deal.II version GIT relicensing-2287-g6548a49e0a 2024-12-20 18:30:00+00:00
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
Classes | Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Static Protected Member Functions | Protected Attributes | Private Types | Private Member Functions | Private Attributes | Static Private Attributes | List of all members
SolverCG< VectorType > Class Template Reference

#include <deal.II/lac/solver_cg.h>

Inheritance diagram for SolverCG< VectorType >:
Inheritance graph
[legend]

Classes

struct  AdditionalData
 

Public Types

using size_type = types::global_dof_index
 
using vector_type = VectorType
 

Public Member Functions

 SolverCG (SolverControl &cn, VectorMemory< VectorType > &mem, const AdditionalData &data=AdditionalData())
 
 SolverCG (SolverControl &cn, const AdditionalData &data=AdditionalData())
 
virtual ~SolverCG () override=default
 
template<typename MatrixType , typename PreconditionerType >
void solve (const MatrixType &A, VectorType &x, const VectorType &b, const PreconditionerType &preconditioner)
 
boost::signals2::connection connect_coefficients_slot (const std::function< void(typename VectorType::value_type, typename VectorType::value_type)> &slot)
 
boost::signals2::connection connect_condition_number_slot (const std::function< void(double)> &slot, const bool every_iteration=false)
 
boost::signals2::connection connect_eigenvalues_slot (const std::function< void(const std::vector< double > &)> &slot, const bool every_iteration=false)
 
boost::signals2::connection connect (const std::function< SolverControl::State(const unsigned int iteration, const double check_value, const VectorType &current_iterate)> &slot)
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 
EnableObserverPointer functionality

Classes derived from EnableObserverPointer provide a facility to subscribe to this object. This is mostly used by the ObserverPointer class.

void subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
void unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
unsigned int n_subscriptions () const
 
template<typename StreamType >
void list_subscribers (StreamType &stream) const
 
void list_subscribers () const
 

Static Public Member Functions

static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 

Protected Member Functions

virtual void print_vectors (const unsigned int step, const VectorType &x, const VectorType &r, const VectorType &d) const
 

Static Protected Member Functions

static void compute_eigs_and_cond (const std::vector< typename VectorType::value_type > &diagonal, const std::vector< typename VectorType::value_type > &offdiagonal, const boost::signals2::signal< void(const std::vector< double > &)> &eigenvalues_signal, const boost::signals2::signal< void(double)> &cond_signal)
 

Protected Attributes

AdditionalData additional_data
 
boost::signals2::signal< void(typename VectorType::value_type, typename VectorType::value_type)> coefficients_signal
 
boost::signals2::signal< void(double)> condition_number_signal
 
boost::signals2::signal< void(double)> all_condition_numbers_signal
 
boost::signals2::signal< void(const std::vector< double > &)> eigenvalues_signal
 
boost::signals2::signal< void(const std::vector< double > &)> all_eigenvalues_signal
 
bool determine_beta_by_flexible_formula
 
GrowingVectorMemory< VectorType > static_vector_memory
 
VectorMemory< VectorType > & memory
 
boost::signals2::signal< SolverControl::State(const unsigned int iteration, const double check_value, const VectorType &current_iterate), StateCombineriteration_status
 

Private Types

using map_value_type = decltype(counter_map)::value_type
 
using map_iterator = decltype(counter_map)::iterator
 

Private Member Functions

void check_no_subscribers () const noexcept
 

Private Attributes

std::atomic< unsigned intcounter
 
std::map< std::string, unsigned intcounter_map
 
std::vector< std::atomic< bool > * > validity_pointers
 
const std::type_info * object_info
 

Static Private Attributes

static std::mutex mutex
 

Detailed Description

template<typename VectorType = Vector<double>>
class SolverCG< VectorType >

This class implements the preconditioned Conjugate Gradients (CG) method that can be used to solve linear systems with a symmetric positive definite matrix. This class is used first in step-3 and step-4, but is used in many other tutorial programs as well. Like all other solver classes, it can work on any kind of vector and matrix as long as they satisfy certain requirements (for the requirements on matrices and vectors in order to work with this class, see the documentation of the Solver base class). The type of the solution vector must be passed as template argument, and defaults to Vector<double>. The AdditionalData structure allows to control the type of residual for the stopping condition.

Note
The CG method requires a symmetric preconditioner (i.e., for example, SOR is not a possible choice). There is a variant of the solver, SolverFlexibleCG, that allows to use a variable preconditioner or a preconditioner with some slight non-symmetry (like weighted Schwarz methods), by using a different formula for the step length in the computation of the next search direction.

Eigenvalue computation

The cg-method performs an orthogonal projection of the original preconditioned linear system to another system of smaller dimension. Furthermore, the projected matrix T is tri-diagonal. Since the projection is orthogonal, the eigenvalues of T approximate those of the original preconditioned matrix PA. In fact, after n steps, where n is the dimension of the original system, the eigenvalues of both matrices are equal. But, even for small numbers of iteration steps, the condition number of T is a good estimate for the one of PA.

After m steps the matrix T_m can be written in terms of the coefficients alpha and beta as the tri-diagonal matrix with diagonal elements 1/alpha_0, 1/alpha_1 + beta_0/alpha_0, ..., 1/alpha_{m-1}+beta_{m-2}/alpha_{m-2} and off-diagonal elements sqrt(beta_0)/alpha_0, ..., sqrt(beta_{m-2})/alpha_{m-2}. The eigenvalues of this matrix can be computed by postprocessing.

See also
Y. Saad: "Iterative methods for Sparse Linear Systems", section 6.7.3 for details.

The coefficients, eigenvalues and condition number (computed as the ratio of the largest over smallest eigenvalue) can be obtained by connecting a function as a slot to the solver using one of the functions connect_coefficients_slot, connect_eigenvalues_slot and connect_condition_number_slot. These slots will then be called from the solver with the estimates as argument.

Observing the progress of linear solver iterations

The solve() function of this class uses the mechanism described in the Solver base class to determine convergence. This mechanism can also be used to observe the progress of the iteration.

Optimized operations with specific MatrixType argument

This class enables to embed the vector updates into the matrix-vector product in case the MatrixType and PreconditionerType support such a mode of operation. To this end, the VectorType needs to be LinearAlgebra::distributed::Vector, the class MatrixType needs to provide a function with the signature

void MatrixType::vmult(
VectorType &,
const VectorType &,
const std::function<void(const unsigned int, const unsigned int)> &,
const std::function<void(const unsigned int, const unsigned int)> &) const

where the two given functions run before and after the matrix-vector product, respectively, and the PreconditionerType needs to provide a function either the signature

Number PreconditionerType::apply(unsigned int index, const Number src) const

to apply the action of the preconditioner on a single element (effectively being a diagonal preconditioner), or the signature

void PreconditionerType::apply_to_subrange(unsigned int start_range,
unsigned int end_range,
const Number* src_ptr_to_subrange,
Number* dst_ptr_to_subrange)

where the pointers src_ptr_to_subrange and dst_ptr_to_subrange point to the location in the vector where the operation should be applied to. If both functions are given, the more optimized apply path is selected. The functions passed to MatrixType::vmult take as arguments a sub-range among the locally owned elements of the vector, defined as half-open intervals. The intervals are designed to be scheduled close to the time the matrix-vector product touches those entries in the src and dst vectors, respectively, with the requirement that

The motivation for this function is to increase data locality and hence cache usage. For the example of a class similar to the one in the step-37 tutorial program, the implementation is

void
const std::function<void(const unsigned int, const unsigned int)>
&operation_before_matrix_vector_product,
const std::function<void(const unsigned int, const unsigned int)>
&operation_after_matrix_vector_product) const
{
data.cell_loop(&LaplaceOperator::local_apply,
this,
dst,
src,
operation_before_matrix_vector_product,
operation_after_matrix_vector_product);
}
std::vector< index_type > data
Definition mpi.cc:735

In terms of the SolverCG implementation, the operation before the loop will run the updates on the vectors according to a variant presented in Algorithm 2.2 of [57] (but for a preconditioner), whereas the operation after the loop performs a total of 7 reductions in parallel.

Preconditioned residual

AdditionalData allows you to choose between using the explicit or implicit residual as a stopping condition for the iterative solver. This behavior can be overridden by using the flag AdditionalData::use_default_residual. A true value refers to the implicit residual, while false reverts it. The former uses the result of the matrix-vector product already computed in other algorithm steps to derive the residual by a mere vector update, whereas the latter explicitly calculates the system residual with an additional matrix-vector product. More information on explicit and implicit residual stopping criteria can be found link here.

Definition at line 196 of file solver_cg.h.

Member Typedef Documentation

◆ size_type

template<typename VectorType = Vector<double>>
using SolverCG< VectorType >::size_type = types::global_dof_index

Declare type for container size.

Definition at line 202 of file solver_cg.h.

◆ vector_type

template<typename VectorType = Vector<double>>
using SolverBase< VectorType >::vector_type = VectorType
inherited

An alias for the underlying vector type

Definition at line 347 of file solver.h.

◆ map_value_type

using EnableObserverPointer::map_value_type = decltype(counter_map)::value_type
privateinherited

The data type used in counter_map.

Definition at line 238 of file enable_observer_pointer.h.

◆ map_iterator

using EnableObserverPointer::map_iterator = decltype(counter_map)::iterator
privateinherited

The iterator type used in counter_map.

Definition at line 243 of file enable_observer_pointer.h.

Constructor & Destructor Documentation

◆ SolverCG() [1/2]

template<typename VectorType = Vector<double>>
SolverCG< VectorType >::SolverCG ( SolverControl cn,
VectorMemory< VectorType > &  mem,
const AdditionalData data = AdditionalData() 
)

Constructor.

◆ SolverCG() [2/2]

template<typename VectorType = Vector<double>>
SolverCG< VectorType >::SolverCG ( SolverControl cn,
const AdditionalData data = AdditionalData() 
)

Constructor. Use an object of type GrowingVectorMemory as a default to allocate memory.

◆ ~SolverCG()

template<typename VectorType = Vector<double>>
virtual SolverCG< VectorType >::~SolverCG ( )
overridevirtualdefault

Virtual destructor.

Member Function Documentation

◆ solve()

template<typename VectorType = Vector<double>>
template<typename MatrixType , typename PreconditionerType >
void SolverCG< VectorType >::solve ( const MatrixType &  A,
VectorType &  x,
const VectorType &  b,
const PreconditionerType &  preconditioner 
)

Solve the linear system \(Ax=b\) for x.

◆ connect_coefficients_slot()

template<typename VectorType = Vector<double>>
boost::signals2::connection SolverCG< VectorType >::connect_coefficients_slot ( const std::function< void(typename VectorType::value_type, typename VectorType::value_type)> &  slot)

Connect a slot to retrieve the CG coefficients. The slot will be called with alpha as the first argument and with beta as the second argument, where alpha and beta follow the notation in Y. Saad: "Iterative methods for Sparse Linear Systems", section 6.7. Called once per iteration

◆ connect_condition_number_slot()

template<typename VectorType = Vector<double>>
boost::signals2::connection SolverCG< VectorType >::connect_condition_number_slot ( const std::function< void(double)> &  slot,
const bool  every_iteration = false 
)

Connect a slot to retrieve the estimated condition number. Called on each iteration if every_iteration=true, otherwise called once when iterations are ended (i.e., either because convergence has been achieved, or because divergence has been detected).

◆ connect_eigenvalues_slot()

template<typename VectorType = Vector<double>>
boost::signals2::connection SolverCG< VectorType >::connect_eigenvalues_slot ( const std::function< void(const std::vector< double > &)> &  slot,
const bool  every_iteration = false 
)

Connect a slot to retrieve the estimated eigenvalues. Called on each iteration if every_iteration=true, otherwise called once when iterations are ended (i.e., either because convergence has been achieved, or because divergence has been detected).

◆ print_vectors()

template<typename VectorType = Vector<double>>
virtual void SolverCG< VectorType >::print_vectors ( const unsigned int  step,
const VectorType &  x,
const VectorType &  r,
const VectorType &  d 
) const
protectedvirtual

Interface for derived class. This function gets the current iteration vector, the residual and the update vector in each step. It can be used for graphical output of the convergence history.

◆ compute_eigs_and_cond()

template<typename VectorType = Vector<double>>
static void SolverCG< VectorType >::compute_eigs_and_cond ( const std::vector< typename VectorType::value_type > &  diagonal,
const std::vector< typename VectorType::value_type > &  offdiagonal,
const boost::signals2::signal< void(const std::vector< double > &)> &  eigenvalues_signal,
const boost::signals2::signal< void(double)> &  cond_signal 
)
staticprotected

Estimates the eigenvalues from diagonal and offdiagonal. Uses these estimate to compute the condition number. Calls the signals eigenvalues_signal and cond_signal with these estimates as arguments.

◆ connect()

template<typename VectorType = Vector<double>>
boost::signals2::connection SolverBase< VectorType >::connect ( const std::function< SolverControl::State(const unsigned int iteration, const double check_value, const VectorType &current_iterate)> &  slot)
inherited

Connect a function object that will be called periodically within iterative solvers. This function is used to attach monitors to iterative solvers, either to determine when convergence has happened, or simply to observe the progress of an iteration. See the documentation of this class for more information.

Parameters
slotA function object specified here will, with each call, receive the number of the current iteration, the value that is used to check for convergence (typically the residual of the current iterate with respect to the linear system to be solved) and the currently best available guess for the current iterate. Note that some solvers do not update the approximate solution in every iteration but only after convergence or failure has been determined (GMRES is an example); in such cases, the vector passed as the last argument to the signal is simply the best approximate at the time the signal is called, but not the vector that will be returned if the signal's return value indicates that the iteration should be terminated. The function object must return a SolverControl::State value that indicates whether the iteration should continue, has failed, or has succeeded. The results of all connected functions will then be combined to determine what should happen with the iteration.
Returns
A connection object that represents the connection from the signal to the function object. It can be used to disconnect the function object again from the signal. See the documentation of the BOOST Signals2 library for more information on connection management.

◆ subscribe()

void EnableObserverPointer::subscribe ( std::atomic< bool > *const  validity,
const std::string &  identifier = "" 
) const
inherited

Subscribes a user of the object by storing the pointer validity. The subscriber may be identified by text supplied as identifier.

Definition at line 131 of file enable_observer_pointer.cc.

◆ unsubscribe()

void EnableObserverPointer::unsubscribe ( std::atomic< bool > *const  validity,
const std::string &  identifier = "" 
) const
inherited

Unsubscribes a user from the object.

Note
The identifier and the validity pointer must be the same as the one supplied to subscribe().

Definition at line 151 of file enable_observer_pointer.cc.

◆ n_subscriptions()

unsigned int EnableObserverPointer::n_subscriptions ( ) const
inlineinherited

Return the present number of subscriptions to this object. This allows to use this class for reference counted lifetime determination where the last one to unsubscribe also deletes the object.

Definition at line 322 of file enable_observer_pointer.h.

◆ list_subscribers() [1/2]

template<typename StreamType >
void EnableObserverPointer::list_subscribers ( StreamType &  stream) const
inlineinherited

List the subscribers to the input stream.

Definition at line 339 of file enable_observer_pointer.h.

◆ list_subscribers() [2/2]

void EnableObserverPointer::list_subscribers ( ) const
inherited

List the subscribers to deallog.

Definition at line 199 of file enable_observer_pointer.cc.

◆ serialize()

template<class Archive >
void EnableObserverPointer::serialize ( Archive &  ar,
const unsigned int  version 
)
inlineinherited

Read or write the data of this object to or from a stream for the purpose of serialization using the BOOST serialization library.

This function does not actually serialize any of the member variables of this class. The reason is that what this class stores is only who subscribes to this object, but who does so at the time of storing the contents of this object does not necessarily have anything to do with who subscribes to the object when it is restored. Consequently, we do not want to overwrite the subscribers at the time of restoring, and then there is no reason to write the subscribers out in the first place.

Definition at line 331 of file enable_observer_pointer.h.

◆ check_no_subscribers()

void EnableObserverPointer::check_no_subscribers ( ) const
privatenoexceptinherited

Check that there are no objects subscribing to this object. If this check passes then it is safe to destroy the current object. It this check fails then this function will either abort or print an error message to deallog (by using the AssertNothrow mechanism), but will not throw an exception.

Note
Since this function is just a consistency check it does nothing in release mode.
If this function is called when there is an uncaught exception then, rather than aborting, this function prints an error message to the standard error stream and returns.

Definition at line 53 of file enable_observer_pointer.cc.

Member Data Documentation

◆ additional_data

template<typename VectorType = Vector<double>>
AdditionalData SolverCG< VectorType >::additional_data
protected

Additional parameters.

Definition at line 323 of file solver_cg.h.

◆ coefficients_signal

template<typename VectorType = Vector<double>>
boost::signals2::signal<void(typename VectorType::value_type, typename VectorType::value_type)> SolverCG< VectorType >::coefficients_signal
protected

Signal used to retrieve the CG coefficients. Called on each iteration.

Definition at line 330 of file solver_cg.h.

◆ condition_number_signal

template<typename VectorType = Vector<double>>
boost::signals2::signal<void(double)> SolverCG< VectorType >::condition_number_signal
protected

Signal used to retrieve the estimated condition number. Called once when all iterations are ended.

Definition at line 336 of file solver_cg.h.

◆ all_condition_numbers_signal

template<typename VectorType = Vector<double>>
boost::signals2::signal<void(double)> SolverCG< VectorType >::all_condition_numbers_signal
protected

Signal used to retrieve the estimated condition numbers. Called on each iteration.

Definition at line 342 of file solver_cg.h.

◆ eigenvalues_signal

template<typename VectorType = Vector<double>>
boost::signals2::signal<void(const std::vector<double> &)> SolverCG< VectorType >::eigenvalues_signal
protected

Signal used to retrieve the estimated eigenvalues. Called once when all iterations are ended.

Definition at line 348 of file solver_cg.h.

◆ all_eigenvalues_signal

template<typename VectorType = Vector<double>>
boost::signals2::signal<void(const std::vector<double> &)> SolverCG< VectorType >::all_eigenvalues_signal
protected

Signal used to retrieve the estimated eigenvalues. Called on each iteration.

Definition at line 355 of file solver_cg.h.

◆ determine_beta_by_flexible_formula

template<typename VectorType = Vector<double>>
bool SolverCG< VectorType >::determine_beta_by_flexible_formula
protected

Flag to indicate whether the classical Fletcher–Reeves update formula for the parameter \(\beta_k\) (standard CG algorithm, minimal storage needs) or the flexible conjugate gradient method with Polak-Ribiere formula for \(\beta_k\) should be used. This base class implementation of SolverCG will always use the former method, whereas the derived class SolverFlexibleCG will use the latter.

Definition at line 365 of file solver_cg.h.

◆ static_vector_memory

template<typename VectorType = Vector<double>>
GrowingVectorMemory<VectorType> SolverBase< VectorType >::static_vector_memory
mutableprotectedinherited

A static vector memory object to be used whenever no such object has been given to the constructor.

Definition at line 415 of file solver.h.

◆ memory

template<typename VectorType = Vector<double>>
VectorMemory<VectorType>& SolverBase< VectorType >::memory
protectedinherited

A reference to an object that provides memory for auxiliary vectors.

Definition at line 420 of file solver.h.

◆ iteration_status

template<typename VectorType = Vector<double>>
boost::signals2::signal< SolverControl::State(const unsigned int iteration, const double check_value, const VectorType &current_iterate), StateCombiner> SolverBase< VectorType >::iteration_status
protectedinherited

A signal that iterative solvers can execute at the end of every iteration (or in an otherwise periodic fashion) to find out whether we should continue iterating or not. The signal may call one or more slots that each will make this determination by themselves, and the result over all slots (function calls) will be determined by the StateCombiner object.

The arguments passed to the signal are (i) the number of the current iteration; (ii) the value that is used to determine convergence (oftentimes the residual, but in other cases other quantities may be used as long as they converge to zero as the iterate approaches the solution of the linear system); and (iii) a vector that corresponds to the current best guess for the solution at the point where the signal is called. Note that some solvers do not update the approximate solution in every iteration but only after convergence or failure has been determined (GMRES is an example); in such cases, the vector passed as the last argument to the signal is simply the best approximate at the time the signal is called, but not the vector that will be returned if the signal's return value indicates that the iteration should be terminated.

Definition at line 471 of file solver.h.

◆ counter

std::atomic<unsigned int> EnableObserverPointer::counter
mutableprivateinherited

Store the number of objects which subscribed to this object. Initially, this number is zero, and upon destruction it shall be zero again (i.e. all objects which subscribed should have unsubscribed again).

The creator (and owner) of an object is counted in the map below if HE manages to supply identification.

We use the mutable keyword in order to allow subscription to constant objects also.

This counter may be read from and written to concurrently in multithreaded code: hence we use the std::atomic class template.

Definition at line 227 of file enable_observer_pointer.h.

◆ counter_map

std::map<std::string, unsigned int> EnableObserverPointer::counter_map
mutableprivateinherited

In this map, we count subscriptions for each different identification string supplied to subscribe().

Definition at line 233 of file enable_observer_pointer.h.

◆ validity_pointers

std::vector<std::atomic<bool> *> EnableObserverPointer::validity_pointers
mutableprivateinherited

In this vector, we store pointers to the validity bool in the ObserverPointer objects that subscribe to this class.

Definition at line 249 of file enable_observer_pointer.h.

◆ object_info

const std::type_info* EnableObserverPointer::object_info
mutableprivateinherited

Pointer to the typeinfo object of this object, from which we can later deduce the class name. Since this information on the derived class is neither available in the destructor, nor in the constructor, we obtain it in between and store it here.

Definition at line 257 of file enable_observer_pointer.h.

◆ mutex

std::mutex EnableObserverPointer::mutex
staticprivateinherited

A mutex used to ensure data consistency when accessing the mutable members of this class. This lock is used in the subscribe() and unsubscribe() functions, as well as in list_subscribers().

Definition at line 280 of file enable_observer_pointer.h.


The documentation for this class was generated from the following file: