deal.II version GIT relicensing-2287-g6548a49e0a 2024-12-20 18:30:00+00:00
|
#include <deal.II/lac/solver_cg.h>
Classes | |
struct | AdditionalData |
Public Types | |
using | size_type = types::global_dof_index |
using | vector_type = VectorType |
Public Member Functions | |
SolverCG (SolverControl &cn, VectorMemory< VectorType > &mem, const AdditionalData &data=AdditionalData()) | |
SolverCG (SolverControl &cn, const AdditionalData &data=AdditionalData()) | |
virtual | ~SolverCG () override=default |
template<typename MatrixType , typename PreconditionerType > | |
void | solve (const MatrixType &A, VectorType &x, const VectorType &b, const PreconditionerType &preconditioner) |
boost::signals2::connection | connect_coefficients_slot (const std::function< void(typename VectorType::value_type, typename VectorType::value_type)> &slot) |
boost::signals2::connection | connect_condition_number_slot (const std::function< void(double)> &slot, const bool every_iteration=false) |
boost::signals2::connection | connect_eigenvalues_slot (const std::function< void(const std::vector< double > &)> &slot, const bool every_iteration=false) |
boost::signals2::connection | connect (const std::function< SolverControl::State(const unsigned int iteration, const double check_value, const VectorType ¤t_iterate)> &slot) |
template<class Archive > | |
void | serialize (Archive &ar, const unsigned int version) |
EnableObserverPointer functionality | |
Classes derived from EnableObserverPointer provide a facility to subscribe to this object. This is mostly used by the ObserverPointer class. | |
void | subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const |
void | unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const |
unsigned int | n_subscriptions () const |
template<typename StreamType > | |
void | list_subscribers (StreamType &stream) const |
void | list_subscribers () const |
Static Public Member Functions | |
static ::ExceptionBase & | ExcInUse (int arg1, std::string arg2, std::string arg3) |
static ::ExceptionBase & | ExcNoSubscriber (std::string arg1, std::string arg2) |
Protected Member Functions | |
virtual void | print_vectors (const unsigned int step, const VectorType &x, const VectorType &r, const VectorType &d) const |
Static Protected Member Functions | |
static void | compute_eigs_and_cond (const std::vector< typename VectorType::value_type > &diagonal, const std::vector< typename VectorType::value_type > &offdiagonal, const boost::signals2::signal< void(const std::vector< double > &)> &eigenvalues_signal, const boost::signals2::signal< void(double)> &cond_signal) |
Protected Attributes | |
AdditionalData | additional_data |
boost::signals2::signal< void(typename VectorType::value_type, typename VectorType::value_type)> | coefficients_signal |
boost::signals2::signal< void(double)> | condition_number_signal |
boost::signals2::signal< void(double)> | all_condition_numbers_signal |
boost::signals2::signal< void(const std::vector< double > &)> | eigenvalues_signal |
boost::signals2::signal< void(const std::vector< double > &)> | all_eigenvalues_signal |
bool | determine_beta_by_flexible_formula |
GrowingVectorMemory< VectorType > | static_vector_memory |
VectorMemory< VectorType > & | memory |
boost::signals2::signal< SolverControl::State(const unsigned int iteration, const double check_value, const VectorType ¤t_iterate), StateCombiner > | iteration_status |
Private Types | |
using | map_value_type = decltype(counter_map)::value_type |
using | map_iterator = decltype(counter_map)::iterator |
Private Member Functions | |
void | check_no_subscribers () const noexcept |
Private Attributes | |
std::atomic< unsigned int > | counter |
std::map< std::string, unsigned int > | counter_map |
std::vector< std::atomic< bool > * > | validity_pointers |
const std::type_info * | object_info |
Static Private Attributes | |
static std::mutex | mutex |
This class implements the preconditioned Conjugate Gradients (CG) method that can be used to solve linear systems with a symmetric positive definite matrix. This class is used first in step-3 and step-4, but is used in many other tutorial programs as well. Like all other solver classes, it can work on any kind of vector and matrix as long as they satisfy certain requirements (for the requirements on matrices and vectors in order to work with this class, see the documentation of the Solver base class). The type of the solution vector must be passed as template argument, and defaults to Vector<double>. The AdditionalData structure allows to control the type of residual for the stopping condition.
The cg-method performs an orthogonal projection of the original preconditioned linear system to another system of smaller dimension. Furthermore, the projected matrix T
is tri-diagonal. Since the projection is orthogonal, the eigenvalues of T
approximate those of the original preconditioned matrix PA
. In fact, after n
steps, where n
is the dimension of the original system, the eigenvalues of both matrices are equal. But, even for small numbers of iteration steps, the condition number of T
is a good estimate for the one of PA
.
After m
steps the matrix T_m can be written in terms of the coefficients alpha
and beta
as the tri-diagonal matrix with diagonal elements 1/alpha_0
, 1/alpha_1 + beta_0/alpha_0
, ..., 1/alpha_{m-1}+beta_{m-2}/alpha_{m-2}
and off-diagonal elements sqrt(beta_0)/alpha_0
, ..., sqrt(beta_{m-2})/alpha_{m-2}
. The eigenvalues of this matrix can be computed by postprocessing.
The coefficients, eigenvalues and condition number (computed as the ratio of the largest over smallest eigenvalue) can be obtained by connecting a function as a slot to the solver using one of the functions connect_coefficients_slot
, connect_eigenvalues_slot
and connect_condition_number_slot
. These slots will then be called from the solver with the estimates as argument.
The solve() function of this class uses the mechanism described in the Solver base class to determine convergence. This mechanism can also be used to observe the progress of the iteration.
MatrixType
argumentThis class enables to embed the vector updates into the matrix-vector product in case the MatrixType
and PreconditionerType
support such a mode of operation. To this end, the VectorType
needs to be LinearAlgebra::distributed::Vector, the class MatrixType
needs to provide a function with the signature
where the two given functions run before and after the matrix-vector product, respectively, and the PreconditionerType
needs to provide a function either the signature
to apply the action of the preconditioner on a single element (effectively being a diagonal preconditioner), or the signature
where the pointers src_ptr_to_subrange
and dst_ptr_to_subrange
point to the location in the vector where the operation should be applied to. If both functions are given, the more optimized apply
path is selected. The functions passed to MatrixType::vmult
take as arguments a sub-range among the locally owned elements of the vector, defined as half-open intervals. The intervals are designed to be scheduled close to the time the matrix-vector product touches those entries in the src
and dst
vectors, respectively, with the requirement that
src
or dst
once the operation_before_matrix_vector_product
has been run on that vector entry; operation_after_matrix_vector_product
may run on a range of entries [i,j)
once the matrix-vector product does not access the entries [i,j)
in src
and dst
any more. The motivation for this function is to increase data locality and hence cache usage. For the example of a class similar to the one in the step-37 tutorial program, the implementation is
In terms of the SolverCG implementation, the operation before the loop will run the updates on the vectors according to a variant presented in Algorithm 2.2 of [57] (but for a preconditioner), whereas the operation after the loop performs a total of 7 reductions in parallel.
AdditionalData
allows you to choose between using the explicit or implicit residual as a stopping condition for the iterative solver. This behavior can be overridden by using the flag AdditionalData::use_default_residual. A true
value refers to the implicit residual, while false
reverts it. The former uses the result of the matrix-vector product already computed in other algorithm steps to derive the residual by a mere vector update, whereas the latter explicitly calculates the system residual with an additional matrix-vector product. More information on explicit and implicit residual stopping criteria can be found link here.
Definition at line 196 of file solver_cg.h.
using SolverCG< VectorType >::size_type = types::global_dof_index |
Declare type for container size.
Definition at line 202 of file solver_cg.h.
|
inherited |
|
privateinherited |
The data type used in counter_map.
Definition at line 238 of file enable_observer_pointer.h.
|
privateinherited |
The iterator type used in counter_map.
Definition at line 243 of file enable_observer_pointer.h.
SolverCG< VectorType >::SolverCG | ( | SolverControl & | cn, |
VectorMemory< VectorType > & | mem, | ||
const AdditionalData & | data = AdditionalData() |
||
) |
Constructor.
SolverCG< VectorType >::SolverCG | ( | SolverControl & | cn, |
const AdditionalData & | data = AdditionalData() |
||
) |
Constructor. Use an object of type GrowingVectorMemory as a default to allocate memory.
|
overridevirtualdefault |
Virtual destructor.
void SolverCG< VectorType >::solve | ( | const MatrixType & | A, |
VectorType & | x, | ||
const VectorType & | b, | ||
const PreconditionerType & | preconditioner | ||
) |
Solve the linear system \(Ax=b\) for x.
boost::signals2::connection SolverCG< VectorType >::connect_coefficients_slot | ( | const std::function< void(typename VectorType::value_type, typename VectorType::value_type)> & | slot | ) |
Connect a slot to retrieve the CG coefficients. The slot will be called with alpha as the first argument and with beta as the second argument, where alpha and beta follow the notation in Y. Saad: "Iterative methods for Sparse Linear Systems", section 6.7. Called once per iteration
boost::signals2::connection SolverCG< VectorType >::connect_condition_number_slot | ( | const std::function< void(double)> & | slot, |
const bool | every_iteration = false |
||
) |
Connect a slot to retrieve the estimated condition number. Called on each iteration if every_iteration=true, otherwise called once when iterations are ended (i.e., either because convergence has been achieved, or because divergence has been detected).
boost::signals2::connection SolverCG< VectorType >::connect_eigenvalues_slot | ( | const std::function< void(const std::vector< double > &)> & | slot, |
const bool | every_iteration = false |
||
) |
Connect a slot to retrieve the estimated eigenvalues. Called on each iteration if every_iteration=true, otherwise called once when iterations are ended (i.e., either because convergence has been achieved, or because divergence has been detected).
|
protectedvirtual |
Interface for derived class. This function gets the current iteration vector, the residual and the update vector in each step. It can be used for graphical output of the convergence history.
|
staticprotected |
Estimates the eigenvalues from diagonal and offdiagonal. Uses these estimate to compute the condition number. Calls the signals eigenvalues_signal and cond_signal with these estimates as arguments.
|
inherited |
Connect a function object that will be called periodically within iterative solvers. This function is used to attach monitors to iterative solvers, either to determine when convergence has happened, or simply to observe the progress of an iteration. See the documentation of this class for more information.
slot | A function object specified here will, with each call, receive the number of the current iteration, the value that is used to check for convergence (typically the residual of the current iterate with respect to the linear system to be solved) and the currently best available guess for the current iterate. Note that some solvers do not update the approximate solution in every iteration but only after convergence or failure has been determined (GMRES is an example); in such cases, the vector passed as the last argument to the signal is simply the best approximate at the time the signal is called, but not the vector that will be returned if the signal's return value indicates that the iteration should be terminated. The function object must return a SolverControl::State value that indicates whether the iteration should continue, has failed, or has succeeded. The results of all connected functions will then be combined to determine what should happen with the iteration. |
|
inherited |
Subscribes a user of the object by storing the pointer validity
. The subscriber may be identified by text supplied as identifier
.
Definition at line 131 of file enable_observer_pointer.cc.
|
inherited |
Unsubscribes a user from the object.
identifier
and the validity
pointer must be the same as the one supplied to subscribe(). Definition at line 151 of file enable_observer_pointer.cc.
|
inlineinherited |
Return the present number of subscriptions to this object. This allows to use this class for reference counted lifetime determination where the last one to unsubscribe also deletes the object.
Definition at line 322 of file enable_observer_pointer.h.
|
inlineinherited |
List the subscribers to the input stream
.
Definition at line 339 of file enable_observer_pointer.h.
|
inherited |
List the subscribers to deallog
.
Definition at line 199 of file enable_observer_pointer.cc.
|
inlineinherited |
Read or write the data of this object to or from a stream for the purpose of serialization using the BOOST serialization library.
This function does not actually serialize any of the member variables of this class. The reason is that what this class stores is only who subscribes to this object, but who does so at the time of storing the contents of this object does not necessarily have anything to do with who subscribes to the object when it is restored. Consequently, we do not want to overwrite the subscribers at the time of restoring, and then there is no reason to write the subscribers out in the first place.
Definition at line 331 of file enable_observer_pointer.h.
|
privatenoexceptinherited |
Check that there are no objects subscribing to this object. If this check passes then it is safe to destroy the current object. It this check fails then this function will either abort or print an error message to deallog (by using the AssertNothrow mechanism), but will not throw an exception.
Definition at line 53 of file enable_observer_pointer.cc.
|
protected |
Additional parameters.
Definition at line 323 of file solver_cg.h.
|
protected |
Signal used to retrieve the CG coefficients. Called on each iteration.
Definition at line 330 of file solver_cg.h.
|
protected |
Signal used to retrieve the estimated condition number. Called once when all iterations are ended.
Definition at line 336 of file solver_cg.h.
|
protected |
Signal used to retrieve the estimated condition numbers. Called on each iteration.
Definition at line 342 of file solver_cg.h.
|
protected |
Signal used to retrieve the estimated eigenvalues. Called once when all iterations are ended.
Definition at line 348 of file solver_cg.h.
|
protected |
Signal used to retrieve the estimated eigenvalues. Called on each iteration.
Definition at line 355 of file solver_cg.h.
|
protected |
Flag to indicate whether the classical Fletcher–Reeves update formula for the parameter \(\beta_k\) (standard CG algorithm, minimal storage needs) or the flexible conjugate gradient method with Polak-Ribiere formula for \(\beta_k\) should be used. This base class implementation of SolverCG will always use the former method, whereas the derived class SolverFlexibleCG will use the latter.
Definition at line 365 of file solver_cg.h.
|
mutableprotectedinherited |
|
protectedinherited |
|
protectedinherited |
A signal that iterative solvers can execute at the end of every iteration (or in an otherwise periodic fashion) to find out whether we should continue iterating or not. The signal may call one or more slots that each will make this determination by themselves, and the result over all slots (function calls) will be determined by the StateCombiner object.
The arguments passed to the signal are (i) the number of the current iteration; (ii) the value that is used to determine convergence (oftentimes the residual, but in other cases other quantities may be used as long as they converge to zero as the iterate approaches the solution of the linear system); and (iii) a vector that corresponds to the current best guess for the solution at the point where the signal is called. Note that some solvers do not update the approximate solution in every iteration but only after convergence or failure has been determined (GMRES is an example); in such cases, the vector passed as the last argument to the signal is simply the best approximate at the time the signal is called, but not the vector that will be returned if the signal's return value indicates that the iteration should be terminated.
|
mutableprivateinherited |
Store the number of objects which subscribed to this object. Initially, this number is zero, and upon destruction it shall be zero again (i.e. all objects which subscribed should have unsubscribed again).
The creator (and owner) of an object is counted in the map below if HE manages to supply identification.
We use the mutable
keyword in order to allow subscription to constant objects also.
This counter may be read from and written to concurrently in multithreaded code: hence we use the std::atomic
class template.
Definition at line 227 of file enable_observer_pointer.h.
|
mutableprivateinherited |
In this map, we count subscriptions for each different identification string supplied to subscribe().
Definition at line 233 of file enable_observer_pointer.h.
|
mutableprivateinherited |
In this vector, we store pointers to the validity bool in the ObserverPointer objects that subscribe to this class.
Definition at line 249 of file enable_observer_pointer.h.
|
mutableprivateinherited |
Pointer to the typeinfo object of this object, from which we can later deduce the class name. Since this information on the derived class is neither available in the destructor, nor in the constructor, we obtain it in between and store it here.
Definition at line 257 of file enable_observer_pointer.h.
|
staticprivateinherited |
A mutex used to ensure data consistency when accessing the mutable
members of this class. This lock is used in the subscribe() and unsubscribe() functions, as well as in list_subscribers()
.
Definition at line 280 of file enable_observer_pointer.h.