_iterator cell =
2053 * dof_handler.begin_active(); cell != dof_handler.end(); ++cell)
2055 * PointHistory<dim> *local_quadrature_points_history =
2056 * reinterpret_cast<PointHistory<dim> *>(cell->user_pointer());
2058 * local_quadrature_points_history >= &quadrature_point_history.front(),
2059 * ExcInternalError());
2061 * local_quadrature_points_history < &quadrature_point_history.back(),
2062 * ExcInternalError());
2064 * fe_values.reinit(cell);
2065 * fe_values.get_function_gradients(solution, velocity_grads);
2066 * fe_values.get_function_values(solution, velocities);
2068 * for (unsigned int q = 0; q < quadrature_formula.size(); ++q)
2072 * Define the local viscoelastic constants
2075 * double local_eta_ve = 2
2076 * / ((1 / local_quadrature_points_history[q].new_eta)
2077 * + (1 / local_quadrature_points_history[q].G
2078 * / system_parameters::current_time_interval));
2079 * double local_chi_ve =
2082 * + (local_quadrature_points_history[q].G
2083 * * system_parameters::current_time_interval
2084 * / local_quadrature_points_history[q].new_eta));
2088 * Compute new stress at each quadrature point
2091 * SymmetricTensor<2, dim> new_stress;
2092 * for (unsigned int i = 0; i < dim; ++i)
2093 * new_stress[i][i] =
2094 * local_eta_ve * velocity_grads[q][i][i]
2096 * * local_quadrature_points_history[q].old_stress[i][i];
2098 * for (unsigned int i = 0; i < dim; ++i)
2099 * for (unsigned int j = i + 1; j < dim; ++j)
2100 * new_stress[i][j] =
2102 * * (velocity_grads[q][i][j]
2103 * + velocity_grads[q][j][i]) / 2
2105 * * local_quadrature_points_history[q].old_stress[i][j];
2112 * AuxFunctions<dim> rotation_object;
2113 * const Tensor<2, dim> rotation = rotation_object.get_rotation_matrix(
2114 * velocity_grads[q]);
2115 * const SymmetricTensor<2, dim> rotated_new_stress = symmetrize(
2116 * transpose(rotation)
2117 * * static_cast<Tensor<2, dim> >(new_stress)
2119 * local_quadrature_points_history[q].old_stress = rotated_new_stress;
2123 * For axisymmetric case, make the phi-phi element of stress tensor
2126 * local_quadrature_points_history[q].old_phiphi_stress =
2127 * (2 * local_eta_ve * velocities[q](0)
2128 * / fe_values.quadrature_point(q)[0]
2130 * * local_quadrature_points_history[q].old_phiphi_stress);
2137 * ====================== REDEFINE THE TIME INTERVAL FOR THE VISCOUS STEPS ======================
2141 * void StokesProblem<dim>::update_time_interval()
2143 * double move_goal_per_step = system_parameters::initial_disp_target;
2144 * if (system_parameters::present_timestep > system_parameters::initial_elastic_iterations)
2146 * move_goal_per_step = system_parameters::initial_disp_target -
2147 * ((system_parameters::initial_disp_target - system_parameters::final_disp_target) /
2148 * system_parameters::total_viscous_steps *
2149 * (system_parameters::present_timestep - system_parameters::initial_elastic_iterations));
2152 * double zero_tolerance = 1e-3;
2153 * double max_velocity = 0;
2154 * for (typename DoFHandler<dim>::active_cell_iterator cell =
2155 * dof_handler.begin_active(); cell != dof_handler.end(); ++cell)// loop over all cells
2157 * if (cell->at_boundary())
2159 * int zero_faces = 0;
2160 * for (unsigned int f=0; f<GeometryInfo<dim>::faces_per_cell; ++f)
2161 * for (unsigned int i=0; i<dim; ++i)
2162 * if (fabs(cell->face(f)->center()[i]) < zero_tolerance)
2164 * if (zero_faces==0)
2166 * for (unsigned int v = 0; v < GeometryInfo<dim>::vertices_per_cell; ++v)
2168 * Point<dim> vertex_velocity;
2169 * Point<dim> vertex_position;
2170 * for (unsigned int d = 0; d < dim; ++d)
2172 * vertex_velocity[d] = solution(cell->vertex_dof_index(v, d));
2173 * vertex_position[d] = cell->vertex(v)[d];
2177 * velocity to be evaluated is the radial component of a surface vertex
2180 * double local_velocity = 0;
2181 * for (unsigned int d = 0; d < dim; ++d)
2183 * local_velocity += vertex_velocity[d] * vertex_position [d];
2185 * local_velocity /= std::sqrt( vertex_position.square() );
2186 * if (local_velocity < 0)
2187 * local_velocity *= -1;
2188 * if (local_velocity > max_velocity)
2190 * max_velocity = local_velocity;
2198 * NOTE: It is possible for this time interval to be very different from that used in the viscoelasticity calculation.
2201 * system_parameters::current_time_interval = move_goal_per_step / max_velocity;
2202 * double step_time_yr = system_parameters::current_time_interval / SECSINYEAR;
2203 * std::cout << "Timestep interval changed to: "
2210 * ====================== MOVE MESH ======================
2217 * void StokesProblem<dim>::move_mesh()
2220 * std::cout << "\n" << " Moving mesh...\n";
2221 * std::vector<bool> vertex_touched(triangulation.n_vertices(), false);
2222 * for (typename DoFHandler<dim>::active_cell_iterator cell =
2223 * dof_handler.begin_active(); cell != dof_handler.end(); ++cell)
2224 * for (unsigned int v = 0; v < GeometryInfo<dim>::vertices_per_cell; ++v)
2225 * if (vertex_touched[cell->vertex_index(v)] == false)
2227 * vertex_touched[cell->vertex_index(v)] = true;
2229 * Point<dim> vertex_displacement;
2230 * for (unsigned int d = 0; d < dim; ++d)
2231 * vertex_displacement[d] = solution(
2232 * cell->vertex_dof_index(v, d));
2233 * cell->vertex(v) += vertex_displacement
2234 * * system_parameters::current_time_interval;
2240 * ====================== WRITE MESH TO FILE ======================
2247 * void StokesProblem<dim>::write_mesh()
2251 * output mesh in ucd
2254 * std::ostringstream initial_mesh_file;
2255 * initial_mesh_file << system_parameters::output_folder << "/time" <<
2256 * Utilities::int_to_string(system_parameters::present_timestep, 2) <<
2258 * std::ofstream out_ucd (initial_mesh_file.str().c_str());
2260 * grid_out.write_ucd (triangulation, out_ucd);
2265 * ====================== FIT ELLIPSE TO SURFACE AND WRITE RADII TO FILE ======================
2272 * void StokesProblem<dim>::do_ellipse_fits()
2274 * std::ostringstream ellipses_filename;
2275 * ellipses_filename << system_parameters::output_folder << "/ellipse_fits.txt";
2278 * Find ellipsoidal axes for all layers
2281 * std::vector<double> ellipse_axes(0);
2284 * compute fit to boundary 0, 1, 2 ...
2287 * std::cout << endl;
2288 * for (unsigned int i = 0; i<system_parameters::sizeof_material_id; ++i)
2290 * ellipsoid.compute_fit(ellipse_axes, system_parameters::material_id[i]);
2291 * system_parameters::q_axes.push_back(ellipse_axes[0]);
2292 * system_parameters::p_axes.push_back(ellipse_axes[1]);
2294 * std::cout << "a_"<< system_parameters::material_id[i] <<" = " << ellipse_axes[0]
2295 * << " " << " c_"<< system_parameters::material_id[i] <<" = " << ellipse_axes[1] << std::endl;
2296 * ellipse_axes.clear();
2298 * std::ofstream fout_ellipses(ellipses_filename.str().c_str(), std::ios::app);
2299 * fout_ellipses << system_parameters::present_timestep << " a_"<< system_parameters::material_id[i] <<" = " << ellipse_axes[0]
2300 * << " " << " c_"<< system_parameters::material_id[i] <<" = " << ellipse_axes[1] << endl;
2301 * fout_ellipses.close();
2307 * ====================== APPEND LINE TO PHYSICAL_TIMES.TXT FILE WITH STEP NUMBER, PHYSICAL TIME, AND # PLASTIC ITERATIONS ======================
2314 * void StokesProblem<dim>::append_physical_times(int max_plastic)
2316 * std::ostringstream times_filename;
2317 * times_filename << system_parameters::output_folder << "/physical_times.txt";
2318 * std::ofstream fout_times(times_filename.str().c_str(), std::ios::app);
2319 * fout_times << system_parameters::present_timestep << " "
2320 * << system_parameters::present_time/SECSINYEAR << " "
2321 * << max_plastic << "\n";
2324 * << system_parameters::q_axes[0] << " " << system_parameters::p_axes[0] << " "
2325 * << system_parameters::q_axes[1] << " " << system_parameters::p_axes[1] << "\n";
2328 * fout_times.close();
2333 * ====================== WRITE VERTICES TO FILE ======================
2340 * void StokesProblem<dim>::write_vertices(unsigned char boundary_that_we_need)
2342 * std::ostringstream vertices_output;
2343 * vertices_output << system_parameters::output_folder << "/time" <<
2344 * Utilities::int_to_string(system_parameters::present_timestep, 2) << "_" <<
2345 * Utilities::int_to_string(boundary_that_we_need, 2) <<
2347 * std::ofstream fout_final_vertices(vertices_output.str().c_str());
2348 * fout_final_vertices.close();
2350 * std::vector<bool> vertex_touched(triangulation.n_vertices(), false);
2352 * if (boundary_that_we_need == 0)
2356 * Figure out if the vertex is on the boundary of the domain
2359 * for (typename Triangulation<dim>::active_cell_iterator cell =
2360 * triangulation.begin_active(); cell != triangulation.end(); ++cell)
2361 * for (unsigned int f = 0; f < GeometryInfo<dim>::faces_per_cell; ++f)
2363 * unsigned char boundary_ids = cell->face(f)->boundary_id();
2364 * if (boundary_ids == boundary_that_we_need)
2366 * for (unsigned int v=0; v<GeometryInfo<dim>::vertices_per_face; ++v)
2367 * if (vertex_touched[cell->face(f)->vertex_index(v)] == false)
2369 * vertex_touched[cell->face(f)->vertex_index(v)] = true;
2370 * std::ofstream fout_final_vertices(vertices_output.str().c_str(), std::ios::app);
2371 * fout_final_vertices << cell->face(f)->vertex(v) << "\n";
2372 * fout_final_vertices.close();
2381 * Figure out if the vertex is on an internal boundary
2384 * for (typename Triangulation<dim>::active_cell_iterator cell =
2385 * triangulation.begin_active(); cell != triangulation.end(); ++cell)
2386 * for (unsigned int f = 0; f < GeometryInfo<dim>::faces_per_cell; ++f)
2388 * if (cell->neighbor(f) != triangulation.end())
2390 * if (cell->material_id() != cell->neighbor(f)->material_id()) //finds face is at internal boundary
2392 * int high_mat_id = std::max(cell->material_id(),
2393 * cell->neighbor(f)->material_id());
2394 * if (high_mat_id == boundary_that_we_need) //finds faces at the correct internal boundary
2396 * for (unsigned int v = 0;
2397 * v < GeometryInfo<dim>::vertices_per_face;
2399 * if (vertex_touched[cell->face(f)->vertex_index(
2402 * vertex_touched[cell->face(f)->vertex_index(
2404 * std::ofstream fout_final_vertices(vertices_output.str().c_str(), std::ios::app);
2405 * fout_final_vertices << cell->face(f)->vertex(v) << "\n";
2406 * fout_final_vertices.close();
2417 * ====================== SETUP INITIAL MESH ======================
2424 * void StokesProblem<dim>::setup_initial_mesh()
2426 * GridIn<dim> grid_in;
2427 * grid_in.attach_triangulation(triangulation);
2428 * std::ifstream mesh_stream(system_parameters::mesh_filename,
2429 * std::ifstream::in);
2430 * grid_in.read_ucd(mesh_stream);
2434 * output initial mesh in eps
2437 * std::ostringstream initial_mesh_file;
2438 * initial_mesh_file << system_parameters::output_folder << "/initial_mesh.eps";
2439 * std::ofstream out_eps (initial_mesh_file.str().c_str());
2441 * grid_out.write_eps (triangulation, out_eps);
2447 * boundary indicator 0 is outer free surface; 1, 2, 3 ... is boundary between layers, 99 is flat boundaries
2450 * typename Triangulation<dim>::active_cell_iterator
2451 * cell=triangulation.begin_active(), endc=triangulation.end();
2453 * unsigned int how_many; // how many components away from cardinal planes
2455 * std::ostringstream boundaries_file;
2456 * boundaries_file << system_parameters::output_folder << "/boundaries.txt";
2457 * std::ofstream fout_boundaries(boundaries_file.str().c_str());
2458 * fout_boundaries.close();
2460 * double zero_tolerance = 1e-3;
2461 * for (; cell != endc; ++cell) // loop over all cells
2463 * for (unsigned int f = 0; f < GeometryInfo<dim>::faces_per_cell; ++f) // loop over all vertices
2465 * if (cell->face(f)->at_boundary())
2472 * std::ofstream fout_boundaries(boundaries_file.str().c_str(), std::ios::app);
2473 * fout_boundaries << cell->face(f)->center()[0] << " " << cell->face(f)->center()[1]<< "\n";
2474 * fout_boundaries.close();
2477 * for (unsigned int i=0; i<dim; ++i)
2478 * if (fabs(cell->face(f)->center()[i]) > zero_tolerance)
2480 * if (how_many==dim)
2481 * cell->face(f)->set_all_boundary_ids(0); // if face center coordinates > zero_tol, set bnry indicators to 0
2483 * cell->face(f)->set_all_boundary_ids(99);
2488 * std::ostringstream ellipses_filename;
2489 * ellipses_filename << system_parameters::output_folder << "/ellipse_fits.txt";
2490 * std::ofstream fout_ellipses(ellipses_filename.str().c_str());
2491 * fout_ellipses.close();
2495 * Find ellipsoidal axes for all layers
2498 * std::vector<double> ellipse_axes(0);
2501 * compute fit to boundary 0, 1, 2 ...
2504 * std::cout << endl;
2505 * for (unsigned int i = 0; i<system_parameters::sizeof_material_id; ++i)
2507 * ellipsoid.compute_fit(ellipse_axes, system_parameters::material_id[i]);
2508 * system_parameters::q_axes.push_back(ellipse_axes[0]);
2509 * system_parameters::p_axes.push_back(ellipse_axes[1]);
2511 * std::cout << "a_"<< system_parameters::material_id[i] <<" = " << ellipse_axes[0]
2512 * << " " << " c_"<< system_parameters::material_id[i] <<" = " << ellipse_axes[1] << std::endl;
2513 * ellipse_axes.clear();
2515 * std::ofstream fout_ellipses(ellipses_filename.str().c_str(), std::ios::app);
2516 * fout_ellipses << system_parameters::present_timestep << " a_"<< system_parameters::material_id[i] <<" = " << ellipse_axes[0]
2517 * << " " << " c_"<< system_parameters::material_id[i] <<" = " << ellipse_axes[1] << endl;
2518 * fout_ellipses.close();
2521 * triangulation.refine_global(system_parameters::global_refinement);
2526 * refines crustal region
2529 * if (system_parameters::crustal_refinement != 0)
2531 * double a = system_parameters::q_axes[0] - system_parameters::crust_refine_region;
2532 * double b = system_parameters::p_axes[0] - system_parameters::crust_refine_region;
2535 * for (unsigned int step = 0;
2536 * step < system_parameters::crustal_refinement; ++step)
2538 * typename ::Triangulation<dim>::active_cell_iterator cell =
2539 * triangulation.begin_active(), endc = triangulation.end();
2540 * for (; cell != endc; ++cell)
2541 * for (unsigned int v = 0;
2542 * v < GeometryInfo<dim>::vertices_per_cell; ++v)
2544 * Point<dim> current_vertex = cell->vertex(v);
2546 * const double x_coord = current_vertex.operator()(0);
2547 * const double y_coord = current_vertex.operator()(1);
2548 * double expected_z = -1;
2550 * if ((x_coord - a) < -1e-10)
2552 * * std::sqrt(1 - (x_coord * x_coord / a / a));
2554 * if (y_coord >= expected_z)
2556 * cell->set_refine_flag();
2560 * triangulation.execute_coarsening_and_refinement();
2567 * output initial mesh in eps
2570 * std::ostringstream refined_mesh_file;
2571 * refined_mesh_file << system_parameters::output_folder << "/refined_mesh.eps";
2572 * std::ofstream out_eps_refined (refined_mesh_file.str().c_str());
2573 * GridOut grid_out_refined;
2574 * grid_out_refined.write_eps (triangulation, out_eps_refined);
2575 * out_eps_refined.close();
2576 * write_vertices(0);
2577 * write_vertices(1);
2583 * ====================== REFINE MESH ======================
2590 * void StokesProblem<dim>::refine_mesh()
2592 * using FunctionMap = std::map<types::boundary_id, const Function<dim> *>;
2593 * Vector<float> estimated_error_per_cell(triangulation.n_active_cells());
2595 * std::vector<bool> component_mask(dim + 1, false);
2596 * component_mask[dim] = true;
2597 * KellyErrorEstimator<dim>::estimate(dof_handler, QGauss<dim - 1>(degree + 1),
2598 * FunctionMap(), solution,
2599 * estimated_error_per_cell, component_mask);
2601 * GridRefinement::refine_and_coarsen_fixed_number(triangulation,
2602 * estimated_error_per_cell, 0.3, 0.0);
2603 * triangulation.execute_coarsening_and_refinement();
2608 * ====================== SET UP THE DATA STRUCTURES TO REMEMBER STRESS FIELD ======================
2612 * void StokesProblem<dim>::setup_quadrature_point_history()
2614 * unsigned int our_cells = 0;
2615 * for (typename Triangulation<dim>::active_cell_iterator cell =
2616 * triangulation.begin_active(); cell != triangulation.end(); ++cell)
2619 * triangulation.clear_user_data();
2621 * quadrature_point_history.resize(our_cells * quadrature_formula.size());
2623 * unsigned int history_index = 0;
2624 * for (typename Triangulation<dim>::active_cell_iterator cell =
2625 * triangulation.begin_active(); cell != triangulation.end(); ++cell)
2627 * cell->set_user_pointer(&quadrature_point_history[history_index]);
2628 * history_index += quadrature_formula.size();
2631 * Assert(history_index == quadrature_point_history.size(), ExcInternalError());
2636 * ====================== DOES ELASTIC STEPS ======================
2640 * void StokesProblem<dim>::do_elastic_steps()
2642 * unsigned int elastic_iteration = 0;
2644 * while (elastic_iteration < system_parameters::initial_elastic_iterations)
2647 * std::cout << "\n\nElastic iteration " << elastic_iteration
2651 * if (system_parameters::present_timestep == 0)
2652 * initialize_eta_and_G();
2654 * if (elastic_iteration == 0)
2655 * system_parameters::current_time_interval =
2656 * system_parameters::viscous_time; //This is the time interval needed in assembling the problem
2658 * std::cout << " Assembling..." << std::endl << std::flush;
2659 * assemble_system();
2661 * std::cout << " Solving..." << std::flush;
2665 * update_quadrature_point_history();
2667 * append_physical_times(0);
2668 * elastic_iteration++;
2669 * system_parameters::present_timestep++;
2670 * do_ellipse_fits();
2671 * write_vertices(0);
2672 * write_vertices(1);
2674 * update_time_interval();
2680 * ====================== DO A SINGLE VISCOELASTOPLASTIC TIMESTEP ======================
2684 * void StokesProblem<dim>::do_flow_step()
2686 * plastic_iteration = 0;
2687 * while (plastic_iteration < system_parameters::max_plastic_iterations)
2689 * if (system_parameters::continue_plastic_iterations == true)
2691 * std::cout << "Plasticity iteration " << plastic_iteration << "\n";
2694 * std::cout << " Assembling..." << std::endl << std::flush;
2695 * assemble_system();
2697 * std::cout << " Solving..." << std::flush;
2701 * solution_stesses();
2703 * if (system_parameters::continue_plastic_iterations == false)
2706 * plastic_iteration++;
2713 * ====================== RUN ======================
2720 * void StokesProblem<dim>::run()
2724 * Sets up mesh and data structure for viscosity and stress at quadrature points
2727 * setup_initial_mesh();
2728 * setup_quadrature_point_history();
2732 * Makes the physical_times.txt file
2735 * std::ostringstream times_filename;
2736 * times_filename << system_parameters::output_folder << "/physical_times.txt";
2737 * std::ofstream fout_times(times_filename.str().c_str());
2738 * fout_times.close();
2742 * Computes elastic timesteps
2745 * do_elastic_steps();
2748 * Computes viscous timesteps
2751 * unsigned int VEPstep = 0;
2752 * while (system_parameters::present_timestep
2753 * < (system_parameters::initial_elastic_iterations
2754 * + system_parameters::total_viscous_steps))
2757 * if (system_parameters::continue_plastic_iterations == false)
2758 * system_parameters::continue_plastic_iterations = true;
2759 * std::cout << "\n\nViscoelastoplastic iteration " << VEPstep << "\n\n";
2762 * Computes plasticity
2766 * update_quadrature_point_history();
2768 * append_physical_times(plastic_iteration);
2769 * system_parameters::present_timestep++;
2770 * system_parameters::present_time = system_parameters::present_time + system_parameters::current_time_interval;
2771 * do_ellipse_fits();
2772 * write_vertices(0);
2773 * write_vertices(1);
2777 * append_physical_times(-1);
2784 * ====================== MAIN ======================
2790 * int main(int argc, char *argv[])
2795 * output program name
2798 * std::cout << "Running: " << argv[0] << std::endl;
2800 * char *cfg_filename = new char[120];
2802 * if (argc == 1) // if no input parameters (as if launched from eclipse)
2804 * std::strcpy(cfg_filename,"config/sample_CeresFE_config.cfg");
2807 * std::strcpy(cfg_filename,argv[1]);
2811 * using namespace dealii;
2812 * using namespace Step22;
2813 * config_in cfg(cfg_filename);
2817 * t1 = std::clock();
2819 * deallog.depth_console(0);
2821 * StokesProblem<2> flow_problem(1);
2822 * flow_problem.run();
2824 * std::cout << std::endl << "\a";
2826 * t2 = std::clock();
2827 * float diff (((float)t2 - (float)t1) / (float)CLOCKS_PER_SEC);
2828 * std::cout << "\n Program run in: " << diff << " seconds" << endl;
2830 * catch (std::exception &exc)
2832 * std::cerr << std::endl << std::endl
2833 * << "----------------------------------------------------"
2835 * std::cerr << "Exception on processing: " << std::endl << exc.what()
2836 * << std::endl << "Aborting!" << std::endl
2837 * << "----------------------------------------------------"
2844 * std::cerr << std::endl << std::endl
2845 * << "----------------------------------------------------"
2847 * std::cerr << "Unknown exception!" << std::endl << "Aborting!"
2849 * << "----------------------------------------------------"
2859<a name="ann-support_code/config_in.h"></a>
2860<h1>Annotated version of support_code/config_in.h</h1>
2869 * * Created on: Aug 17, 2015
2870 * * Author: antonermakov
2874 * #include <iostream>
2875 * #include <iomanip>
2876 * #include <cstdlib>
2878 * #include <libconfig.h++>
2880 * #include "local_math.h"
2882 * using namespace std;
2883 * using namespace libconfig;
2887 * namespace system_parameters
2895 * string mesh_filename;
2896 * string output_folder;
2905 * double omegasquared;
2911 * Rheology parameters
2914 * vector<double> depths_eta;
2915 * vector<double> eta_kinks;
2916 * vector<double> depths_rho;
2917 * vector<double> rho;
2918 * vector<int> material_id;
2921 * double eta_ceiling;
2924 * bool lat_dependence;
2926 * unsigned int sizeof_depths_eta;
2927 * unsigned int sizeof_depths_rho;
2928 * unsigned int sizeof_rho;
2929 * unsigned int sizeof_eta_kinks;
2930 * unsigned int sizeof_material_id;
2931 * unsigned int sizeof_G;
2933 * double pressure_scale;
2936 * bool continue_plastic_iterations;
2940 * plasticity variables
2943 * bool plasticity_on;
2944 * unsigned int failure_criterion;
2945 * unsigned int max_plastic_iterations;
2946 * double smoothing_radius;
2950 * viscoelasticity variables
2953 * unsigned int initial_elastic_iterations;
2954 * double elastic_time;
2955 * double viscous_time;
2956 * double initial_disp_target;
2957 * double final_disp_target;
2958 * double current_time_interval;
2962 * mesh refinement variables
2965 * unsigned int global_refinement;
2966 * unsigned int small_r_refinement;
2967 * unsigned int crustal_refinement;
2968 * double crust_refine_region;
2969 * unsigned int surface_refinement;
2976 * int iteration_coefficient;
2977 * double tolerance_coefficient;
2981 * time step variables
2984 * double present_time;
2985 * unsigned int present_timestep;
2986 * unsigned int total_viscous_steps;
2994 * vector<double> q_axes;
2995 * vector<double> p_axes;
3002 * config_in(char *);
3005 * void write_config();
3008 * void config_in::write_config()
3010 * std::ostringstream config_parameters;
3011 * config_parameters << system_parameters::output_folder << "/run_parameters.txt";
3012 * std::ofstream fout_config(config_parameters.str().c_str());
3019 * fout_config << "mesh filename: " << system_parameters::mesh_filename << endl << endl;
3026 * fout_config << "r_mean = " << system_parameters::r_mean << endl;
3027 * fout_config << "period = " << system_parameters::period << endl;
3028 * fout_config << "omegasquared = " << system_parameters::omegasquared << endl;
3029 * fout_config << "beta = " << system_parameters::beta << endl;
3030 * fout_config << "intercept = " << system_parameters::intercept << endl;
3034 * rheology parameters
3040 * for (unsigned int i=0; i<system_parameters::sizeof_depths_eta; ++i)
3041 * fout_config << "depths_eta[" << i << "] = " << system_parameters::depths_eta[i] << endl;
3043 * for (unsigned int i=0; i<system_parameters::sizeof_eta_kinks; ++i)
3044 * fout_config << "eta_kinks[" << i << "] = " << system_parameters::eta_kinks[i] << endl;
3046 * for (unsigned int i=0; i<system_parameters::sizeof_depths_rho; ++i)
3047 * fout_config << "depths_rho[" << i << "] = " << system_parameters::depths_rho[i] << endl;
3049 * for (unsigned int i=0; i<system_parameters::sizeof_rho; ++i)
3050 * fout_config << "rho[" << i << "] = " << system_parameters::rho[i] << endl;
3052 * for (unsigned int i=0; i<system_parameters::sizeof_material_id; ++i)
3053 * fout_config << "material_id[" << i << "] = " << system_parameters::material_id[i] << endl;
3055 * for (unsigned int i=0; i<system_parameters::sizeof_G; ++i)
3056 * fout_config << "G[" << i << "] = " << system_parameters::G[i] << endl;
3058 * fout_config << "eta_ceiling = " << system_parameters::eta_ceiling << endl;
3059 * fout_config << "eta_floor = " << system_parameters::eta_floor << endl;
3060 * fout_config << "eta_Ea = " << system_parameters::eta_Ea << endl;
3061 * fout_config << "lat_dependence = " << system_parameters::lat_dependence << endl;
3062 * fout_config << "pressure_scale = " << system_parameters::pressure_scale << endl;
3063 * fout_config << "q = " << system_parameters::q << endl;
3064 * fout_config << "cylindrical = " << system_parameters::cylindrical << endl;
3065 * fout_config << "continue_plastic_iterations = " << system_parameters::continue_plastic_iterations << endl;
3069 * Plasticity parameters
3072 * fout_config << "plasticity_on = " << system_parameters::plasticity_on << endl;
3073 * fout_config << "failure_criterion = " << system_parameters::failure_criterion << endl;
3074 * fout_config << "max_plastic_iterations = " << system_parameters::max_plastic_iterations << endl;
3075 * fout_config << "smoothing_radius = " << system_parameters::smoothing_radius << endl;
3079 * Viscoelasticity parameters
3082 * fout_config << "initial_elastic_iterations = " << system_parameters::initial_elastic_iterations << endl;
3083 * fout_config << "elastic_time = " << system_parameters::elastic_time << endl;
3084 * fout_config << "viscous_time = " << system_parameters::viscous_time << endl;
3085 * fout_config << "initial_disp_target = " << system_parameters::initial_disp_target << endl;
3086 * fout_config << "final_disp_target = " << system_parameters::final_disp_target << endl;
3087 * fout_config << "current_time_interval = " << system_parameters::current_time_interval << endl;
3091 * Mesh refinement parameters
3094 * fout_config << "global_refinement = " << system_parameters::global_refinement << endl;
3095 * fout_config << "small_r_refinement = " << system_parameters::small_r_refinement << endl;
3096 * fout_config << "crustal_refinement = " << system_parameters::crustal_refinement << endl;
3097 * fout_config << "crust_refine_region = " << system_parameters::crust_refine_region << endl;
3098 * fout_config << "surface_refinement = " << system_parameters::surface_refinement << endl;
3105 * fout_config << "iteration_coefficient = " << system_parameters::iteration_coefficient << endl;
3106 * fout_config << "tolerance_coefficient = " << system_parameters::tolerance_coefficient << endl;
3110 * Time step parameters
3113 * fout_config << "present_time = " << system_parameters::present_time << endl;
3114 * fout_config << "present_timestep = " << system_parameters::present_timestep << endl;
3115 * fout_config << "total_viscous_steps = " << system_parameters::total_viscous_steps << endl;
3117 * fout_config.close();
3120 * config_in::config_in(char *filename)
3125 * This example reads the configuration file 'example.cfg
' and displays
3126 * some of its contents.
3136 * Read the file. If there is an error, report it and exit.
3141 * cfg.readFile(filename);
3143 * catch (const FileIOException &fioex)
3145 * std::cerr << "I/O error while reading file:" << filename << std::endl;
3147 * catch (const ParseException &pex)
3149 * std::cerr << "Parse error at " << pex.getFile() << ":" << pex.getLine()
3150 * << " - " << pex.getError() << std::endl;
3160 * string msh = cfg.lookup("mesh_filename");
3161 * system_parameters::mesh_filename = msh;
3163 * catch (const SettingNotFoundException &nfex)
3165 * cerr << "No 'mesh_filename
' setting in configuration file." << endl;
3178 * string output = cfg.lookup("output_folder");
3179 * system_parameters::output_folder = output;
3181 * std::cout << "Writing to folder: " << output << endl;
3183 * catch (const SettingNotFoundException &nfex)
3185 * cerr << "No 'output_folder
' setting in configuration file." << endl;
3196 * const Setting &root = cfg.getRoot();
3201 * get body parameters
3206 * const Setting &body_parameters = root["body_parameters"];
3208 * body_parameters.lookupValue("period", system_parameters::period);
3209 * system_parameters::omegasquared = pow(TWOPI / 3600.0 / system_parameters::period, 2.0);
3210 * body_parameters.lookupValue("r_mean", system_parameters::r_mean);
3211 * body_parameters.lookupValue("beta", system_parameters::beta);
3212 * body_parameters.lookupValue("intercept", system_parameters::intercept);
3214 * catch (const SettingNotFoundException &nfex)
3216 * cerr << "We've got a problem in the body parameters block
" << endl;
3222 * Rheology parameters
3232 * get depths_eta ---------------------
3235 * const Setting &set_depths_eta = cfg.lookup("rheology_parameters.depths_eta
");
3237 * unsigned int ndepths_eta = set_depths_eta.getLength();
3238 * system_parameters::sizeof_depths_eta = ndepths_eta;
3240 * for (unsigned int i=0; i<ndepths_eta; ++i)
3242 * system_parameters::depths_eta.push_back(set_depths_eta[i]);
3243 * cout << "depth_eta[
" << i << "] =
" << system_parameters::depths_eta[i] << endl;
3248 * get eta_kinks -------------------------
3251 * const Setting &set_eta_kinks = cfg.lookup("rheology_parameters.eta_kinks
");
3253 * unsigned int neta_kinks = set_eta_kinks.getLength();
3254 * system_parameters::sizeof_eta_kinks = neta_kinks;
3258 * cout << "Number of depth =
" << ndepths << endl;
3264 * for (unsigned int i=0; i<neta_kinks; ++i)
3266 * system_parameters::eta_kinks.push_back(set_eta_kinks[i]);
3267 * cout << "eta_kinks[
" << i << "] =
" << system_parameters::eta_kinks[i] << endl;
3272 * get depths_rho -------------------------
3275 * const Setting &set_depths_rho = cfg.lookup("rheology_parameters.depths_rho
");
3277 * unsigned int ndepths_rho = set_depths_rho.getLength();
3278 * system_parameters::sizeof_depths_rho = ndepths_rho;
3282 * cout << "Number of depth =
" << ndepths << endl;
3288 * for (unsigned int i=0; i<ndepths_rho; ++i)
3290 * system_parameters::depths_rho.push_back(set_depths_rho[i]);
3291 * cout << "depths_rho[
" << i << "] =
" << system_parameters::depths_rho[i] << endl;
3296 * get rho -------------------------
3299 * const Setting &set_rho = cfg.lookup("rheology_parameters.rho
");
3301 * unsigned int nrho = set_rho.getLength();
3302 * system_parameters::sizeof_rho = nrho;
3306 * cout << "Number of depth =
" << ndepths << endl;
3312 * for (unsigned int i=0; i<nrho; ++i)
3314 * system_parameters::rho.push_back(set_rho[i]);
3315 * cout << "rho[
" << i << "] =
" << system_parameters::rho[i] << endl;
3320 * get material_id -------------------------
3323 * const Setting &set_material_id = cfg.lookup("rheology_parameters.material_id
");
3325 * unsigned int nmaterial_id = set_material_id.getLength();
3326 * system_parameters::sizeof_material_id = nmaterial_id;
3330 * cout << "Number of depth =
" << ndepths << endl;
3336 * for (unsigned int i=0; i<nmaterial_id; ++i)
3338 * system_parameters::material_id.push_back(set_material_id[i]);
3339 * cout << "material_id[
" << i << "] =
" << system_parameters::material_id[i] << endl;
3344 * get G -------------------------
3347 * const Setting &set_G = cfg.lookup("rheology_parameters.G
");
3349 * unsigned int nG = set_G.getLength();
3350 * system_parameters::sizeof_G = nG;
3354 * cout << "Number of depth =
" << ndepths << endl;
3360 * for (unsigned int i=0; i<nG; ++i)
3362 * system_parameters::G.push_back(set_G[i]);
3363 * cout << "G[
" << i << "] =
" << system_parameters::G[i] << endl;
3366 * const Setting &rheology_parameters = root["rheology_parameters
"];
3367 * rheology_parameters.lookupValue("eta_ceiling
", system_parameters::eta_ceiling);
3368 * rheology_parameters.lookupValue("eta_floor
", system_parameters::eta_floor);
3369 * rheology_parameters.lookupValue("eta_Ea
", system_parameters::eta_Ea);
3370 * rheology_parameters.lookupValue("lat_dependence
", system_parameters::lat_dependence);
3371 * rheology_parameters.lookupValue("pressure_scale
", system_parameters::pressure_scale);
3372 * rheology_parameters.lookupValue("q
", system_parameters::q);
3373 * rheology_parameters.lookupValue("cylindrical
", system_parameters::cylindrical);
3374 * rheology_parameters.lookupValue("continue_plastic_iterations
", system_parameters::continue_plastic_iterations);
3376 * catch (const SettingNotFoundException &nfex)
3378 * cerr << "We
've got a problem in the rheology parameters block" << endl;
3383 * Plasticity parameters
3389 * const Setting &plasticity_parameters = root["plasticity_parameters"];
3390 * plasticity_parameters.lookupValue("plasticity_on", system_parameters::plasticity_on);
3391 * plasticity_parameters.lookupValue("failure_criterion", system_parameters::failure_criterion);
3392 * plasticity_parameters.lookupValue("max_plastic_iterations", system_parameters::max_plastic_iterations);
3393 * plasticity_parameters.lookupValue("smoothing_radius", system_parameters::smoothing_radius);
3395 * catch (const SettingNotFoundException &nfex)
3397 * cerr << "We've got a problem in the plasticity parameters block
" << endl;
3402 * Viscoelasticity parameters
3411 * const Setting &viscoelasticity_parameters = root["viscoelasticity_parameters
"];
3412 * viscoelasticity_parameters.lookupValue("initial_elastic_iterations
", system_parameters::initial_elastic_iterations);
3413 * viscoelasticity_parameters.lookupValue("elastic_time
", system_parameters::elastic_time);
3414 * viscoelasticity_parameters.lookupValue("viscous_time
", system_parameters::viscous_time);
3415 * viscoelasticity_parameters.lookupValue("initial_disp_target
", system_parameters::initial_disp_target);
3416 * viscoelasticity_parameters.lookupValue("final_disp_target
", system_parameters::final_disp_target);
3417 * viscoelasticity_parameters.lookupValue("current_time_interval
", system_parameters::current_time_interval);
3419 * system_parameters::viscous_time *= SECSINYEAR;
3421 * catch (const SettingNotFoundException &nfex)
3423 * cerr << "We
've got a problem in the viscoelasticity parameters block" << endl;
3428 * Mesh refinement parameters
3434 * const Setting &mesh_refinement_parameters = root["mesh_refinement_parameters"];
3435 * mesh_refinement_parameters.lookupValue("global_refinement", system_parameters::global_refinement);
3436 * mesh_refinement_parameters.lookupValue("small_r_refinement", system_parameters::small_r_refinement);
3437 * mesh_refinement_parameters.lookupValue("crustal_refinement", system_parameters::crustal_refinement);
3438 * mesh_refinement_parameters.lookupValue("crust_refine_region", system_parameters::crust_refine_region);
3439 * mesh_refinement_parameters.lookupValue("surface_refinement", system_parameters::surface_refinement);
3441 * catch (const SettingNotFoundException &nfex)
3443 * cerr << "We've got a problem in the mesh refinement parameters block
" << endl;
3453 * const Setting &solve_parameters = root["solve_parameters
"];
3454 * solve_parameters.lookupValue("iteration_coefficient
", system_parameters::iteration_coefficient);
3455 * solve_parameters.lookupValue("tolerance_coefficient
", system_parameters::tolerance_coefficient);
3459 * catch (const SettingNotFoundException &nfex)
3461 * cerr << "We
've got a problem in the solver parameters block" << endl;
3466 * Time step parameters
3471 * const Setting &time_step_parameters = root["time_step_parameters"];
3472 * time_step_parameters.lookupValue("present_time", system_parameters::present_time);
3473 * time_step_parameters.lookupValue("present_timestep", system_parameters::present_timestep);
3474 * time_step_parameters.lookupValue("total_viscous_steps", system_parameters::total_viscous_steps);
3476 * catch (const SettingNotFoundException &nfex)
3478 * cerr << "We've got a problem in the time step parameters block
" << endl;
3492<a name="ann-support_code/ellipsoid_fit.h
"></a>
3493<h1>Annotated version of support_code/ellipsoid_fit.h</h1>
3502 * * Created on: Jul 24, 2015
3503 * * Author: antonermakov
3506 * #include <deal.II/base/quadrature_lib.h>
3507 * #include <deal.II/base/function.h>
3508 * #include <deal.II/base/logstream.h>
3509 * #include <deal.II/lac/vector.h>
3510 * #include <deal.II/lac/full_matrix.h>
3511 * #include <deal.II/lac/sparse_matrix.h>
3512 * #include <deal.II/lac/solver_cg.h>
3513 * #include <deal.II/lac/precondition.h>
3514 * #include <deal.II/grid/tria.h>
3515 * #include <deal.II/dofs/dof_handler.h>
3516 * #include <deal.II/grid/tria_accessor.h>
3517 * #include <deal.II/grid/tria_iterator.h>
3518 * #include <deal.II/dofs/dof_accessor.h>
3519 * #include <deal.II/dofs/dof_tools.h>
3520 * #include <deal.II/fe/fe_q.h>
3521 * #include <deal.II/fe/fe_values.h>
3522 * #include <deal.II/numerics/vector_tools.h>
3523 * #include <deal.II/numerics/matrix_tools.h>
3524 * #include <deal.II/numerics/data_out.h>
3525 * #include <deal.II/grid/grid_in.h>
3526 * #include <deal.II/grid/grid_out.h>
3527 * #include <deal.II/base/point.h>
3528 * #include <deal.II/grid/grid_generator.h>
3530 * #include <fstream>
3531 * #include <sstream>
3532 * #include <iostream>
3533 * #include <iomanip>
3534 * #include <cstdlib>
3537 * #include "local_math.h
"
3539 * using namespace dealii;
3541 * template <int dim>
3542 * class ellipsoid_fit
3545 * inline ellipsoid_fit (Triangulation<dim,dim> *pi)
3547 * p_triangulation = pi;
3549 * void compute_fit(std::vector<double> &ell, unsigned char bndry);
3553 * Triangulation<dim,dim> *p_triangulation;
3560 * This function computes ellipsoid fit to a set of vertices that lie on the
3561 * boundary_that_we_need
3564 * template <int dim>
3565 * void ellipsoid_fit<dim>::compute_fit(std::vector<double> &ell, unsigned char boundary_that_we_need)
3567 * typename Triangulation<dim>::active_cell_iterator cell = p_triangulation->begin_active();
3568 * typename Triangulation<dim>::active_cell_iterator endc = p_triangulation->end();
3570 * FullMatrix<double> A(p_triangulation->n_vertices(),dim);
3571 * Vector<double> x(dim);
3572 * Vector<double> b(p_triangulation->n_vertices());
3574 * std::vector<bool> vertex_touched (p_triangulation->n_vertices(),
3577 * unsigned int j = 0;
3578 * unsigned char boundary_ids;
3579 * std::vector<unsigned int> ind_bnry_row;
3580 * std::vector<unsigned int> ind_bnry_col;
3584 * assemble the sensitivity matrix and r.h.s.
3587 * for (; cell != endc; ++cell)
3589 * if (boundary_that_we_need != 0)
3590 * cell->set_manifold_id(cell->material_id());
3591 * for (unsigned int f = 0; f < GeometryInfo<dim>::faces_per_cell; ++f)
3593 * if (boundary_that_we_need == 0) //if this is the outer surface, then look for boundary ID 0; otherwise look for material ID change.
3595 * boundary_ids = cell->face(f)->boundary_id();
3596 * if (boundary_ids == boundary_that_we_need)
3598 * for (unsigned int v = 0;
3599 * v < GeometryInfo<dim>::vertices_per_face; ++v)
3600 * if (vertex_touched[cell->face(f)->vertex_index(v)]
3603 * vertex_touched[cell->face(f)->vertex_index(v)] =
3605 * for (unsigned int i = 0; i < dim; ++i)
3609 * stiffness matrix entry
3612 * A(j, i) = pow(cell->face(f)->vertex(v)[i], 2);
3621 * if mesh if not full: set the indicator
3625 * ind_bnry_row.push_back(j);
3630 * else //find the faces that are at the boundary between materials, get the vertices, and write them into the stiffness matrix
3632 * if (cell->neighbor(f) != endc)
3634 * if (cell->material_id() != cell->neighbor(f)->material_id()) //finds face is at internal boundary
3636 * int high_mat_id = std::max(cell->material_id(),
3637 * cell->neighbor(f)->material_id());
3638 * if (high_mat_id == boundary_that_we_need) //finds faces at the correct internal boundary
3640 * for (unsigned int v = 0;
3641 * v < GeometryInfo<dim>::vertices_per_face;
3643 * if (vertex_touched[cell->face(f)->vertex_index(
3646 * vertex_touched[cell->face(f)->vertex_index(
3648 * for (unsigned int i = 0; i < dim; ++i)
3652 * stiffness matrix entry
3656 * cell->face(f)->vertex(v)[i], 2);
3665 * if mesh if not full: set the indicator
3669 * ind_bnry_row.push_back(j);
3678 * if (ind_bnry_row.size()>0)
3683 * maxtrix A'*A and vector A'*b; A'*A*x = A'*b -- normal system of equations
3686 * FullMatrix<double> AtA(dim,dim);
3687 * Vector<double> Atb(dim);
3689 * FullMatrix<double> A_out(ind_bnry_row.size(),dim);
3690 * Vector<double> b_out(ind_bnry_row.size());
3692 * for (unsigned int i=0; i<dim; ++i)
3693 * ind_bnry_col.push_back(i);
3695 * for (unsigned int i=0; i<ind_bnry_row.size(); ++i)
3698 * A_out.extract_submatrix_from(A, ind_bnry_row, ind_bnry_col);
3699 * A_out.Tmmult(AtA,A_out,true);
3700 * A_out.Tvmult(Atb,b_out,true);
3704 * solve normal system of equations
3707 * SolverControl solver_control (1000, 1e-12);
3708 * SolverCG<> solver (solver_control);
3709 * solver.solve (AtA, x, Atb, PreconditionIdentity());
3713 * find ellipsoidal axes
3716 * for (unsigned int i=0; i<dim; ++i)
3717 * ell.push_back(sqrt(1.0/x[i]));
3720 * std::cerr << "fit_ellipsoid: no points to fit
" << std::endl;
3727<a name="ann-support_code/ellipsoid_grav.h
"></a>
3728<h1>Annotated version of support_code/ellipsoid_grav.h</h1>
3734 * /* -----------------------------------------------------------------------------
3736 * * SPDX-License-Identifier: LGPL-2.1-or-later
3737 * * Copyright (C) 2012 by Roger R. Fu
3739 * * This file is part of the deal.II code gallery.
3741 * * -----------------------------------------------------------------------------
3743 * * Author: Roger R. Fu
3744 * * Reference Pohanka 2011, Contrib. Geophys. Geodes.
3748 * #include <deal.II/base/point.h>
3749 * #include <fstream>
3750 * #include <iostream>
3752 * namespace A_Grav_namespace
3754 * namespace system_parameters
3756 * double mantle_rho;
3758 * double excess_rho;
3763 * double r_core_polar;
3766 * template <int dim>
3767 * class AnalyticGravity
3770 * void setup_vars (std::vector<double> v);
3771 * void get_gravity (const ::Point<dim> &p, std::vector<double> &g);
3790 * template <int dim>
3791 * void AnalyticGravity<dim>::get_gravity (const ::Point<dim> &p, std::vector<double> &g)
3793 * double rsph = std::sqrt(p[0] * p[0] + p[1] * p[1]);
3794 * double thetasph = std::atan2(p[0], p[1]);
3795 * double costhetasph = std::cos(thetasph);
3799 * convert to elliptical coordinates for silicates
3802 * double stemp = std::sqrt((rsph * rsph - eV * eV + std::sqrt((rsph * rsph - eV * eV) * (rsph * rsph - eV * eV)
3803 * + 4 * eV * eV * rsph * rsph * costhetasph *costhetasph)) / 2);
3804 * double vout = stemp / system_parameters::r_eq / std::sqrt(1 - ecc * ecc);
3805 * double eout = std::acos(rsph * costhetasph / stemp);
3809 * convert to elliptical coordinates for core correction
3812 * double stemp_c = std::sqrt((rsph * rsph - eV_c * eV_c + std::sqrt((rsph * rsph - eV_c * eV_c) * (rsph * rsph - eV_c * eV_c)
3813 * + 4 * eV_c * eV_c * rsph * rsph * costhetasph *costhetasph)) / 2);
3814 * double vout_c = stemp_c / system_parameters::r_core_eq / std::sqrt(1 - ecc_c * ecc_c);
3815 * double eout_c = std::acos(rsph * costhetasph / stemp_c);
3819 * shell contribution
3822 * g[0] = g_coeff * r11 * std::sqrt((1 - ecc * ecc) * vout * vout + ecc * ecc) * std::sin(eout);
3823 * g[1] = g_coeff * r01 * vout * std::cos(eout) / std::sqrt(1 - ecc * ecc);
3830 * double expected_y = system_parameters::r_core_polar * std::sqrt(1 -
3831 * (p[0] * p[0] / system_parameters::r_core_eq / system_parameters::r_core_eq));
3834 * if (p[1] <= expected_y)
3836 * g[0] += g_coeff_c * r11_c * std::sqrt((1 - ecc_c * ecc_c) * vout_c * vout_c + ecc_c * ecc_c) * std::sin(eout_c);
3837 * g[1] += g_coeff_c * r01_c * vout_c * std::cos(eout_c) / std::sqrt(1 - ecc_c * ecc_c);
3841 * double g_coeff_co = - 2.795007963255562e-10 * system_parameters::excess_rho * system_parameters::r_core_eq
3842 * / vout_c / vout_c;
3843 * double r00_co = 0;
3844 * double r01_co = 0;
3845 * double r11_co = 0;
3847 * if (system_parameters::r_core_polar == system_parameters::r_core_eq)
3855 * r00_co = ke_c * vout_c * std::atan2(1, ke_c * vout_c);
3856 * double ke_co2 = ke_c * ke_c * vout_c * vout_c;
3857 * r01_co = 3 * ke_co2 * (1 - r00_co);
3858 * r11_co = 3 * ((ke_co2 + 1) * r00_co - ke_co2) / 2;
3860 * g[0] += g_coeff_co * vout_c * r11_co / std::sqrt((1 - ecc_c* ecc_c) * vout_c * vout_c + ecc_c * ecc_c) * std::sin(eout_c);
3861 * g[1] += g_coeff_co * r01_co * std::cos(eout_c) / std::sqrt(1 - ecc_c * ecc_c);
3865 * template <int dim>
3866 * void AnalyticGravity<dim>::setup_vars (std::vector<double> v)
3868 * system_parameters::r_eq = v[0];
3869 * system_parameters::r_polar = v[1];
3870 * system_parameters::r_core_eq = v[2];
3871 * system_parameters::r_core_polar = v[3];
3872 * system_parameters::mantle_rho = v[4];
3873 * system_parameters::core_rho = v[5];
3874 * system_parameters::excess_rho = system_parameters::core_rho - system_parameters::mantle_rho;
3882 * if (system_parameters::r_polar > system_parameters::r_eq)
3886 * This makes the gravity field nearly that of a sphere in case the body becomes prolate
3889 * std::cout << "\nWarning: The model body has become prolate. \n
";
3894 * ecc = std::sqrt(1 - (system_parameters::r_polar * system_parameters::r_polar / system_parameters::r_eq / system_parameters::r_eq));
3897 * eV = ecc * system_parameters::r_eq;
3898 * ke = std::sqrt(1 - (ecc * ecc)) / ecc;
3899 * r00 = ke * std::atan2(1, ke);
3900 * double ke2 = ke * ke;
3901 * r01 = 3 * ke2 * (1 - r00);
3902 * r11 = 3 * ((ke2 + 1) * r00 - ke2) / 2;
3903 * g_coeff = - 2.795007963255562e-10 * system_parameters::mantle_rho * system_parameters::r_eq;
3910 * if (system_parameters::r_core_polar > system_parameters::r_core_eq)
3912 * std::cout << "\nWarning: The model core has become prolate. \n
";
3917 * ecc_c = std::sqrt(1 - (system_parameters::r_core_polar * system_parameters::r_core_polar / system_parameters::r_core_eq / system_parameters::r_core_eq));
3919 * eV_c = ecc_c * system_parameters::r_core_eq;
3920 * if (system_parameters::r_core_polar == system_parameters::r_core_eq)
3926 * g_coeff_c = - 2.795007963255562e-10 * system_parameters::excess_rho * system_parameters::r_core_eq;
3930 * ke_c = std::sqrt(1 - (ecc_c * ecc_c)) / ecc_c;
3931 * r00_c = ke_c * std::atan2(1, ke_c);
3932 * double ke2_c = ke_c * ke_c;
3933 * r01_c = 3 * ke2_c * (1 - r00_c);
3934 * r11_c = 3 * ((ke2_c + 1) * r00_c - ke2_c) / 2;
3935 * g_coeff_c = - 2.795007963255562e-10 * system_parameters::excess_rho * system_parameters::r_core_eq;
3939 * std::cout << "Loaded variables: ecc =
" << ecc_c << " ke =
" << ke_c << " r00 =
" << r00_c << " r01 =
" << r01_c << " r11 =
" << r11_c << "\n
";
3947<a name="ann-support_code/local_math.h
"></a>
3948<h1>Annotated version of support_code/local_math.h</h1>
3955 * * File: localmath.h
3956 * * Author: antonermakov
3958 * * Created on September 21, 2013, 7:14 PM
3961 * #ifndef LOCAL_MATH_
3962 * #define LOCAL_MATH_
3964 * #define PI 3.14159265358979323846
3965 * #define TWOPI 6.283185307179586476925287
3966 * #define SECSINYEAR 3.155692608e+07
3969 * #define ABS(a) ((a) < 0 ? -(a) : (a))
3973 * double factorial(int n)
3977 * } else if(n == 1) {
3979 * } else if(n == 2) {
3981 * } else if(n == 3) {
3983 * } else if(n == 4) {
3992 * double fudge(int m)
4006 * double sign(double x)
4010 * } else if(x < 0.0) {
4019 * double pv0(double x)
4025 * ans = x - TWOPI*floor(x/TWOPI);
4026 * if(ans > TWOPI/2.0) {
4027 * ans = ans - TWOPI;
4042 * double System::Plm(int m, double x)
4045 * return(1.5*x*x - 0.5);
4046 * } else if(m == 1) {
4047 * return(3.0*x*sqrt(1.0 - x*x));
4048 * } else if(m == 2) {
4049 * return(3.0 - 3.0*x*x);
4057 * double System::DP(int m, double x)
4061 * } else if(m == 1) {
4062 * return((3.0 - 6.0*x*x)/sqrt(1.0 - x*x));
4063 * } else if(m == 2) {
4077 * #endif /* LOCALMATH_H */
void attach_dof_handler(const DoFHandler< dim, spacedim > &)
virtual void vector_value_list(const std::vector< Point< dim > > &points, std::vector< Vector< RangeNumberType > > &values) const
virtual RangeNumberType value(const Point< dim > &p, const unsigned int component=0) const
virtual void vector_value(const Point< dim > &p, Vector< RangeNumberType > &values) const
typename SparseLUDecomposition< number >::AdditionalData AdditionalData
void initialize(const SparseMatrix< somenumber > &matrix, const AdditionalData ¶meters=AdditionalData())
#define DEAL_II_DISABLE_EXTRA_DIAGNOSTICS
#define DEAL_II_ENABLE_EXTRA_DIAGNOSTICS
#define Assert(cond, exc)
#define AssertThrow(cond, exc)
typename ActiveSelector::active_cell_iterator active_cell_iterator
LinearOperator< Range_2, Domain_2, Payload > schur_complement(const LinearOperator< Domain_1, Range_1, Payload > &A_inv, const LinearOperator< Range_1, Domain_2, Payload > &B, const LinearOperator< Range_2, Domain_1, Payload > &C, const LinearOperator< Range_2, Domain_2, Payload > &D)
void loop(IteratorType begin, std_cxx20::type_identity_t< IteratorType > end, DOFINFO &dinfo, INFOBOX &info, const std::function< void(std_cxx20::type_identity_t< DOFINFO > &, typename INFOBOX::CellInfo &)> &cell_worker, const std::function< void(std_cxx20::type_identity_t< DOFINFO > &, typename INFOBOX::CellInfo &)> &boundary_worker, const std::function< void(std_cxx20::type_identity_t< DOFINFO > &, std_cxx20::type_identity_t< DOFINFO > &, typename INFOBOX::CellInfo &, typename INFOBOX::CellInfo &)> &face_worker, AssemblerType &assembler, const LoopControl &lctrl=LoopControl())
void make_hanging_node_constraints(const DoFHandler< dim, spacedim > &dof_handler, AffineConstraints< number > &constraints)
void make_sparsity_pattern(const DoFHandler< dim, spacedim > &dof_handler, SparsityPatternBase &sparsity_pattern, const AffineConstraints< number > &constraints={}, const bool keep_constrained_dofs=true, const types::subdomain_id subdomain_id=numbers::invalid_subdomain_id)
void compute_no_normal_flux_constraints(const DoFHandler< dim, spacedim > &dof_handler, const unsigned int first_vector_component, const std::set< types::boundary_id > &boundary_ids, AffineConstraints< number > &constraints, const Mapping< dim, spacedim > &mapping=(ReferenceCells::get_hypercube< dim >() .template get_default_linear_mapping< dim, spacedim >()), const bool use_manifold_for_normal=true)
@ update_values
Shape function values.
@ update_JxW_values
Transformed quadrature weights.
@ update_gradients
Shape function gradients.
@ update_quadrature_points
Transformed quadrature points.
std::vector< index_type > data
std::vector< value_type > l2_norm(const typename ::Triangulation< dim, spacedim >::cell_iterator &parent, const value_type parent_value)
@ component_is_part_of_vector
Expression floor(const Expression &x)
void component_wise(DoFHandler< dim, spacedim > &dof_handler, const std::vector< unsigned int > &target_component=std::vector< unsigned int >())
void Cuthill_McKee(DoFHandler< dim, spacedim > &dof_handler, const bool reversed_numbering=false, const bool use_constraints=false, const std::vector< types::global_dof_index > &starting_indices=std::vector< types::global_dof_index >())
@ valid
Iterator points to a valid object.
@ matrix
Contents is actually a matrix.
Point< spacedim > point(const gp_Pnt &p, const double tolerance=1e-10)
SymmetricTensor< 2, dim, Number > e(const Tensor< 2, dim, Number > &F)
SymmetricTensor< 2, dim, Number > b(const Tensor< 2, dim, Number > &F)
Number angle(const Tensor< 1, spacedim, Number > &a, const Tensor< 1, spacedim, Number > &b)
std::string int_to_string(const unsigned int value, const unsigned int digits=numbers::invalid_unsigned_int)
void run(const Iterator &begin, const std_cxx20::type_identity_t< Iterator > &end, Worker worker, Copier copier, const ScratchData &sample_scratch_data, const CopyData &sample_copy_data, const unsigned int queue_length, const unsigned int chunk_size)
bool check(const ConstraintKinds kind_in, const unsigned int dim)
int(&) functions(const void *v1, const void *v2)
::VectorizedArray< Number, width > cos(const ::VectorizedArray< Number, width > &)
::VectorizedArray< Number, width > sin(const ::VectorizedArray< Number, width > &)
::VectorizedArray< Number, width > sqrt(const ::VectorizedArray< Number, width > &)
::VectorizedArray< Number, width > pow(const ::VectorizedArray< Number, width > &, const Number p)
inline ::VectorizedArray< Number, width > atan(const ::VectorizedArray< Number, width > &x)
::VectorizedArray< Number, width > abs(const ::VectorizedArray< Number, width > &)
const ::parallel::distributed::Triangulation< dim, spacedim > * triangulation