1625 * dof_handler.distribute_dofs(fe);
1627 * locally_owned_dofs = dof_handler.locally_owned_dofs();
1628 * locally_relevant_dofs =
1635 * constraints_hanging_nodes.reinit(locally_owned_dofs,
1636 * locally_relevant_dofs);
1638 * constraints_hanging_nodes);
1639 * constraints_hanging_nodes.close();
1641 * pcout <<
" Number of active cells: "
1643 * <<
" Number of degrees of freedom: " << dof_handler.n_dofs()
1646 * compute_dirichlet_constraints();
1652 * solution.reinit(locally_relevant_dofs, mpi_communicator);
1653 * newton_rhs.reinit(locally_owned_dofs, mpi_communicator);
1654 * newton_rhs_uncondensed.reinit(locally_owned_dofs, mpi_communicator);
1655 * diag_mass_matrix_vector.reinit(locally_owned_dofs, mpi_communicator);
1656 * fraction_of_plastic_q_points_per_cell.reinit(
1659 * active_set.clear();
1660 * active_set.set_size(dof_handler.n_dofs());
1665 * Finally, we set up sparsity patterns and matrices.
1666 * We temporarily (ab)use the system
matrix to also build the (diagonal)
1667 *
matrix that we use in eliminating degrees of freedom that are in contact
1668 * with the obstacle, but we then immediately set the Newton
matrix back
1675 * mpi_communicator);
1679 * constraints_dirichlet_and_hanging_nodes,
1682 * mpi_communicator));
1684 * newton_matrix.reinit(sp);
1689 * assemble_mass_matrix_diagonal(mass_matrix);
1691 *
const unsigned int start = (newton_rhs.local_range().first),
1692 * end = (newton_rhs.local_range().second);
1693 *
for (
unsigned int j = start; j <
end; ++j)
1694 * diag_mass_matrix_vector(j) =
mass_matrix.diag_element(j);
1705 * <a name=
"step_42-PlasticityContactProblemcompute_dirichlet_constraints"></a>
1706 * <h4>PlasticityContactProblem::compute_dirichlet_constraints</h4>
1710 * This function, broken out of the preceding one, computes the constraints
1711 * associated with Dirichlet-type boundary conditions and puts them into the
1712 * <code>constraints_dirichlet_and_hanging_nodes</code> variable by merging
1713 * with the constraints that come from hanging nodes.
1717 * As laid out in the introduction, we need to distinguish between two
1719 * - If the domain is a box, we set the displacement to zero at the bottom,
1720 * and allow vertical movement in z-direction along the sides. As
1721 * shown in the <code>make_grid()</code> function, the former corresponds
1722 * to boundary indicator 6, the latter to 8.
1723 * - If the domain is a half sphere, then we impose zero displacement along
1724 * the curved part of the boundary, associated with boundary indicator zero.
1727 *
template <
int dim>
1728 *
void PlasticityContactProblem<dim>::compute_dirichlet_constraints()
1730 * constraints_dirichlet_and_hanging_nodes.reinit(locally_owned_dofs,
1731 * locally_relevant_dofs);
1732 * constraints_dirichlet_and_hanging_nodes.merge(constraints_hanging_nodes);
1734 *
if (base_mesh ==
"box")
1744 * EquationData::BoundaryValues<dim>(),
1745 * constraints_dirichlet_and_hanging_nodes,
1751 * solution (
this is a bit mask, so apply
1760 * EquationData::BoundaryValues<dim>(),
1761 * constraints_dirichlet_and_hanging_nodes,
1762 * (fe.component_mask(x_displacement) |
1763 * fe.component_mask(y_displacement)));
1769 * EquationData::BoundaryValues<dim>(),
1770 * constraints_dirichlet_and_hanging_nodes,
1773 * constraints_dirichlet_and_hanging_nodes.close();
1781 * <a name=
"step_42-PlasticityContactProblemassemble_mass_matrix_diagonal"></a>
1782 * <h4>PlasticityContactProblem::assemble_mass_matrix_diagonal</h4>
1786 * The next helper function computes the (diagonal) @ref GlossMassMatrix
"mass matrix" that
1787 * is used to determine the active set of the active set method we use in
1788 * the contact algorithm. This
matrix is of mass
matrix type, but unlike
1789 * the standard mass
matrix, we can make it
diagonal (even in the
case of
1790 * higher order elements) by
using a quadrature formula that has its
1791 * quadrature points at exactly the same locations as the interpolation points
1792 *
for the finite element are located. We achieve
this by
using a
1793 *
QGaussLobatto quadrature formula here, along with initializing the finite
1794 * element with a set of interpolation points derived from the same quadrature
1795 * formula. The remainder of the function is relatively straightforward: we
1796 * put the resulting
matrix into the given argument; because we know the
1798 * not over @f$j@f$. Strictly speaking, we could even avoid multiplying the
1799 * shape function
's values at quadrature point <code>q_point</code> by itself
1800 * because we know the shape value to be a vector with exactly one one which
1801 * when dotted with itself yields one. Since this function is not time
1802 * critical we add this term for clarity.
1805 * template <int dim>
1806 * void PlasticityContactProblem<dim>::assemble_mass_matrix_diagonal(
1807 * TrilinosWrappers::SparseMatrix &mass_matrix)
1809 * const QGaussLobatto<dim - 1> face_quadrature_formula(fe.degree + 1);
1811 * FEFaceValues<dim> fe_values_face(fe,
1812 * face_quadrature_formula,
1813 * update_values | update_JxW_values);
1815 * const unsigned int dofs_per_cell = fe.n_dofs_per_cell();
1816 * const unsigned int n_face_q_points = face_quadrature_formula.size();
1818 * FullMatrix<double> cell_matrix(dofs_per_cell, dofs_per_cell);
1819 * std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
1821 * const FEValuesExtractors::Vector displacement(0);
1823 * for (const auto &cell : dof_handler.active_cell_iterators())
1824 * if (cell->is_locally_owned())
1825 * for (const auto &face : cell->face_iterators())
1826 * if (face->at_boundary() && face->boundary_id() == 1)
1828 * fe_values_face.reinit(cell, face);
1831 * for (unsigned int q_point = 0; q_point < n_face_q_points;
1833 * for (unsigned int i = 0; i < dofs_per_cell; ++i)
1834 * cell_matrix(i, i) +=
1835 * (fe_values_face[displacement].value(i, q_point) *
1836 * fe_values_face[displacement].value(i, q_point) *
1837 * fe_values_face.JxW(q_point));
1839 * cell->get_dof_indices(local_dof_indices);
1841 * for (unsigned int i = 0; i < dofs_per_cell; ++i)
1842 * mass_matrix.add(local_dof_indices[i],
1843 * local_dof_indices[i],
1844 * cell_matrix(i, i));
1846 * mass_matrix.compress(VectorOperation::add);
1853 * <a name="step_42-PlasticityContactProblemupdate_solution_and_constraints"></a>
1854 * <h4>PlasticityContactProblem::update_solution_and_constraints</h4>
1858 * The following function is the first function we call in each Newton
1859 * iteration in the <code>solve_newton()</code> function. What it does is
1860 * to project the solution onto the feasible set and update the active set
1861 * for the degrees of freedom that touch or penetrate the obstacle.
1865 * In order to function, we first need to do some bookkeeping: We need
1866 * to write into the solution vector (which we can only do with fully
1867 * distributed vectors without ghost elements) and we need to read
1868 * the Lagrange multiplier and the elements of the diagonal mass matrix
1869 * from their respective vectors (which we can only do with vectors that
1870 * do have ghost elements), so we create the respective vectors. We then
1871 * also initialize the constraints object that will contain constraints
1872 * from contact and all other sources, as well as an object that contains
1873 * an index set of all locally owned degrees of freedom that are part of
1877 * template <int dim>
1878 * void PlasticityContactProblem<dim>::update_solution_and_constraints()
1880 * std::vector<bool> dof_touched(dof_handler.n_dofs(), false);
1882 * TrilinosWrappers::MPI::Vector distributed_solution(locally_owned_dofs,
1883 * mpi_communicator);
1884 * distributed_solution = solution;
1886 * TrilinosWrappers::MPI::Vector lambda(locally_relevant_dofs,
1887 * mpi_communicator);
1888 * lambda = newton_rhs_uncondensed;
1890 * TrilinosWrappers::MPI::Vector diag_mass_matrix_vector_relevant(
1891 * locally_relevant_dofs, mpi_communicator);
1892 * diag_mass_matrix_vector_relevant = diag_mass_matrix_vector;
1895 * all_constraints.reinit(locally_owned_dofs, locally_relevant_dofs);
1896 * active_set.clear();
1900 * The second part is a loop over all cells in which we look at each
1901 * point where a degree of freedom is defined whether the active set
1902 * condition is true and we need to add this degree of freedom to
1903 * the active set of contact nodes. As we always do, if we want to
1904 * evaluate functions at individual points, we do this with an
1905 * FEValues object (or, here, an FEFaceValues object since we need to
1906 * check contact at the surface) with an appropriately chosen quadrature
1907 * object. We create this face quadrature object by choosing the
1908 * "support points" of the shape functions defined on the faces
1909 * of cells (for more on support points, see this
1910 * @ref GlossSupport "glossary entry"). As a consequence, we have as
1911 * many quadrature points as there are shape functions per face and
1912 * looping over quadrature points is equivalent to looping over shape
1913 * functions defined on a face. With this, the code looks as follows:
1916 * const Quadrature<dim - 1> face_quadrature(
1917 * fe.get_unit_face_support_points());
1918 * FEFaceValues<dim> fe_values_face(fe,
1920 * update_quadrature_points);
1922 * const unsigned int dofs_per_face = fe.n_dofs_per_face();
1923 * const unsigned int n_face_q_points = face_quadrature.size();
1925 * std::vector<types::global_dof_index> dof_indices(dofs_per_face);
1927 * for (const auto &cell : dof_handler.active_cell_iterators())
1928 * if (!cell->is_artificial())
1929 * for (const auto &face : cell->face_iterators())
1930 * if (face->at_boundary() && face->boundary_id() == 1)
1932 * fe_values_face.reinit(cell, face);
1933 * face->get_dof_indices(dof_indices);
1935 * for (unsigned int q_point = 0; q_point < n_face_q_points;
1940 * At each quadrature point (i.e., at each support point of a
1941 * degree of freedom located on the contact boundary), we then
1942 * ask whether it is part of the z-displacement degrees of
1943 * freedom and if we haven't encountered
this degree of
1944 * freedom yet (which can happen
for those on the edges
1945 * between faces), we need to evaluate the gap between the
1946 * deformed
object and the obstacle. If the active set
1947 * condition is
true, then we add a constraint to the
1949 * to satisfy, set the solution vector
's corresponding element
1950 * to the correct value, and add the index to the IndexSet
1951 * object that stores which degree of freedom is part of the
1955 * const unsigned int component =
1956 * fe.face_system_to_component_index(q_point).first;
1958 * const unsigned int index_z = dof_indices[q_point];
1960 * if ((component == 2) && (dof_touched[index_z] == false))
1962 * dof_touched[index_z] = true;
1964 * const Point<dim> this_support_point =
1965 * fe_values_face.quadrature_point(q_point);
1967 * const double obstacle_value =
1968 * obstacle->value(this_support_point, 2);
1969 * const double solution_here = solution(index_z);
1970 * const double undeformed_gap =
1971 * obstacle_value - this_support_point[2];
1973 * const double c = 100.0 * e_modulus;
1974 * if ((lambda(index_z) /
1975 * diag_mass_matrix_vector_relevant(index_z) +
1976 * c * (solution_here - undeformed_gap) >
1978 * !constraints_hanging_nodes.is_constrained(index_z))
1980 * all_constraints.add_constraint(index_z,
1983 * distributed_solution(index_z) = undeformed_gap;
1985 * active_set.add_index(index_z);
1993 * At the end of this function, we exchange data between processors updating
1994 * those ghost elements in the <code>solution</code> variable that have been
1995 * written by other processors. We then merge the Dirichlet constraints and
1996 * those from hanging nodes into the AffineConstraints object that already
1997 * contains the active set. We finish the function by outputting the total
1998 * number of actively constrained degrees of freedom for which we sum over
1999 * the number of actively constrained degrees of freedom owned by each
2000 * of the processors. This number of locally owned constrained degrees of
2001 * freedom is of course the number of elements of the intersection of the
2002 * active set and the set of locally owned degrees of freedom, which
2003 * we can get by using <code>operator&</code> on two IndexSets:
2006 * distributed_solution.compress(VectorOperation::insert);
2007 * solution = distributed_solution;
2009 * all_constraints.close();
2010 * all_constraints.merge(constraints_dirichlet_and_hanging_nodes);
2012 * pcout << " Size of active set: "
2013 * << Utilities::MPI::sum((active_set & locally_owned_dofs).n_elements(),
2022 * <a name="step_42-PlasticityContactProblemassemble_newton_system"></a>
2023 * <h4>PlasticityContactProblem::assemble_newton_system</h4>
2027 * Given the complexity of the problem, it may come as a bit of a surprise
2028 * that assembling the linear system we have to solve in each Newton iteration
2029 * is actually fairly straightforward. The following function builds the
2030 * Newton right hand side and Newton matrix. It looks fairly innocent because
2031 * the heavy lifting happens in the call to
2032 * <code>ConstitutiveLaw::get_linearized_stress_strain_tensors()</code> and in
2033 * particular in AffineConstraints::distribute_local_to_global(), using the
2034 * constraints we have previously computed.
2037 * template <int dim>
2038 * void PlasticityContactProblem<dim>::assemble_newton_system(
2039 * const TrilinosWrappers::MPI::Vector &linearization_point)
2041 * TimerOutput::Scope t(computing_timer, "Assembling");
2043 * const QGauss<dim> quadrature_formula(fe.degree + 1);
2044 * const QGauss<dim - 1> face_quadrature_formula(fe.degree + 1);
2046 * FEValues<dim> fe_values(fe,
2047 * quadrature_formula,
2048 * update_values | update_gradients |
2049 * update_JxW_values);
2051 * FEFaceValues<dim> fe_values_face(fe,
2052 * face_quadrature_formula,
2053 * update_values | update_quadrature_points |
2054 * update_JxW_values);
2056 * const unsigned int dofs_per_cell = fe.n_dofs_per_cell();
2057 * const unsigned int n_q_points = quadrature_formula.size();
2058 * const unsigned int n_face_q_points = face_quadrature_formula.size();
2060 * const EquationData::BoundaryForce<dim> boundary_force;
2061 * std::vector<Vector<double>> boundary_force_values(n_face_q_points,
2062 * Vector<double>(dim));
2064 * FullMatrix<double> cell_matrix(dofs_per_cell, dofs_per_cell);
2065 * Vector<double> cell_rhs(dofs_per_cell);
2067 * std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
2069 * const FEValuesExtractors::Vector displacement(0);
2071 * for (const auto &cell : dof_handler.active_cell_iterators())
2072 * if (cell->is_locally_owned())
2074 * fe_values.reinit(cell);
2078 * std::vector<SymmetricTensor<2, dim>> strain_tensor(n_q_points);
2079 * fe_values[displacement].get_function_symmetric_gradients(
2080 * linearization_point, strain_tensor);
2082 * for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)
2084 * SymmetricTensor<4, dim> stress_strain_tensor_linearized;
2085 * SymmetricTensor<4, dim> stress_strain_tensor;
2086 * constitutive_law.get_linearized_stress_strain_tensors(
2087 * strain_tensor[q_point],
2088 * stress_strain_tensor_linearized,
2089 * stress_strain_tensor);
2091 * for (unsigned int i = 0; i < dofs_per_cell; ++i)
2095 * Having computed the stress-strain tensor and its
2096 * linearization, we can now put together the parts of the
2097 * matrix and right hand side. In both, we need the linearized
2098 * stress-strain tensor times the symmetric gradient of
2099 * @f$\varphi_i@f$, i.e. the term @f$I_\Pi\varepsilon(\varphi_i)@f$,
2100 * so we introduce an abbreviation of this term. Recall that
2101 * the matrix corresponds to the bilinear form
2102 * @f$A_{ij}=(I_\Pi\varepsilon(\varphi_i),\varepsilon(\varphi_j))@f$
2103 * in the notation of the accompanying publication, whereas
2104 * the right hand side is @f$F_i=([I_\Pi-P_\Pi
2105 * C]\varepsilon(\varphi_i),\varepsilon(\mathbf u))@f$ where @f$u@f$
2106 * is the current linearization points (typically the last
2107 * solution). This might suggest that the right hand side will
2108 * be zero if the material is completely elastic (where
2109 * @f$I_\Pi=P_\Pi@f$) but this ignores the fact that the right
2110 * hand side will also contain contributions from
2111 * non-homogeneous constraints due to the contact.
2115 * The code block that follows this adds contributions that
2116 * are due to boundary forces, should there be any.
2119 * const SymmetricTensor<2, dim> stress_phi_i =
2120 * stress_strain_tensor_linearized *
2121 * fe_values[displacement].symmetric_gradient(i, q_point);
2123 * for (unsigned int j = 0; j < dofs_per_cell; ++j)
2124 * cell_matrix(i, j) +=
2126 * fe_values[displacement].symmetric_gradient(j, q_point) *
2127 * fe_values.JxW(q_point));
2131 * stress_strain_tensor *
2132 * fe_values[displacement].symmetric_gradient(i,
2134 * strain_tensor[q_point] * fe_values.JxW(q_point));
2138 * for (const auto &face : cell->face_iterators())
2139 * if (face->at_boundary() && face->boundary_id() == 1)
2141 * fe_values_face.reinit(cell, face);
2143 * boundary_force.vector_value_list(
2144 * fe_values_face.get_quadrature_points(),
2145 * boundary_force_values);
2147 * for (unsigned int q_point = 0; q_point < n_face_q_points;
2150 * Tensor<1, dim> rhs_values;
2151 * rhs_values[2] = boundary_force_values[q_point][2];
2152 * for (unsigned int i = 0; i < dofs_per_cell; ++i)
2154 * (fe_values_face[displacement].value(i, q_point) *
2155 * rhs_values * fe_values_face.JxW(q_point));
2159 * cell->get_dof_indices(local_dof_indices);
2160 * all_constraints.distribute_local_to_global(cell_matrix,
2162 * local_dof_indices,
2168 * newton_matrix.compress(VectorOperation::add);
2169 * newton_rhs.compress(VectorOperation::add);
2177 * <a name="step_42-PlasticityContactProblemcompute_nonlinear_residual"></a>
2178 * <h4>PlasticityContactProblem::compute_nonlinear_residual</h4>
2182 * The following function computes the nonlinear residual of the equation
2183 * given the current solution (or any other linearization point). This
2184 * is needed in the linear search algorithm where we need to try various
2185 * linear combinations of previous and current (trial) solution to
2186 * compute the (real, globalized) solution of the current Newton step.
2190 * That said, in a slight abuse of the name of the function, it actually
2191 * does significantly more. For example, it also computes the vector
2192 * that corresponds to the Newton residual but without eliminating
2193 * constrained degrees of freedom. We need this vector to compute contact
2194 * forces and, ultimately, to compute the next active set. Likewise, by
2195 * keeping track of how many quadrature points we encounter on each cell
2196 * that show plastic yielding, we also compute the
2197 * <code>fraction_of_plastic_q_points_per_cell</code> vector that we
2198 * can later output to visualize the plastic zone. In both of these cases,
2199 * the results are not necessary as part of the line search, and so we may
2200 * be wasting a small amount of time computing them. At the same time, this
2201 * information appears as a natural by-product of what we need to do here
2202 * anyway, and we want to collect it once at the end of each Newton
2203 * step, so we may as well do it here.
2207 * The actual implementation of this function should be rather obvious:
2210 * template <int dim>
2211 * void PlasticityContactProblem<dim>::compute_nonlinear_residual(
2212 * const TrilinosWrappers::MPI::Vector &linearization_point)
2214 * const QGauss<dim> quadrature_formula(fe.degree + 1);
2215 * const QGauss<dim - 1> face_quadrature_formula(fe.degree + 1);
2217 * FEValues<dim> fe_values(fe,
2218 * quadrature_formula,
2219 * update_values | update_gradients |
2220 * update_JxW_values);
2222 * FEFaceValues<dim> fe_values_face(fe,
2223 * face_quadrature_formula,
2224 * update_values | update_quadrature_points |
2225 * update_JxW_values);
2227 * const unsigned int dofs_per_cell = fe.n_dofs_per_cell();
2228 * const unsigned int n_q_points = quadrature_formula.size();
2229 * const unsigned int n_face_q_points = face_quadrature_formula.size();
2231 * const EquationData::BoundaryForce<dim> boundary_force;
2232 * std::vector<Vector<double>> boundary_force_values(n_face_q_points,
2233 * Vector<double>(dim));
2235 * Vector<double> cell_rhs(dofs_per_cell);
2237 * std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
2239 * const FEValuesExtractors::Vector displacement(0);
2242 * newton_rhs_uncondensed = 0;
2244 * fraction_of_plastic_q_points_per_cell = 0;
2246 * for (const auto &cell : dof_handler.active_cell_iterators())
2247 * if (cell->is_locally_owned())
2249 * fe_values.reinit(cell);
2252 * std::vector<SymmetricTensor<2, dim>> strain_tensors(n_q_points);
2253 * fe_values[displacement].get_function_symmetric_gradients(
2254 * linearization_point, strain_tensors);
2256 * for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)
2258 * SymmetricTensor<4, dim> stress_strain_tensor;
2259 * const bool q_point_is_plastic =
2260 * constitutive_law.get_stress_strain_tensor(
2261 * strain_tensors[q_point], stress_strain_tensor);
2262 * if (q_point_is_plastic)
2263 * ++fraction_of_plastic_q_points_per_cell(
2264 * cell->active_cell_index());
2266 * for (unsigned int i = 0; i < dofs_per_cell; ++i)
2269 * (strain_tensors[q_point] * stress_strain_tensor *
2270 * fe_values[displacement].symmetric_gradient(i, q_point) *
2271 * fe_values.JxW(q_point));
2273 * Tensor<1, dim> rhs_values;
2275 * cell_rhs(i) += (fe_values[displacement].value(i, q_point) *
2276 * rhs_values * fe_values.JxW(q_point));
2280 * for (const auto &face : cell->face_iterators())
2281 * if (face->at_boundary() && face->boundary_id() == 1)
2283 * fe_values_face.reinit(cell, face);
2285 * boundary_force.vector_value_list(
2286 * fe_values_face.get_quadrature_points(),
2287 * boundary_force_values);
2289 * for (unsigned int q_point = 0; q_point < n_face_q_points;
2292 * Tensor<1, dim> rhs_values;
2293 * rhs_values[2] = boundary_force_values[q_point][2];
2294 * for (unsigned int i = 0; i < dofs_per_cell; ++i)
2296 * (fe_values_face[displacement].value(i, q_point) *
2297 * rhs_values * fe_values_face.JxW(q_point));
2301 * cell->get_dof_indices(local_dof_indices);
2302 * constraints_dirichlet_and_hanging_nodes.distribute_local_to_global(
2303 * cell_rhs, local_dof_indices, newton_rhs);
2305 * for (unsigned int i = 0; i < dofs_per_cell; ++i)
2306 * newton_rhs_uncondensed(local_dof_indices[i]) += cell_rhs(i);
2309 * fraction_of_plastic_q_points_per_cell /= quadrature_formula.size();
2310 * newton_rhs.compress(VectorOperation::add);
2311 * newton_rhs_uncondensed.compress(VectorOperation::add);
2319 * <a name="step_42-PlasticityContactProblemsolve_newton_system"></a>
2320 * <h4>PlasticityContactProblem::solve_newton_system</h4>
2324 * The last piece before we can discuss the actual Newton iteration
2325 * on a single mesh is the solver for the linear systems. There are
2326 * a couple of complications that slightly obscure the code, but
2327 * mostly it is just setup then solve. Among the complications are:
2331 * - For the hanging nodes we have to apply
2332 * the AffineConstraints::set_zero function to newton_rhs.
2333 * This is necessary if a hanging node with solution value @f$x_0@f$
2334 * has one neighbor with value @f$x_1@f$ which is in contact with the
2335 * obstacle and one neighbor @f$x_2@f$ which is not in contact. Because
2336 * the update for the former will be prescribed, the hanging node constraint
2337 * will have an inhomogeneity and will look like @f$x_0 = x_1/2 +
2338 * \text{gap}/2@f$. So the corresponding entries in the right-hand-side are
2339 * non-zero with a meaningless value. These values we have to set to zero.
2340 * - Like in @ref step_40 "step-40", we need to shuffle between vectors that do and do
2341 * not have ghost elements when solving or using the solution.
2345 * The rest of the function is similar to @ref step_40 "step-40" and
2346 * @ref step_41 "step-41" except that we use a BiCGStab solver
2347 * instead of CG. This is due to the fact that for very small hardening
2348 * parameters @f$\gamma@f$, the linear system becomes almost semidefinite though
2349 * still symmetric. BiCGStab appears to have an easier time with such linear
2353 * template <int dim>
2354 * void PlasticityContactProblem<dim>::solve_newton_system()
2356 * TimerOutput::Scope t(computing_timer, "Solve");
2358 * TrilinosWrappers::MPI::Vector distributed_solution(locally_owned_dofs,
2359 * mpi_communicator);
2360 * distributed_solution = solution;
2362 * constraints_hanging_nodes.set_zero(distributed_solution);
2363 * constraints_hanging_nodes.set_zero(newton_rhs);
2365 * TrilinosWrappers::PreconditionAMG preconditioner;
2367 * TimerOutput::Scope t(computing_timer, "Solve: setup preconditioner");
2369 * const std::vector<std::vector<bool>> constant_modes =
2370 * DoFTools::extract_constant_modes(dof_handler);
2372 * TrilinosWrappers::PreconditionAMG::AdditionalData additional_data;
2373 * additional_data.constant_modes = constant_modes;
2374 * additional_data.elliptic = true;
2375 * additional_data.n_cycles = 1;
2376 * additional_data.w_cycle = false;
2377 * additional_data.output_details = false;
2378 * additional_data.smoother_sweeps = 2;
2379 * additional_data.aggregation_threshold = 1e-2;
2381 * preconditioner.initialize(newton_matrix, additional_data);
2385 * TimerOutput::Scope t(computing_timer, "Solve: iterate");
2387 * TrilinosWrappers::MPI::Vector tmp(locally_owned_dofs, mpi_communicator);
2389 * const double relative_accuracy = 1e-8;
2390 * const double solver_tolerance =
2391 * relative_accuracy *
2392 * newton_matrix.residual(tmp, distributed_solution, newton_rhs);
2394 * SolverControl solver_control(newton_matrix.m(), solver_tolerance);
2395 * SolverBicgstab<TrilinosWrappers::MPI::Vector> solver(solver_control);
2396 * solver.solve(newton_matrix,
2397 * distributed_solution,
2401 * pcout << " Error: " << solver_control.initial_value() << " -> "
2402 * << solver_control.last_value() << " in "
2403 * << solver_control.last_step() << " Bicgstab iterations."
2407 * all_constraints.distribute(distributed_solution);
2409 * solution = distributed_solution;
2416 * <a name="step_42-PlasticityContactProblemsolve_newton"></a>
2417 * <h4>PlasticityContactProblem::solve_newton</h4>
2421 * This is, finally, the function that implements the damped Newton method
2422 * on the current mesh. There are two nested loops: the outer loop for the
2423 * Newton iteration and the inner loop for the line search which will be used
2424 * only if necessary. To obtain a good and reasonable starting value we solve
2425 * an elastic problem in the very first Newton step on each mesh (or only on
2426 * the first mesh if we transfer solutions between meshes). We do so by
2427 * setting the yield stress to an unreasonably large value in these iterations
2428 * and then setting it back to the correct value in subsequent iterations.
2432 * Other than this, the top part of this function should be
2433 * reasonably obvious. We initialize the variable
2434 * <code>previous_residual_norm</code> to the most negative value
2435 * representable with double precision numbers so that the
2436 * comparison whether the current residual is less than that of the
2437 * previous step will always fail in the first step.
2440 * template <int dim>
2441 * void PlasticityContactProblem<dim>::solve_newton()
2443 * TrilinosWrappers::MPI::Vector old_solution(locally_owned_dofs,
2444 * mpi_communicator);
2445 * TrilinosWrappers::MPI::Vector residual(locally_owned_dofs,
2446 * mpi_communicator);
2447 * TrilinosWrappers::MPI::Vector tmp_vector(locally_owned_dofs,
2448 * mpi_communicator);
2449 * TrilinosWrappers::MPI::Vector locally_relevant_tmp_vector(
2450 * locally_relevant_dofs, mpi_communicator);
2451 * TrilinosWrappers::MPI::Vector distributed_solution(locally_owned_dofs,
2452 * mpi_communicator);
2454 * double residual_norm;
2455 * double previous_residual_norm = -std::numeric_limits<double>::max();
2457 * const double correct_sigma = sigma_0;
2459 * IndexSet old_active_set(active_set);
2461 * for (unsigned int newton_step = 1; newton_step <= 100; ++newton_step)
2463 * if (newton_step == 1 &&
2464 * ((transfer_solution && current_refinement_cycle == 0) ||
2465 * !transfer_solution))
2466 * constitutive_law.set_sigma_0(1e+10);
2467 * else if (newton_step == 2 || current_refinement_cycle > 0 ||
2468 * !transfer_solution)
2469 * constitutive_law.set_sigma_0(correct_sigma);
2471 * pcout << ' ' << std::endl;
2472 * pcout << " Newton iteration " << newton_step << std::endl;
2473 * pcout << " Updating active set..." << std::endl;
2476 * TimerOutput::Scope t(computing_timer, "update active set");
2477 * update_solution_and_constraints();
2480 * pcout << " Assembling system... " << std::endl;
2481 * newton_matrix = 0;
2483 * assemble_newton_system(solution);
2485 * pcout << " Solving system... " << std::endl;
2486 * solve_newton_system();
2490 * It gets a bit more hairy after we have computed the
2491 * trial solution @f$\tilde{\mathbf u}@f$ of the current Newton step.
2492 * We handle a highly nonlinear problem so we have to damp
2493 * Newton's method
using a line search. To understand how we
do this,
2494 * recall that in our formulation, we compute a trial solution
2495 * in each Newton step and not the update between old and
new solution.
2496 * Since the solution set is a convex set, we will use a line
2497 * search that tries linear combinations of the
2498 * previous and the trial solution to guarantee that the
2499 * damped solution is in our solution set again.
2500 * At most we
apply 5 damping steps.
2504 * There are exceptions to when we use a line search. First,
2505 *
if this is the
first Newton step on any mesh, then we don
't have
2506 * any point to compare the residual to, so we always accept a full
2507 * step. Likewise, if this is the second Newton step on the first mesh
2508 * (or the second on any mesh if we don't transfer solutions from mesh
2509 * to mesh), then we have computed the
first of these steps
using just
2510 * an elastic model (see how we set the yield stress sigma to an
2511 * unreasonably large value above). In
this case, the
first Newton
2512 * solution was a purely elastic one, the
second one a plastic one,
2513 * and any linear combination would not necessarily be expected to
2514 * lie in the feasible set -- so we just accept the solution we just
2519 * In either of these two cases, we bypass the line search and just
2520 * update residual and other vectors as necessary.
2523 *
if ((newton_step == 1) ||
2524 * (transfer_solution && newton_step == 2 &&
2525 * current_refinement_cycle == 0) ||
2526 * (!transfer_solution && newton_step == 2))
2528 * compute_nonlinear_residual(solution);
2529 * old_solution = solution;
2531 * residual = newton_rhs;
2532 *
const unsigned int start_res = (residual.local_range().first),
2533 * end_res = (residual.local_range().second);
2534 *
for (
unsigned int n = start_res; n < end_res; ++n)
2535 *
if (all_constraints.is_inhomogeneously_constrained(n))
2540 * residual_norm = residual.l2_norm();
2542 * pcout <<
" Accepting Newton solution with residual: "
2543 * << residual_norm << std::endl;
2547 *
for (
unsigned int i = 0; i < 5; ++i)
2549 * distributed_solution = solution;
2551 *
const double alpha =
std::pow(0.5,
static_cast<double>(i));
2552 * tmp_vector = old_solution;
2553 * tmp_vector.sadd(1 - alpha, alpha, distributed_solution);
2557 * locally_relevant_tmp_vector = tmp_vector;
2558 * compute_nonlinear_residual(locally_relevant_tmp_vector);
2559 * residual = newton_rhs;
2561 *
const unsigned int start_res = (residual.local_range().first),
2562 * end_res = (residual.local_range().second);
2563 *
for (
unsigned int n = start_res; n < end_res; ++n)
2564 *
if (all_constraints.is_inhomogeneously_constrained(n))
2569 * residual_norm = residual.l2_norm();
2572 * <<
" Residual of the non-contact part of the system: "
2573 * << residual_norm << std::endl
2574 * <<
" with a damping parameter alpha = " << alpha
2577 *
if (residual_norm < previous_residual_norm)
2581 * solution = tmp_vector;
2582 * old_solution = solution;
2585 * previous_residual_norm = residual_norm;
2590 * The
final step is to
check for convergence. If the active set
2591 * has not changed across all processors and the residual is
2592 * less than a threshold of @f$10^{-10}@f$, then we terminate
2593 * the iteration on the current mesh:
2597 * mpi_communicator) == 0)
2599 * pcout <<
" Active set did not change!" <<
std::endl;
2600 *
if (residual_norm < 1e-10)
2604 * old_active_set = active_set;
2611 * <a name=
"step_42-PlasticityContactProblemrefine_grid"></a>
2612 * <h4>PlasticityContactProblem::refine_grid</h4>
2616 * If you
've made it this far into the deal.II tutorial, the following
2617 * function refining the mesh should not pose any challenges to you
2618 * any more. It refines the mesh, either globally or using the Kelly
2619 * error estimator, and if so asked also transfers the solution from
2620 * the previous to the next mesh. In the latter case, we also need
2621 * to compute the active set and other quantities again, for which we
2622 * need the information computed by <code>compute_nonlinear_residual()</code>.
2625 * template <int dim>
2626 * void PlasticityContactProblem<dim>::refine_grid()
2628 * if (refinement_strategy == RefinementStrategy::refine_global)
2630 * for (typename Triangulation<dim>::active_cell_iterator cell =
2631 * triangulation.begin_active();
2632 * cell != triangulation.end();
2634 * if (cell->is_locally_owned())
2635 * cell->set_refine_flag();
2639 * Vector<float> estimated_error_per_cell(triangulation.n_active_cells());
2640 * KellyErrorEstimator<dim>::estimate(
2642 * QGauss<dim - 1>(fe.degree + 2),
2643 * std::map<types::boundary_id, const Function<dim> *>(),
2645 * estimated_error_per_cell);
2647 * parallel::distributed::GridRefinement ::refine_and_coarsen_fixed_number(
2648 * triangulation, estimated_error_per_cell, 0.3, 0.03);
2651 * triangulation.prepare_coarsening_and_refinement();
2653 * parallel::distributed::SolutionTransfer<dim, TrilinosWrappers::MPI::Vector>
2654 * solution_transfer(dof_handler);
2655 * if (transfer_solution)
2656 * solution_transfer.prepare_for_coarsening_and_refinement(solution);
2658 * triangulation.execute_coarsening_and_refinement();
2662 * if (transfer_solution)
2664 * TrilinosWrappers::MPI::Vector distributed_solution(locally_owned_dofs,
2665 * mpi_communicator);
2666 * solution_transfer.interpolate(distributed_solution);
2670 * enforce constraints to make the interpolated solution conforming on
2674 * constraints_hanging_nodes.distribute(distributed_solution);
2676 * solution = distributed_solution;
2677 * compute_nonlinear_residual(solution);
2685 * <a name="step_42-PlasticityContactProblemmove_mesh"></a>
2686 * <h4>PlasticityContactProblem::move_mesh</h4>
2690 * The remaining three functions before we get to <code>run()</code>
2691 * have to do with generating output. The following one is an attempt
2692 * at showing the deformed body in its deformed configuration. To this
2693 * end, this function takes a displacement vector field and moves every
2694 * vertex of the (local part) of the mesh by the previously computed
2695 * displacement. We will call this function with the current
2696 * displacement field before we generate graphical output, and we will
2697 * call it again after generating graphical output with the negative
2698 * displacement field to undo the changes to the mesh so made.
2702 * The function itself is pretty straightforward. All we have to do
2703 * is keep track which vertices we have already touched, as we
2704 * encounter the same vertices multiple times as we loop over cells.
2707 * template <int dim>
2708 * void PlasticityContactProblem<dim>::move_mesh(
2709 * const TrilinosWrappers::MPI::Vector &displacement) const
2711 * std::vector<bool> vertex_touched(triangulation.n_vertices(), false);
2713 * for (const auto &cell : dof_handler.active_cell_iterators())
2714 * if (cell->is_locally_owned())
2715 * for (const auto v : cell->vertex_indices())
2716 * if (vertex_touched[cell->vertex_index(v)] == false)
2718 * vertex_touched[cell->vertex_index(v)] = true;
2720 * Point<dim> vertex_displacement;
2721 * for (unsigned int d = 0; d < dim; ++d)
2722 * vertex_displacement[d] =
2723 * displacement(cell->vertex_dof_index(v, d));
2725 * cell->vertex(v) += vertex_displacement;
2734 * <a name="step_42-PlasticityContactProblemoutput_results"></a>
2735 * <h4>PlasticityContactProblem::output_results</h4>
2739 * Next is the function we use to actually generate graphical output. The
2740 * function is a bit tedious, but not actually particularly complicated.
2741 * It moves the mesh at the top (and moves it back at the end), then
2742 * computes the contact forces along the contact surface. We can do
2743 * so (as shown in the accompanying paper) by taking the untreated
2744 * residual vector and identifying which degrees of freedom
2745 * correspond to those with contact by asking whether they have an
2746 * inhomogeneous constraints associated with them. As always, we need
2747 * to be mindful that we can only write into completely distributed
2748 * vectors (i.e., vectors without ghost elements) but that when we
2749 * want to generate output, we need vectors that do indeed have
2750 * ghost entries for all locally relevant degrees of freedom.
2753 * template <int dim>
2754 * void PlasticityContactProblem<dim>::output_results(
2755 * const unsigned int current_refinement_cycle)
2757 * TimerOutput::Scope t(computing_timer, "Graphical output");
2759 * pcout << " Writing graphical output... " << std::flush;
2761 * move_mesh(solution);
2765 * Calculation of the contact forces
2768 * TrilinosWrappers::MPI::Vector distributed_lambda(locally_owned_dofs,
2769 * mpi_communicator);
2770 * const unsigned int start_res = (newton_rhs_uncondensed.local_range().first),
2771 * end_res = (newton_rhs_uncondensed.local_range().second);
2772 * for (unsigned int n = start_res; n < end_res; ++n)
2773 * if (all_constraints.is_inhomogeneously_constrained(n))
2774 * distributed_lambda(n) =
2775 * newton_rhs_uncondensed(n) / diag_mass_matrix_vector(n);
2776 * distributed_lambda.compress(VectorOperation::insert);
2777 * constraints_hanging_nodes.distribute(distributed_lambda);
2779 * TrilinosWrappers::MPI::Vector lambda(locally_relevant_dofs,
2780 * mpi_communicator);
2781 * lambda = distributed_lambda;
2783 * TrilinosWrappers::MPI::Vector distributed_active_set_vector(
2784 * locally_owned_dofs, mpi_communicator);
2785 * distributed_active_set_vector = 0.;
2786 * for (const auto index : active_set)
2787 * distributed_active_set_vector[index] = 1.;
2788 * distributed_lambda.compress(VectorOperation::insert);
2790 * TrilinosWrappers::MPI::Vector active_set_vector(locally_relevant_dofs,
2791 * mpi_communicator);
2792 * active_set_vector = distributed_active_set_vector;
2794 * DataOut<dim> data_out;
2796 * data_out.attach_dof_handler(dof_handler);
2798 * const std::vector<DataComponentInterpretation::DataComponentInterpretation>
2799 * data_component_interpretation(
2800 * dim, DataComponentInterpretation::component_is_part_of_vector);
2801 * data_out.add_data_vector(solution,
2802 * std::vector<std::string>(dim, "displacement"),
2803 * DataOut<dim>::type_dof_data,
2804 * data_component_interpretation);
2805 * data_out.add_data_vector(lambda,
2806 * std::vector<std::string>(dim, "contact_force"),
2807 * DataOut<dim>::type_dof_data,
2808 * data_component_interpretation);
2809 * data_out.add_data_vector(active_set_vector,
2810 * std::vector<std::string>(dim, "active_set"),
2811 * DataOut<dim>::type_dof_data,
2812 * data_component_interpretation);
2814 * Vector<float> subdomain(triangulation.n_active_cells());
2815 * for (unsigned int i = 0; i < subdomain.size(); ++i)
2816 * subdomain(i) = triangulation.locally_owned_subdomain();
2817 * data_out.add_data_vector(subdomain, "subdomain");
2819 * data_out.add_data_vector(fraction_of_plastic_q_points_per_cell,
2820 * "fraction_of_plastic_q_points");
2822 * data_out.build_patches();
2826 * In the remainder of the function, we generate one VTU file on
2827 * every processor, indexed by the subdomain id of this processor.
2828 * On the first processor, we then also create a <code>.pvtu</code>
2829 * file that indexes <i>all</i> of the VTU files so that the entire
2830 * set of output files can be read at once. These <code>.pvtu</code>
2831 * are used by Paraview to describe an entire parallel computation's
2832 * output files. We then
do the same again
for the competitor of
2833 * Paraview, the VisIt visualization program, by creating a
matching
2834 * <code>.visit</code> file.
2837 *
const std::string pvtu_filename = data_out.write_vtu_with_pvtu_record(
2838 * output_dir,
"solution", current_refinement_cycle, mpi_communicator, 2);
2839 * pcout << pvtu_filename << std::endl;
2850 * <a name=
"step_42-PlasticityContactProblemoutput_contact_force"></a>
2851 * <h4>PlasticityContactProblem::output_contact_force</h4>
2855 * This last auxiliary function computes the contact force by
2856 * calculating an integral over the contact pressure in z-direction
2857 * over the contact area. For
this purpose we set the contact
2858 * pressure
lambda to 0
for all inactive dofs (whether a degree
2859 * of freedom is part of the contact is determined just as
2860 * we did in the previous function). For all
2861 * active dofs,
lambda contains the quotient of the nonlinear
2862 * residual (newton_rhs_uncondensed) and corresponding
diagonal entry
2863 * of the mass
matrix (diag_mass_matrix_vector). Because it is
2864 * not unlikely that hanging nodes show up in the contact area
2865 * it is important to
apply constraints_hanging_nodes.distribute
2866 * to the distributed_lambda vector.
2869 *
template <
int dim>
2870 *
void PlasticityContactProblem<dim>::output_contact_force() const
2873 * mpi_communicator);
2874 *
const unsigned int start_res = (newton_rhs_uncondensed.local_range().first),
2875 * end_res = (newton_rhs_uncondensed.local_range().second);
2876 *
for (
unsigned int n = start_res; n < end_res; ++n)
2877 *
if (all_constraints.is_inhomogeneously_constrained(n))
2878 * distributed_lambda(n) =
2879 * newton_rhs_uncondensed(n) / diag_mass_matrix_vector(n);
2881 * distributed_lambda(n) = 0;
2883 * constraints_hanging_nodes.distribute(distributed_lambda);
2886 * mpi_communicator);
2887 *
lambda = distributed_lambda;
2889 *
double contact_force = 0.0;
2891 *
const QGauss<dim - 1> face_quadrature_formula(fe.degree + 1);
2893 * face_quadrature_formula,
2896 *
const unsigned int n_face_q_points = face_quadrature_formula.size();
2900 *
for (
const auto &cell : dof_handler.active_cell_iterators())
2901 * if (cell->is_locally_owned())
2902 * for (const auto &face : cell->face_iterators())
2903 * if (face->at_boundary() && face->
boundary_id() == 1)
2905 * fe_values_face.
reinit(cell, face);
2907 * std::vector<Tensor<1, dim>> lambda_values(n_face_q_points);
2908 * fe_values_face[displacement].get_function_values(lambda,
2911 *
for (
unsigned int q_point = 0; q_point < n_face_q_points;
2914 * lambda_values[q_point][2] * fe_values_face.JxW(q_point);
2918 * pcout <<
"Contact force = " << contact_force << std::endl;
2925 * <a name=
"step_42-PlasticityContactProblemrun"></a>
2926 * <h4>PlasticityContactProblem::run</h4>
2930 * As in all other tutorial programs, the <code>
run()</code> function contains
2931 * the overall logic. There is not very much to it here: in essence, it
2932 * performs the loops over all mesh refinement cycles, and within each, hands
2933 * things over to the Newton solver in <code>solve_newton()</code> on the
2934 * current mesh and calls the function that creates graphical output
for
2935 * the so-computed solution. It then outputs some statistics concerning both
2936 *
run times and memory consumption that has been collected over the course of
2937 * computations on
this mesh.
2940 *
template <
int dim>
2941 *
void PlasticityContactProblem<dim>::run()
2943 * computing_timer.reset();
2944 *
for (; current_refinement_cycle < n_refinement_cycles;
2945 * ++current_refinement_cycle)
2950 * pcout << std::endl;
2951 * pcout <<
"Cycle " << current_refinement_cycle <<
':' << std::endl;
2953 *
if (current_refinement_cycle == 0)
2967 * output_results(current_refinement_cycle);
2969 * computing_timer.print_summary();
2970 * computing_timer.reset();
2974 * pcout <<
"Peak virtual memory used, resident in kB: " << stats.VmSize
2975 * <<
' ' << stats.VmRSS << std::endl;
2977 *
if (base_mesh ==
"box")
2978 * output_contact_force();
2986 * <a name=
"step_42-Thecodemaincodefunction"></a>
2987 * <h3>The <code>main</code> function</h3>
2991 * There really isn
't much to the <code>main()</code> function. It looks
2992 * like they always do:
2995 * int main(int argc, char *argv[])
2997 * using namespace dealii;
2998 * using namespace Step42;
3002 * ParameterHandler prm;
3003 * PlasticityContactProblem<3>::declare_parameters(prm);
3006 * std::cerr << "*** Call this program as <./step-42 input.prm>"
3011 * prm.parse_input(argv[1]);
3012 * Utilities::MPI::MPI_InitFinalize mpi_initialization(
3013 * argc, argv, numbers::invalid_unsigned_int);
3015 * PlasticityContactProblem<3> problem(prm);
3019 * catch (std::exception &exc)
3021 * std::cerr << std::endl
3023 * << "----------------------------------------------------"
3025 * std::cerr << "Exception on processing: " << std::endl
3026 * << exc.what() << std::endl
3027 * << "Aborting!" << std::endl
3028 * << "----------------------------------------------------"
3035 * std::cerr << std::endl
3037 * << "----------------------------------------------------"
3039 * std::cerr << "Unknown exception!" << std::endl
3040 * << "Aborting!" << std::endl
3041 * << "----------------------------------------------------"
3049<a name="step_42-Results"></a><h1>Results</h1>
3052The directory that contains this program also contains a number of input
3053parameter files that can be used to create various different
3054simulations. For example, running the program with the
3055<code>p1_adaptive.prm</code> parameter file (using a ball as obstacle and the
3056box as domain) on 16 cores produces output like this:
3058 Using output directory 'p1adaptive/
'
3060 transfer solution false
3063 Number of active cells: 512
3064 Number of degrees of freedom: 2187
3067 Updating active set...
3068 Size of active set: 1
3069 Assembling system...
3071 Error: 173.076 -> 1.64265e-06 in 7 Bicgstab iterations.
3072 Accepting Newton solution with residual: 1.64265e-06
3075 Updating active set...
3076 Size of active set: 1
3077 Assembling system...
3079 Error: 57.3622 -> 3.23721e-07 in 8 Bicgstab iterations.
3080 Accepting Newton solution with residual: 24.9028
3081 Active set did not change!
3084 Updating active set...
3085 Size of active set: 1
3086 Assembling system...
3088 Error: 24.9028 -> 9.94326e-08 in 7 Bicgstab iterations.
3089 Residual of the non-contact part of the system: 1.63333
3090 with a damping parameter alpha = 1
3091 Active set did not change!
3096 Updating active set...
3097 Size of active set: 1
3098 Assembling system...
3100 Error: 1.43188e-07 -> 3.56218e-16 in 8 Bicgstab iterations.
3101 Residual of the non-contact part of the system: 4.298e-14
3102 with a damping parameter alpha = 1
3103 Active set did not change!
3104 Writing graphical output... p1_adaptive/solution-00.pvtu
3107+---------------------------------------------+------------+------------+
3108| Total wallclock time elapsed since start | 1.13s | |
3110| Section | no. calls | wall time | % of total |
3111+---------------------------------+-----------+------------+------------+
3112| Assembling | 6 | 0.463s | 41% |
3113| Graphical output | 1 | 0.0257s | 2.3% |
3114| Residual and lambda | 4 | 0.0754s | 6.7% |
3115| Setup | 1 | 0.227s | 20% |
3116| Setup: constraints | 1 | 0.0347s | 3.1% |
3117| Setup: distribute DoFs | 1 | 0.0441s | 3.9% |
3118| Setup: matrix | 1 | 0.0119s | 1.1% |
3119| Setup: vectors | 1 | 0.00155s | 0.14% |
3120| Solve | 6 | 0.246s | 22% |
3121| Solve: iterate | 6 | 0.0631s | 5.6% |
3122| Solve: setup preconditioner | 6 | 0.167s | 15% |
3123| update active set | 6 | 0.0401s | 3.6% |
3124+---------------------------------+-----------+------------+------------+
3126Peak virtual memory used, resident in kB: 541884 77464
3127Contact force = 37.3058
3132 Number of active cells: 14652
3133 Number of degrees of freedom: 52497
3136 Updating active set...
3137 Size of active set: 145
3138 Assembling system...
3140 Error: 296.309 -> 2.72484e-06 in 10 Bicgstab iterations.
3141 Accepting Newton solution with residual: 2.72484e-06
3146 Updating active set...
3147 Size of active set: 145
3148 Assembling system...
3150 Error: 2.71541e-07 -> 1.5428e-15 in 27 Bicgstab iterations.
3151 Residual of the non-contact part of the system: 1.89261e-13
3152 with a damping parameter alpha = 1
3153 Active set did not change!
3154 Writing graphical output... p1_adaptive/solution-03.pvtu
3157+---------------------------------------------+------------+------------+
3158| Total wallclock time elapsed since start | 38.4s | |
3160| Section | no. calls | wall time | % of total |
3161+---------------------------------+-----------+------------+------------+
3162| Assembling | 10 | 22.5s | 58% |
3163| Graphical output | 1 | 0.327s | 0.85% |
3164| Residual and lambda | 9 | 3.75s | 9.8% |
3165| Setup | 1 | 4.83s | 13% |
3166| Setup: constraints | 1 | 0.578s | 1.5% |
3167| Setup: distribute DoFs | 1 | 0.71s | 1.8% |
3168| Setup: matrix | 1 | 0.111s | 0.29% |
3169| Setup: refine mesh | 1 | 4.83s | 13% |
3170| Setup: vectors | 1 | 0.00548s | 0.014% |
3171| Solve | 10 | 5.49s | 14% |
3172| Solve: iterate | 10 | 3.5s | 9.1% |
3173| Solve: setup preconditioner | 10 | 1.84s | 4.8% |
3174| update active set | 10 | 0.662s | 1.7% |
3175+---------------------------------+-----------+------------+------------+
3177Peak virtual memory used, resident in kB: 566052 105788
3178Contact force = 56.794
3183The tables at the end of each cycle show information about computing time
3184(these numbers are of course specific to the machine on which this output
3186and the number of calls of different parts of the program like assembly or
3187calculating the residual, for the most recent mesh refinement cycle. Some of
3188the numbers above can be improved by transferring the solution from one mesh to
3189the next, an option we have not exercised here. Of course, you can also make
3190the program run faster, especially on the later refinement cycles, by just
3191using more processors: the accompanying paper shows good scaling to at least
3194In a typical run, you can observe that for every refinement step, the active
3195set - the contact points - are iterated out at first. After that the Newton
3196method has only to resolve the plasticity. For the finer meshes,
3197quadratic convergence can be observed for the last 4 or 5 Newton iterations.
3199We will not discuss here in all detail what happens with each of the input
3200files. Rather, let us just show pictures of the solution (the left half of the
3201domain is omitted if cells have zero quadrature points at which the plastic
3202inequality is active):
3204<table align="center">
3207 <img src="https://www.dealii.org/images/steps/developer/step-42.CellConstitutionColorbar.png">
3210 <img src="https://www.dealii.org/images/steps/developer/step-42.CellConstitutionBall2.png" alt="" width="70%">
3216 <img src="https://www.dealii.org/images/steps/developer/step-42.CellConstitutionLi2.png" alt="" alt="" width="70%">
3221The picture shows the adaptive refinement and as well how much a cell is
3222plastified during the contact with the ball. Remember that we consider the
3223norm of the deviator part of the stress in each quadrature point to
3224see if there is elastic or plastic behavior.
3226color means that this cell contains only elastic quadrature points in
3227contrast to the red cells in which all quadrature points are plastified.
3228In the middle of the top surface -
3229where the mesh is finest - a very close look shows the dimple caused by the
3230obstacle. This is the result of the <code>move_mesh()</code>
3231function. However, because the indentation of the obstacles we consider here
3232is so small, it is hard to discern this effect; one could play with displacing
3233vertices of the mesh by a multiple of the computed displacement.
3235Further discussion of results that can be obtained using this program is
3236provided in the publication mentioned at the very top of this page.
3239<a name="step-42-extensions"></a>
3240<a name="step_42-Possibilitiesforextensions"></a><h1>Possibilities for extensions</h1>
3243There are, as always, multiple possibilities for extending this program. From
3244an algorithmic perspective, this program goes about as far as one can at the
3245time of writing, using the best available algorithms for the contact
3246inequality, the plastic nonlinearity, and the linear solvers. However, there
3247are things one would like to do with this program as far as more realistic
3248situations are concerned:
3250<li> Extend the program from a static to a quasi-static situation, perhaps by
3251choosing a backward-Euler-scheme for the time discretization. Some theoretical
3252results can be found in the PhD thesis by Jörg Frohne, <i>FEM-Simulation
3253der Umformtechnik metallischer Oberflächen im Mikrokosmos</i>, University
3254of Siegen, Germany, 2011.
3256<li> It would also be an interesting advance to consider a contact problem
3257with friction. In almost every mechanical process friction has a big
3258influence. To model this situation, we have to take into account tangential
3259stresses at the contact surface. Friction also adds another inequality to
3260our problem since body and obstacle will typically stick together as long as
3261the tangential stress does not exceed a certain limit, beyond which the two
3262bodies slide past each other.
3264<li> If we already simulate a frictional contact, the next step to consider
3265is heat generation over the contact zone. The heat that is
3266caused by friction between two bodies raises the temperature in the
3267deformable body and entails an change of some material parameters.
3269<li> It might be of interest to implement more accurate, problem-adapted error
3270estimators for contact as well as for the plasticity.
3274<a name="step_42-PlainProg"></a>
3275<h1> The plain program</h1>
3276@include "step-42.cc"
void loop(IteratorType begin, std_cxx20::type_identity_t< IteratorType > end, DOFINFO &dinfo, INFOBOX &info, const std::function< void(std_cxx20::type_identity_t< DOFINFO > &, typename INFOBOX::CellInfo &)> &cell_worker, const std::function< void(std_cxx20::type_identity_t< DOFINFO > &, typename INFOBOX::CellInfo &)> &boundary_worker, const std::function< void(std_cxx20::type_identity_t< DOFINFO > &, std_cxx20::type_identity_t< DOFINFO > &, typename INFOBOX::CellInfo &, typename INFOBOX::CellInfo &)> &face_worker, AssemblerType &assembler, const LoopControl &lctrl=LoopControl())
void make_hanging_node_constraints(const DoFHandler< dim, spacedim > &dof_handler, AffineConstraints< number > &constraints)
void make_sparsity_pattern(const DoFHandler< dim, spacedim > &dof_handler, SparsityPatternBase &sparsity_pattern, const AffineConstraints< number > &constraints={}, const bool keep_constrained_dofs=true, const types::subdomain_id subdomain_id=numbers::invalid_subdomain_id)
@ update_values
Shape function values.
@ update_JxW_values
Transformed quadrature weights.
@ matrix
Contents is actually a matrix.
@ diagonal
Matrix is diagonal.
void mass_matrix(FullMatrix< double > &M, const FEValuesBase< dim > &fe, const double factor=1.)
void apply(const Kokkos::TeamPolicy< MemorySpace::Default::kokkos_space::execution_space >::member_type &team_member, const Kokkos::View< Number *, MemorySpace::Default::kokkos_space > shape_data, const ViewTypeIn in, ViewTypeOut out)
VectorType::value_type * end(VectorType &V)
T sum(const T &t, const MPI_Comm mpi_communicator)
unsigned int this_mpi_process(const MPI_Comm mpi_communicator)
void get_memory_stats(MemoryStats &stats)
void run(const Iterator &begin, const std_cxx20::type_identity_t< Iterator > &end, Worker worker, Copier copier, const ScratchData &sample_scratch_data, const CopyData &sample_copy_data, const unsigned int queue_length, const unsigned int chunk_size)
bool check(const ConstraintKinds kind_in, const unsigned int dim)
void reinit(MatrixBlock< MatrixType > &v, const BlockSparsityPattern &p)
::VectorizedArray< Number, width > pow(const ::VectorizedArray< Number, width > &, const Number p)
const ::parallel::distributed::Triangulation< dim, spacedim > * triangulation