deal.II version GIT relicensing-2330-gf6dfc6c370 2025-01-06 13:10:00+00:00
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
step-8.h
Go to the documentation of this file.
1 false);
770 *   sparsity_pattern.copy_from(dsp);
771 *  
772 *   system_matrix.reinit(sparsity_pattern);
773 *   }
774 *  
775 *  
776 * @endcode
777 *
778 *
779 * <a name="step_8-ElasticProblemassemble_system"></a>
780 * <h4>ElasticProblem::assemble_system</h4>
781 *
782
783 *
784 * The big changes in this program are in the creation of matrix and right
785 * hand side, since they are problem-dependent. We will go through that
786 * process step-by-step, since it is a bit more complicated than in previous
787 * examples.
788 *
789
790 *
791 * The first parts of this function are the same as before, however: setting
792 * up a suitable quadrature formula, initializing an FEValues object for the
793 * (vector-valued) finite element we use as well as the quadrature object,
794 * and declaring a number of auxiliary arrays. In addition, we declare the
795 * ever same two abbreviations: <code>n_q_points</code> and
796 * <code>dofs_per_cell</code>. The number of degrees of freedom per cell we
797 * now obviously ask from the composed finite element rather than from the
798 * underlying scalar Q1 element. Here, it is <code>dim</code> times the
799 * number of degrees of freedom per cell of the Q1 element, though this is
800 * not explicit knowledge we need to care about:
801 *
802 * @code
803 *   template <int dim>
804 *   void ElasticProblem<dim>::assemble_system()
805 *   {
806 *   const QGauss<dim> quadrature_formula(fe.degree + 1);
807 *  
808 *   FEValues<dim> fe_values(fe,
809 *   quadrature_formula,
812 *  
813 *   const unsigned int dofs_per_cell = fe.n_dofs_per_cell();
814 *   const unsigned int n_q_points = quadrature_formula.size();
815 *  
816 *   FullMatrix<double> cell_matrix(dofs_per_cell, dofs_per_cell);
817 *   Vector<double> cell_rhs(dofs_per_cell);
818 *  
819 *   std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
820 *  
821 * @endcode
822 *
823 * As was shown in previous examples as well, we need a place where to
824 * store the values of the coefficients at all the quadrature points on a
825 * cell. In the present situation, we have two coefficients, lambda and
826 * mu.
827 *
828 * @code
829 *   std::vector<double> lambda_values(n_q_points);
830 *   std::vector<double> mu_values(n_q_points);
831 *  
832 * @endcode
833 *
834 * Well, we could as well have omitted the above two arrays since we will
835 * use constant coefficients for both lambda and mu, which can be declared
836 * like this. They both represent functions always returning the constant
837 * value 1.0. Although we could omit the respective factors in the
838 * assemblage of the matrix, we use them here for purpose of
839 * demonstration.
840 *
841 * @code
843 *  
844 * @endcode
845 *
846 * Like the two constant functions above, we will call the function
847 * right_hand_side just once per cell to make things simpler.
848 *
849 * @code
850 *   std::vector<Tensor<1, dim>> rhs_values(n_q_points);
851 *  
852 * @endcode
853 *
854 * Now we can begin with the loop over all cells:
855 *
856 * @code
857 *   for (const auto &cell : dof_handler.active_cell_iterators())
858 *   {
859 *   fe_values.reinit(cell);
860 *  
861 *   cell_matrix = 0;
862 *   cell_rhs = 0;
863 *  
864 * @endcode
865 *
866 * Next we get the values of the coefficients at the quadrature
867 * points. Likewise for the right hand side:
868 *
869 * @code
870 *   lambda.value_list(fe_values.get_quadrature_points(), lambda_values);
871 *   mu.value_list(fe_values.get_quadrature_points(), mu_values);
872 *   right_hand_side(fe_values.get_quadrature_points(), rhs_values);
873 *  
874 * @endcode
875 *
876 * Then assemble the entries of the local @ref GlossStiffnessMatrix "stiffness matrix" and right
877 * hand side vector. This follows almost one-to-one the pattern
878 * described in the introduction of this example. One of the few
879 * comments in place is that we can compute the number
880 * <code>comp(i)</code>, i.e. the index of the only nonzero vector
881 * component of shape function <code>i</code> using the
882 * <code>fe.system_to_component_index(i).first</code> function call
883 * below.
884 *
885
886 *
887 * (By accessing the <code>first</code> variable of the return value
888 * of the <code>system_to_component_index</code> function, you might
889 * already have guessed that there is more in it. In fact, the
890 * function returns a <code>std::pair@<unsigned int, unsigned
891 * int@></code>, of which the first element is <code>comp(i)</code>
892 * and the second is the value <code>base(i)</code> also noted in the
893 * introduction, i.e. the index of this shape function within all the
894 * shape functions that are nonzero in this component,
895 * i.e. <code>base(i)</code> in the diction of the introduction. This
896 * is not a number that we are usually interested in, however.)
897 *
898
899 *
900 * With this knowledge, we can assemble the local matrix
901 * contributions:
902 *
903 * @code
904 *   for (const unsigned int i : fe_values.dof_indices())
905 *   {
906 *   const unsigned int component_i =
907 *   fe.system_to_component_index(i).first;
908 *  
909 *   for (const unsigned int j : fe_values.dof_indices())
910 *   {
911 *   const unsigned int component_j =
912 *   fe.system_to_component_index(j).first;
913 *  
914 *   for (const unsigned int q_point :
915 *   fe_values.quadrature_point_indices())
916 *   {
917 *   cell_matrix(i, j) +=
918 * @endcode
919 *
920 * The first term is @f$(\lambda \partial_i u_i, \partial_j
921 * v_j) + (\mu \partial_i u_j, \partial_j v_i)@f$. Note
922 * that <code>shape_grad(i,q_point)</code> returns the
923 * gradient of the only nonzero component of the i-th
924 * shape function at quadrature point q_point. The
925 * component <code>comp(i)</code> of the gradient, which
926 * is the derivative of this only nonzero vector
927 * component of the i-th shape function with respect to
928 * the comp(i)th coordinate is accessed by the appended
929 * brackets.
930 *
931 * @code
932 *   (
933 *   (fe_values.shape_grad(i, q_point)[component_i] *
934 *   fe_values.shape_grad(j, q_point)[component_j] *
935 *   lambda_values[q_point])
936 *   +
937 *   (fe_values.shape_grad(i, q_point)[component_j] *
938 *   fe_values.shape_grad(j, q_point)[component_i] *
939 *   mu_values[q_point])
940 *   +
941 * @endcode
942 *
943 * The second term is @f$(\mu \nabla u_i, \nabla
944 * v_j)@f$. We need not access a specific component of
945 * the gradient, since we only have to compute the
946 * scalar product of the two gradients, of which an
947 * overloaded version of <tt>operator*</tt> takes
948 * care, as in previous examples.
949 *
950
951 *
952 * Note that by using the <tt>?:</tt> operator, we only
953 * do this if <tt>component_i</tt> equals
954 * <tt>component_j</tt>, otherwise a zero is added
955 * (which will be optimized away by the compiler).
956 *
957 * @code
958 *   ((component_i == component_j) ?
959 *   (fe_values.shape_grad(i, q_point) *
960 *   fe_values.shape_grad(j, q_point) *
961 *   mu_values[q_point]) :
962 *   0)
963 *   ) *
964 *   fe_values.JxW(q_point);
965 *   }
966 *   }
967 *   }
968 *  
969 * @endcode
970 *
971 * Assembling the right hand side is also just as discussed in the
972 * introduction:
973 *
974 * @code
975 *   for (const unsigned int i : fe_values.dof_indices())
976 *   {
977 *   const unsigned int component_i =
978 *   fe.system_to_component_index(i).first;
979 *  
980 *   for (const unsigned int q_point :
981 *   fe_values.quadrature_point_indices())
982 *   cell_rhs(i) += fe_values.shape_value(i, q_point) *
983 *   rhs_values[q_point][component_i] *
984 *   fe_values.JxW(q_point);
985 *   }
986 *  
987 * @endcode
988 *
989 * The transfer from local degrees of freedom into the global matrix
990 * and right hand side vector does not depend on the equation under
991 * consideration, and is thus the same as in all previous
992 * examples.
993 *
994 * @code
995 *   cell->get_dof_indices(local_dof_indices);
996 *   constraints.distribute_local_to_global(
997 *   cell_matrix, cell_rhs, local_dof_indices, system_matrix, system_rhs);
998 *   }
999 *   }
1000 *  
1001 *  
1002 *  
1003 * @endcode
1004 *
1005 *
1006 * <a name="step_8-ElasticProblemsolve"></a>
1007 * <h4>ElasticProblem::solve</h4>
1008 *
1009
1010 *
1011 * The solver does not care about where the system of equations comes from, as
1012 * long as it is positive definite and symmetric (which are the
1013 * requirements for the use of the CG solver), which the system indeed
1014 * is. Therefore, we need not change anything.
1015 *
1016 * @code
1017 *   template <int dim>
1018 *   void ElasticProblem<dim>::solve()
1019 *   {
1020 *   SolverControl solver_control(1000, 1e-6 * system_rhs.l2_norm());
1021 *   SolverCG<Vector<double>> cg(solver_control);
1022 *  
1023 *   PreconditionSSOR<SparseMatrix<double>> preconditioner;
1024 *   preconditioner.initialize(system_matrix, 1.2);
1025 *  
1026 *   cg.solve(system_matrix, solution, system_rhs, preconditioner);
1027 *  
1028 *   constraints.distribute(solution);
1029 *   }
1030 *  
1031 *  
1032 * @endcode
1033 *
1034 *
1035 * <a name="step_8-ElasticProblemrefine_grid"></a>
1036 * <h4>ElasticProblem::refine_grid</h4>
1037 *
1038
1039 *
1040 * The function that does the refinement of the grid is the same as in the
1041 * @ref step_6 "step-6" example. The quadrature formula is adapted to the linear elements
1042 * again. Note that the error estimator by default adds up the estimated
1043 * obtained from all components of the finite element solution, i.e., it
1044 * uses the displacement in all directions with the same weight. If we would
1045 * like the grid to be adapted to the x-displacement only, we could pass the
1046 * function an additional parameter which tells it to do so and do not
1047 * consider the displacements in all other directions for the error
1048 * indicators. However, for the current problem, it seems appropriate to
1049 * consider all displacement components with equal weight.
1050 *
1051 * @code
1052 *   template <int dim>
1053 *   void ElasticProblem<dim>::refine_grid()
1054 *   {
1055 *   Vector<float> estimated_error_per_cell(triangulation.n_active_cells());
1056 *  
1057 *   KellyErrorEstimator<dim>::estimate(dof_handler,
1058 *   QGauss<dim - 1>(fe.degree + 1),
1059 *   {},
1060 *   solution,
1061 *   estimated_error_per_cell);
1062 *  
1064 *   estimated_error_per_cell,
1065 *   0.3,
1066 *   0.03);
1067 *  
1068 *   triangulation.execute_coarsening_and_refinement();
1069 *   }
1070 *  
1071 *  
1072 * @endcode
1073 *
1074 *
1075 * <a name="step_8-ElasticProblemoutput_results"></a>
1076 * <h4>ElasticProblem::output_results</h4>
1077 *
1078
1079 *
1080 * The output happens mostly as has been shown in previous examples
1081 * already. The only difference is that the solution function is vector
1082 * valued. The DataOut class takes care of this automatically, but we have
1083 * to give each component of the solution vector a different name.
1084 *
1085
1086 *
1087 * To do this, the DataOut::add_vector() function wants a vector of
1088 * strings. Since the number of components is the same as the number
1089 * of dimensions we are working in, we use the <code>switch</code>
1090 * statement below.
1091 *
1092
1093 *
1094 * We note that some graphics programs have restriction on what
1095 * characters are allowed in the names of variables. deal.II therefore
1096 * supports only the minimal subset of these characters that is supported
1097 * by all programs. Basically, these are letters, numbers, underscores,
1098 * and some other characters, but in particular no whitespace and
1099 * minus/hyphen. The library will throw an exception otherwise, at least
1100 * if in debug mode.
1101 *
1102
1103 *
1104 * After listing the 1d, 2d, and 3d case, it is good style to let the
1105 * program die if we run into a case which we did not consider. You have
1106 * previously already seen the use of the `Assert` macro that generates
1107 * aborts the program with an error message if a condition is not satisfied
1108 * (see @ref step_5 "step-5", for example). We could use this in the `default` case
1109 * below, in the form `Assert(false, ExcNotImplemented())` -- in other words,
1110 * the "condition" here is always `false`, and so the assertion always fails
1111 * and always aborts the program whenever it gets to the default statement.
1112 * This is perhaps more difficult to read than necessary, and consequently
1113 * there is a short-cut: `DEAL_II_NOT_IMPLEMENTED()`. It does the same
1114 * as the form above (with the minor difference that it also aborts the
1115 * program in release mode). It is written in all-caps because that makes
1116 * it stand out visually (and also because it is not actually a function,
1117 * but a macro).
1118 *
1119 * @code
1120 *   template <int dim>
1121 *   void ElasticProblem<dim>::output_results(const unsigned int cycle) const
1122 *   {
1123 *   DataOut<dim> data_out;
1124 *   data_out.attach_dof_handler(dof_handler);
1125 *  
1126 *   std::vector<std::string> solution_names;
1127 *   switch (dim)
1128 *   {
1129 *   case 1:
1130 *   solution_names.emplace_back("displacement");
1131 *   break;
1132 *   case 2:
1133 *   solution_names.emplace_back("x_displacement");
1134 *   solution_names.emplace_back("y_displacement");
1135 *   break;
1136 *   case 3:
1137 *   solution_names.emplace_back("x_displacement");
1138 *   solution_names.emplace_back("y_displacement");
1139 *   solution_names.emplace_back("z_displacement");
1140 *   break;
1141 *   default:
1143 *   }
1144 *  
1145 * @endcode
1146 *
1147 * After setting up the names for the different components of the
1148 * solution vector, we can add the solution vector to the list of
1149 * data vectors scheduled for output. Note that the following
1150 * function takes a vector of strings as second argument, whereas
1151 * the one which we have used in all previous examples accepted a
1152 * string there. (In fact, the function we had used before would
1153 * convert the single string into a vector with only one element
1154 * and forwards that to the other function.)
1155 *
1156 * @code
1157 *   data_out.add_data_vector(solution, solution_names);
1158 *   data_out.build_patches();
1159 *  
1160 *   std::ofstream output("solution-" + std::to_string(cycle) + ".vtk");
1161 *   data_out.write_vtk(output);
1162 *   }
1163 *  
1164 *  
1165 *  
1166 * @endcode
1167 *
1168 *
1169 * <a name="step_8-ElasticProblemrun"></a>
1170 * <h4>ElasticProblem::run</h4>
1171 *
1172
1173 *
1174 * The <code>run</code> function does the same things as in @ref step_6 "step-6", for
1175 * example. This time, we use the square [-1,1]^d as domain, and we refine
1176 * it globally four times before starting the first iteration.
1177 *
1178
1179 *
1180 * The reason for refining is a bit accidental: we use the QGauss
1181 * quadrature formula with two points in each direction for integration of the
1182 * right hand side; that means that there are four quadrature points on each
1183 * cell (in 2d). If we only refine the initial grid once globally, then there
1184 * will be only four quadrature points in each direction on the
1185 * domain. However, the right hand side function was chosen to be rather
1186 * localized and in that case, by pure chance, it happens that all quadrature
1187 * points lie at points where the right hand side function is zero (in
1188 * mathematical terms, the quadrature points happen to be at points outside
1189 * the <i>support</i> of the right hand side function). The right hand side
1190 * vector computed with quadrature will then contain only zeroes (even though
1191 * it would of course be nonzero if we had computed the right hand side vector
1192 * exactly using the integral) and the solution of the system of
1193 * equations is the zero vector, i.e., a finite element function that is zero
1194 * everywhere. In a sense, we
1195 * should not be surprised that this is happening since we have chosen
1196 * an initial grid that is totally unsuitable for the problem at hand.
1197 *
1198
1199 *
1200 * The unfortunate thing is that if the discrete solution is constant, then
1201 * the error indicators computed by the KellyErrorEstimator class are zero
1202 * for each cell as well, and the call to
1203 * Triangulation::refine_and_coarsen_fixed_number() will not flag any cells
1204 * for refinement (why should it if the indicated error is zero for each
1205 * cell?). The grid in the next iteration will therefore consist of four
1206 * cells only as well, and the same problem occurs again.
1207 *
1208
1209 *
1210 * The conclusion needs to be: while of course we will not choose the
1211 * initial grid to be well-suited for the accurate solution of the problem,
1212 * we must at least choose it such that it has the chance to capture the
1213 * important features of the solution. In this case, it needs to be able to
1214 * see the right hand side. Thus, we refine globally four times. (Any larger
1215 * number of global refinement steps would of course also work.)
1216 *
1217 * @code
1218 *   template <int dim>
1219 *   void ElasticProblem<dim>::run()
1220 *   {
1221 *   for (unsigned int cycle = 0; cycle < 8; ++cycle)
1222 *   {
1223 *   std::cout << "Cycle " << cycle << ':' << std::endl;
1224 *  
1225 *   if (cycle == 0)
1226 *   {
1228 *   triangulation.refine_global(4);
1229 *   }
1230 *   else
1231 *   refine_grid();
1232 *  
1233 *   std::cout << " Number of active cells: "
1234 *   << triangulation.n_active_cells() << std::endl;
1235 *  
1236 *   setup_system();
1237 *  
1238 *   std::cout << " Number of degrees of freedom: " << dof_handler.n_dofs()
1239 *   << std::endl;
1240 *  
1241 *   assemble_system();
1242 *   solve();
1243 *   output_results(cycle);
1244 *   }
1245 *   }
1246 *   } // namespace Step8
1247 *  
1248 * @endcode
1249 *
1250 *
1251 * <a name="step_8-Thecodemaincodefunction"></a>
1252 * <h3>The <code>main</code> function</h3>
1253 *
1254
1255 *
1256 * After closing the <code>Step8</code> namespace in the last line above, the
1257 * following is the main function of the program and is again exactly like in
1258 * @ref step_6 "step-6" (apart from the changed class names, of course).
1259 *
1260 * @code
1261 *   int main()
1262 *   {
1263 *   try
1264 *   {
1265 *   Step8::ElasticProblem<2> elastic_problem_2d;
1266 *   elastic_problem_2d.run();
1267 *   }
1268 *   catch (std::exception &exc)
1269 *   {
1270 *   std::cerr << std::endl
1271 *   << std::endl
1272 *   << "----------------------------------------------------"
1273 *   << std::endl;
1274 *   std::cerr << "Exception on processing: " << std::endl
1275 *   << exc.what() << std::endl
1276 *   << "Aborting!" << std::endl
1277 *   << "----------------------------------------------------"
1278 *   << std::endl;
1279 *  
1280 *   return 1;
1281 *   }
1282 *   catch (...)
1283 *   {
1284 *   std::cerr << std::endl
1285 *   << std::endl
1286 *   << "----------------------------------------------------"
1287 *   << std::endl;
1288 *   std::cerr << "Unknown exception!" << std::endl
1289 *   << "Aborting!" << std::endl
1290 *   << "----------------------------------------------------"
1291 *   << std::endl;
1292 *   return 1;
1293 *   }
1294 *  
1295 *   return 0;
1296 *   }
1297 * @endcode
1298<a name="step_8-Results"></a><h1>Results</h1>
1299
1300
1301
1302There is not much to be said about the results of this program, other than
1303that they look nice. All images were made using VisIt from the
1304output files that the program wrote to disk. The first two pictures show
1305the @f$x@f$- and @f$y@f$-displacements as scalar components:
1306
1307<table width="100%">
1308<tr>
1309<td>
1310<img src="https://www.dealii.org/images/steps/developer/step-8.x.png" alt="">
1311</td>
1312<td>
1313<img src="https://www.dealii.org/images/steps/developer/step-8.y.png" alt="">
1314</td>
1315</tr>
1316</table>
1317
1318
1319You can clearly see the sources of @f$x@f$-displacement around @f$x=0.5@f$ and
1320@f$x=-0.5@f$, and of @f$y@f$-displacement at the origin.
1321
1322What one frequently would like to do is to show the displacement as a vector
1323field, i.e., vectors that for each point illustrate the direction and magnitude
1324of displacement. Unfortunately, that's a bit more involved. To understand why
1325this is so, remember that we have just defined our finite element as a
1326collection of two components (in <code>dim=2</code> dimensions). Nowhere have
1327we said that this is not just a pressure and a concentration (two scalar
1328quantities) but that the two components actually are the parts of a
1329vector-valued quantity, namely the displacement. Absent this knowledge, the
1330DataOut class assumes that all individual variables we print are separate
1331scalars, and VisIt and Paraview then faithfully assume that this is indeed what it is. In
1332other words, once we have written the data as scalars, there is nothing in
1333these programs that allows us to paste these two scalar fields back together as a
1334vector field. Where we would have to attack this problem is at the root,
1335namely in <code>ElasticProblem::output_results()</code>. We won't do so here but
1336instead refer the reader to the @ref step_22 "step-22" program where we show how to do this
1337for a more general situation. That said, we couldn't help generating the data
1338anyway that would show how this would look if implemented as discussed in
1339@ref step_22 "step-22". The vector field then looks like this (VisIt and Paraview
1340randomly select a few
1341hundred vertices from which to draw the vectors; drawing them from each
1342individual vertex would make the picture unreadable):
1343
1344<img src="https://www.dealii.org/images/steps/developer/step-8.vectors.png" alt="">
1345
1346
1347We note that one may have intuitively expected the
1348solution to be symmetric about the @f$x@f$- and @f$y@f$-axes since the @f$x@f$- and
1349@f$y@f$-forces are symmetric with respect to these axes. However, the force
1350considered as a vector is not symmetric and consequently neither is
1351the solution.
1352 *
1353 *
1354<a name="step_8-PlainProg"></a>
1355<h1> The plain program</h1>
1356@include "step-8.cc"
1357*/
void attach_dof_handler(const DoFHandler< dim, spacedim > &)
static void estimate(const Mapping< dim, spacedim > &mapping, const DoFHandler< dim, spacedim > &dof, const Quadrature< dim - 1 > &quadrature, const std::map< types::boundary_id, const Function< spacedim, Number > * > &neumann_bc, const ReadVector< Number > &solution, Vector< float > &error, const ComponentMask &component_mask={}, const Function< spacedim > *coefficients=nullptr, const unsigned int n_threads=numbers::invalid_unsigned_int, const types::subdomain_id subdomain_id=numbers::invalid_subdomain_id, const types::material_id material_id=numbers::invalid_material_id, const Strategy strategy=cell_diameter_over_24)
void initialize(const MatrixType &A, const AdditionalData &parameters=AdditionalData())
Point< 2 > second
Definition grid_out.cc:4630
Point< 2 > first
Definition grid_out.cc:4629
#define Assert(cond, exc)
void loop(IteratorType begin, std_cxx20::type_identity_t< IteratorType > end, DOFINFO &dinfo, INFOBOX &info, const std::function< void(std_cxx20::type_identity_t< DOFINFO > &, typename INFOBOX::CellInfo &)> &cell_worker, const std::function< void(std_cxx20::type_identity_t< DOFINFO > &, typename INFOBOX::CellInfo &)> &boundary_worker, const std::function< void(std_cxx20::type_identity_t< DOFINFO > &, std_cxx20::type_identity_t< DOFINFO > &, typename INFOBOX::CellInfo &, typename INFOBOX::CellInfo &)> &face_worker, AssemblerType &assembler, const LoopControl &lctrl=LoopControl())
Definition loop.h:564
@ update_values
Shape function values.
@ update_JxW_values
Transformed quadrature weights.
@ update_gradients
Shape function gradients.
@ update_quadrature_points
Transformed quadrature points.
#define DEAL_II_NOT_IMPLEMENTED()
std::vector< index_type > data
Definition mpi.cc:735
const Event initial
Definition event.cc:64
void hyper_cube(Triangulation< dim, spacedim > &tria, const double left=0., const double right=1., const bool colorize=false)
void refine(Triangulation< dim, spacedim > &tria, const Vector< Number > &criteria, const double threshold, const unsigned int max_to_mark=numbers::invalid_unsigned_int)
void refine_and_coarsen_fixed_number(Triangulation< dim, spacedim > &triangulation, const Vector< Number > &criteria, const double top_fraction_of_cells, const double bottom_fraction_of_cells, const unsigned int max_n_cells=std::numeric_limits< unsigned int >::max())
@ matrix
Contents is actually a matrix.
@ symmetric
Matrix is symmetric.
@ general
No special properties.
void cell_matrix(FullMatrix< double > &M, const FEValuesBase< dim > &fe, const FEValuesBase< dim > &fetest, const ArrayView< const std::vector< double > > &velocity, const double factor=1.)
Definition advection.h:74
Point< spacedim > point(const gp_Pnt &p, const double tolerance=1e-10)
Definition utilities.cc:191
SymmetricTensor< 2, dim, Number > d(const Tensor< 2, dim, Number > &F, const Tensor< 2, dim, Number > &dF_dt)
VectorType::value_type * begin(VectorType &V)
void run(const Iterator &begin, const std_cxx20::type_identity_t< Iterator > &end, Worker worker, Copier copier, const ScratchData &sample_scratch_data, const CopyData &sample_copy_data, const unsigned int queue_length, const unsigned int chunk_size)
int(&) functions(const void *v1, const void *v2)
void assemble(const MeshWorker::DoFInfoBox< dim, DOFINFO > &dinfo, A *assembler)
Definition loop.h:70
void reinit(MatrixBlock< MatrixType > &v, const BlockSparsityPattern &p)
const ::parallel::distributed::Triangulation< dim, spacedim > * triangulation