deal.II version GIT relicensing-2330-gf6dfc6c370 2025-01-06 13:10:00+00:00
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
step-20.h
Go to the documentation of this file.
1,
1083 *   const unsigned int /*component*/) const
1084 *   {
1085 *   return 0;
1086 *   }
1087 *  
1088 *  
1089 *  
1090 *   template <int dim>
1091 *   double
1092 *   PressureBoundaryValues<dim>::value(const Point<dim> &p,
1093 *   const unsigned int /*component*/) const
1094 *   {
1095 *   return -(alpha * p[0] * p[1] * p[1] / 2 + beta * p[0] -
1096 *   alpha * p[0] * p[0] * p[0] / 6);
1097 *   }
1098 *  
1099 *  
1100 *  
1101 *   template <int dim>
1102 *   void ExactSolution<dim>::vector_value(const Point<dim> &p,
1103 *   Vector<double> &values) const
1104 *   {
1105 *   AssertDimension(values.size(), dim + 1);
1106 *  
1107 *   values(0) = alpha * p[1] * p[1] / 2 + beta - alpha * p[0] * p[0] / 2;
1108 *   values(1) = alpha * p[0] * p[1];
1109 *   values(2) = -(alpha * p[0] * p[1] * p[1] / 2 + beta * p[0] -
1110 *   alpha * p[0] * p[0] * p[0] / 6);
1111 *   }
1112 *  
1113 *  
1114 *  
1115 * @endcode
1116 *
1117 *
1118 * <a name="step_20-Theinversepermeabilitytensor"></a>
1119 * <h3>The inverse permeability tensor</h3>
1120 *
1121
1122 *
1123 * In addition to the other equation data, we also want to use a
1124 * permeability tensor, or better -- because this is all that appears in the
1125 * weak form -- the inverse of the permeability tensor,
1126 * <code>KInverse</code>. For the purpose of verifying the exactness of the
1127 * solution and determining convergence orders, this tensor is more in the
1128 * way than helpful. We will therefore simply set it to the identity matrix.
1129 *
1130
1131 *
1132 * However, a spatially varying permeability tensor is indispensable in
1133 * real-life porous media flow simulations, and we would like to use the
1134 * opportunity to demonstrate the technique to use tensor valued functions.
1135 *
1136
1137 *
1138 * Possibly unsurprisingly, deal.II also has a base class not only for
1139 * scalar and generally vector-valued functions (the <code>Function</code>
1140 * base class) but also for functions that return tensors of fixed dimension
1141 * and rank, the <code>TensorFunction</code> template. Here, the function
1142 * under consideration returns a dim-by-dim matrix, i.e. a tensor of rank 2
1143 * and dimension <code>dim</code>. We then choose the template arguments of
1144 * the base class appropriately.
1145 *
1146
1147 *
1148 * The interface that the <code>TensorFunction</code> class provides is
1149 * essentially equivalent to the <code>Function</code> class. In particular,
1150 * there exists a <code>value_list</code> function that takes a list of
1151 * points at which to evaluate the function, and returns the values of the
1152 * function in the second argument, a list of tensors:
1153 *
1154 * @code
1155 *   template <int dim>
1156 *   class KInverse : public TensorFunction<2, dim>
1157 *   {
1158 *   public:
1159 *   KInverse()
1160 *   : TensorFunction<2, dim>()
1161 *   {}
1162 *  
1163 *   virtual void
1164 *   value_list(const std::vector<Point<dim>> &points,
1165 *   std::vector<Tensor<2, dim>> &values) const override;
1166 *   };
1167 *  
1168 *  
1169 * @endcode
1170 *
1171 * The implementation is less interesting. As in previous examples, we add a
1172 * check to the beginning of the class to make sure that the sizes of input
1173 * and output parameters are the same (see @ref step_5 "step-5" for a discussion of this
1174 * technique). Then we loop over all evaluation points, and for each one
1175 * set the output tensor to the identity matrix.
1176 *
1177
1178 *
1179 * There is an oddity at the top of the function (the
1180 * `(void)points;` statement) that is worth discussing. The values
1181 * we put into the output `values` array does not actually depend
1182 * on the `points` arrays of coordinates at which the function is
1183 * evaluated. In other words, the `points` argument is in fact
1184 * unused, and we could have just not given it a name if we had
1185 * wanted. But we want to use the `points` object for checking
1186 * that the `values` object has the correct size. The problem is
1187 * that in release mode, `AssertDimension` is defined as a macro
1188 * that expands to nothing; the compiler will then complain that
1189 * the `points` object is unused. The idiomatic approach to
1190 * silencing this warning is to have a statement that evaluates
1191 * (reads) variable but doesn't actually do anything: That's what
1192 * `(void)points;` does: It reads from `points`, and then casts
1193 * the result of the read to `void`, i.e., nothing. This statement
1194 * is, in other words, completely pointless and implies no actual
1195 * action except to explain to the compiler that yes, this
1196 * variable is in fact used even in release mode. (In debug mode,
1197 * the `AssertDimension` macro expands to something that reads
1198 * from the variable, and so the funny statement would not be
1199 * necessary in debug mode.)
1200 *
1201 * @code
1202 *   template <int dim>
1203 *   void KInverse<dim>::value_list(const std::vector<Point<dim>> &points,
1204 *   std::vector<Tensor<2, dim>> &values) const
1205 *   {
1206 *   (void)points;
1207 *   AssertDimension(points.size(), values.size());
1208 *  
1209 *   for (auto &value : values)
1210 *   value = unit_symmetric_tensor<dim>();
1211 *   }
1212 *   } // namespace PrescribedSolution
1213 *  
1214 *  
1215 *  
1216 * @endcode
1217 *
1218 *
1219 * <a name="step_20-MixedLaplaceProblemclassimplementation"></a>
1220 * <h3>MixedLaplaceProblem class implementation</h3>
1221 *
1222
1223 *
1224 *
1225 * <a name="step_20-MixedLaplaceProblemMixedLaplaceProblem"></a>
1226 * <h4>MixedLaplaceProblem::MixedLaplaceProblem</h4>
1227 *
1228
1229 *
1230 * In the constructor of this class, we first store the value that was
1231 * passed in concerning the degree of the finite elements we shall use (a
1232 * degree of zero, for example, means to use RT(0) and DG(0)), and then
1233 * construct the vector valued element belonging to the space @f$X_h@f$ described
1234 * in the introduction. The rest of the constructor is as in the early
1235 * tutorial programs.
1236 *
1237
1238 *
1239 * The only thing worth describing here is the constructor call of the
1240 * <code>fe</code> variable. The <code>FESystem</code> class to which this
1241 * variable belongs has a number of different constructors that all refer to
1242 * binding simpler elements together into one larger element. In the present
1243 * case, we want to couple a single RT(degree) element with a single
1244 * DQ(degree) element. The constructor to <code>FESystem</code> that does
1245 * this requires us to specify first the first base element (the
1246 * <code>FE_RaviartThomas</code> object of given degree) and then the number
1247 * of copies for this base element, and then similarly the kind and number
1248 * of <code>FE_DGQ</code> elements. Note that the Raviart-Thomas element
1249 * already has <code>dim</code> vector components, so that the coupled
1250 * element will have <code>dim+1</code> vector components, the first
1251 * <code>dim</code> of which correspond to the velocity variable whereas the
1252 * last one corresponds to the pressure.
1253 *
1254
1255 *
1256 * It is also worth comparing the way we constructed this element from its
1257 * base elements, with the way we have done so in @ref step_8 "step-8": there, we have
1258 * built it as <code>fe (FE_Q@<dim@>(1), dim)</code>, i.e. we have simply
1259 * used <code>dim</code> copies of the <code>FE_Q(1)</code> element, one
1260 * copy for the displacement in each coordinate direction.
1261 *
1262 * @code
1263 *   template <int dim>
1264 *   MixedLaplaceProblem<dim>::MixedLaplaceProblem(const unsigned int degree)
1265 *   : degree(degree)
1266 *   , fe(FE_RaviartThomas<dim>(degree), FE_DGQ<dim>(degree))
1267 *   , dof_handler(triangulation)
1268 *   {}
1269 *  
1270 *  
1271 *  
1272 * @endcode
1273 *
1274 *
1275 * <a name="step_20-MixedLaplaceProblemmake_grid_and_dofs"></a>
1276 * <h4>MixedLaplaceProblem::make_grid_and_dofs</h4>
1277 *
1278
1279 *
1280 * This next function starts out with well-known functions calls that create
1281 * and refine a mesh, and then associate degrees of freedom with it:
1282 *
1283 * @code
1284 *   template <int dim>
1285 *   void MixedLaplaceProblem<dim>::make_grid_and_dofs()
1286 *   {
1288 *   triangulation.refine_global(5);
1289 *  
1290 *   dof_handler.distribute_dofs(fe);
1291 *  
1292 * @endcode
1293 *
1294 * However, then things become different. As mentioned in the
1295 * introduction, we want to subdivide the matrix into blocks corresponding
1296 * to the two different kinds of variables, velocity and pressure. To this
1297 * end, we first have to make sure that the indices corresponding to
1298 * velocities and pressures are not intermingled: First all velocity
1299 * degrees of freedom, then all pressure DoFs. This way, the global matrix
1300 * separates nicely into a @f$2 \times 2@f$ system. To achieve this, we have to
1301 * renumber degrees of freedom based on their vector component, an
1302 * operation that conveniently is already implemented:
1303 *
1304 * @code
1305 *   DoFRenumbering::component_wise(dof_handler);
1306 *  
1307 * @endcode
1308 *
1309 * The next thing is that we want to figure out the sizes of these blocks
1310 * so that we can allocate an appropriate amount of space. To this end, we
1311 * call the DoFTools::count_dofs_per_fe_component() function that
1312 * counts how many shape functions are non-zero for a particular vector
1313 * component. We have <code>dim+1</code> vector components, and
1314 * DoFTools::count_dofs_per_fe_component() will count how many shape
1315 * functions belong to each of these components.
1316 *
1317
1318 *
1319 * There is one problem here. As described in the documentation of that
1320 * function, it <i>wants</i> to put the number of @f$x@f$-velocity shape
1321 * functions into <code>dofs_per_component[0]</code>, the number of
1322 * @f$y@f$-velocity shape functions into <code>dofs_per_component[1]</code>
1323 * (and similar in 3d), and the number of pressure shape functions into
1324 * <code>dofs_per_component[dim]</code>. But, the Raviart-Thomas element
1325 * is special in that it is non-@ref GlossPrimitive "primitive", i.e.,
1326 * for Raviart-Thomas elements all velocity shape functions
1327 * are nonzero in all components. In other words, the function cannot
1328 * distinguish between @f$x@f$ and @f$y@f$ velocity functions because there
1329 * <i>is</i> no such distinction. It therefore puts the overall number
1330 * of velocity into each of <code>dofs_per_component[c]</code>,
1331 * @f$0\le c\le \text{dim}@f$. On the other hand, the number
1332 * of pressure variables equals the number of shape functions that are
1333 * nonzero in the dim-th component.
1334 *
1335
1336 *
1337 * Using this knowledge, we can get the number of velocity shape
1338 * functions from any of the first <code>dim</code> elements of
1339 * <code>dofs_per_component</code>, and then use this below to initialize
1340 * the vector and matrix block sizes, as well as create output.
1341 *
1342
1343 *
1344 * @note If you find this concept difficult to understand, you may
1345 * want to consider using the function DoFTools::count_dofs_per_fe_block()
1346 * instead, as we do in the corresponding piece of code in @ref step_22 "step-22".
1347 * You might also want to read up on the difference between
1348 * @ref GlossBlock "blocks" and @ref GlossComponent "components"
1349 * in the glossary.
1350 *
1351 * @code
1352 *   const std::vector<types::global_dof_index> dofs_per_component =
1353 *   DoFTools::count_dofs_per_fe_component(dof_handler);
1354 *   const unsigned int n_u = dofs_per_component[0],
1355 *   n_p = dofs_per_component[dim];
1356 *  
1357 *   std::cout << "Number of active cells: " << triangulation.n_active_cells()
1358 *   << std::endl
1359 *   << "Total number of cells: " << triangulation.n_cells()
1360 *   << std::endl
1361 *   << "Number of degrees of freedom: " << dof_handler.n_dofs()
1362 *   << " (" << n_u << '+' << n_p << ')' << std::endl;
1363 *  
1364 * @endcode
1365 *
1366 * The next task is to allocate a sparsity pattern for the matrix that we
1367 * will create. We use a compressed sparsity pattern like in the previous
1368 * steps, but as <code>system_matrix</code> is a block matrix we use the
1369 * class <code>BlockDynamicSparsityPattern</code> instead of just
1370 * <code>DynamicSparsityPattern</code>. This block sparsity pattern has
1371 * four blocks in a @f$2 \times 2@f$ pattern. The blocks' sizes depend on
1372 * <code>n_u</code> and <code>n_p</code>, which hold the number of velocity
1373 * and pressure variables.
1374 *
1375 * @code
1376 *   const std::vector<types::global_dof_index> block_sizes = {n_u, n_p};
1377 *   BlockDynamicSparsityPattern dsp(block_sizes, block_sizes);
1378 *   DoFTools::make_sparsity_pattern(dof_handler, dsp);
1379 *  
1380 * @endcode
1381 *
1382 * We use the compressed block sparsity pattern in the same way as the
1383 * non-block version to create the sparsity pattern and then the system
1384 * matrix:
1385 *
1386 * @code
1387 *   sparsity_pattern.copy_from(dsp);
1388 *   system_matrix.reinit(sparsity_pattern);
1389 *  
1390 * @endcode
1391 *
1392 * Then we have to resize the solution and right hand side vectors in
1393 * exactly the same way as the block compressed sparsity pattern:
1394 *
1395 * @code
1396 *   solution.reinit(block_sizes);
1397 *   system_rhs.reinit(block_sizes);
1398 *   }
1399 *  
1400 *  
1401 * @endcode
1402 *
1403 *
1404 * <a name="step_20-MixedLaplaceProblemassemble_system"></a>
1405 * <h4>MixedLaplaceProblem::assemble_system</h4>
1406 *
1407
1408 *
1409 * Similarly, the function that assembles the linear system has mostly been
1410 * discussed already in the introduction to this example. At its top, what
1411 * happens are all the usual steps, with the addition that we do not only
1412 * allocate quadrature and <code>FEValues</code> objects for the cell terms,
1413 * but also for face terms. After that, we define the usual abbreviations
1414 * for variables, and the allocate space for the local matrix and right hand
1415 * side contributions, and the array that holds the global numbers of the
1416 * degrees of freedom local to the present cell.
1417 *
1418 * @code
1419 *   template <int dim>
1420 *   void MixedLaplaceProblem<dim>::assemble_system()
1421 *   {
1422 *   const QGauss<dim> quadrature_formula(degree + 2);
1423 *   const QGauss<dim - 1> face_quadrature_formula(degree + 2);
1424 *  
1425 *   FEValues<dim> fe_values(fe,
1426 *   quadrature_formula,
1427 *   update_values | update_gradients |
1428 *   update_quadrature_points | update_JxW_values);
1429 *   FEFaceValues<dim> fe_face_values(fe,
1430 *   face_quadrature_formula,
1431 *   update_values | update_normal_vectors |
1432 *   update_quadrature_points |
1433 *   update_JxW_values);
1434 *  
1435 *   const unsigned int dofs_per_cell = fe.n_dofs_per_cell();
1436 *   const unsigned int n_q_points = quadrature_formula.size();
1437 *   const unsigned int n_face_q_points = face_quadrature_formula.size();
1438 *  
1439 *   FullMatrix<double> local_matrix(dofs_per_cell, dofs_per_cell);
1440 *   Vector<double> local_rhs(dofs_per_cell);
1441 *  
1442 *   std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
1443 *  
1444 * @endcode
1445 *
1446 * The next step is to declare objects that represent the source term,
1447 * pressure boundary value, and coefficient in the equation. In addition
1448 * to these objects that represent continuous functions, we also need
1449 * arrays to hold their values at the quadrature points of individual
1450 * cells (or faces, for the boundary values). Note that in the case of the
1451 * coefficient, the array has to be one of matrices.
1452 *
1453 * @code
1454 *   const PrescribedSolution::RightHandSide<dim> right_hand_side;
1455 *   const PrescribedSolution::PressureBoundaryValues<dim>
1456 *   pressure_boundary_values;
1457 *   const PrescribedSolution::KInverse<dim> k_inverse;
1458 *  
1459 *   std::vector<double> rhs_values(n_q_points);
1460 *   std::vector<double> boundary_values(n_face_q_points);
1461 *   std::vector<Tensor<2, dim>> k_inverse_values(n_q_points);
1462 *  
1463 * @endcode
1464 *
1465 * Finally, we need a couple of extractors that we will use to get at the
1466 * velocity and pressure components of vector-valued shape
1467 * functions. Their function and use is described in detail in the @ref
1468 * vector_valued report. Essentially, we will use them as subscripts on
1469 * the FEValues objects below: the FEValues object describes all vector
1470 * components of shape functions, while after subscription, it will only
1471 * refer to the velocities (a set of <code>dim</code> components starting
1472 * at component zero) or the pressure (a scalar component located at
1473 * position <code>dim</code>):
1474 *
1475 * @code
1476 *   const FEValuesExtractors::Vector velocities(0);
1477 *   const FEValuesExtractors::Scalar pressure(dim);
1478 *  
1479 * @endcode
1480 *
1481 * With all this in place, we can go on with the loop over all cells. The
1482 * body of this loop has been discussed in the introduction, and will not
1483 * be commented any further here:
1484 *
1485 * @code
1486 *   for (const auto &cell : dof_handler.active_cell_iterators())
1487 *   {
1488 *   fe_values.reinit(cell);
1489 *  
1490 *   local_matrix = 0;
1491 *   local_rhs = 0;
1492 *  
1493 *   right_hand_side.value_list(fe_values.get_quadrature_points(),
1494 *   rhs_values);
1495 *   k_inverse.value_list(fe_values.get_quadrature_points(),
1496 *   k_inverse_values);
1497 *  
1498 *   for (unsigned int q = 0; q < n_q_points; ++q)
1499 *   for (unsigned int i = 0; i < dofs_per_cell; ++i)
1500 *   {
1501 *   const Tensor<1, dim> phi_i_u = fe_values[velocities].value(i, q);
1502 *   const double div_phi_i_u = fe_values[velocities].divergence(i, q);
1503 *   const double phi_i_p = fe_values[pressure].value(i, q);
1504 *  
1505 *   for (unsigned int j = 0; j < dofs_per_cell; ++j)
1506 *   {
1507 *   const Tensor<1, dim> phi_j_u =
1508 *   fe_values[velocities].value(j, q);
1509 *   const double div_phi_j_u =
1510 *   fe_values[velocities].divergence(j, q);
1511 *   const double phi_j_p = fe_values[pressure].value(j, q);
1512 *  
1513 *   local_matrix(i, j) +=
1514 *   (phi_i_u * k_inverse_values[q] * phi_j_u
1515 *   - phi_i_p * div_phi_j_u
1516 *   - div_phi_i_u * phi_j_p)
1517 *   * fe_values.JxW(q);
1518 *   }
1519 *  
1520 *   local_rhs(i) += -phi_i_p * rhs_values[q] * fe_values.JxW(q);
1521 *   }
1522 *  
1523 *   for (const auto &face : cell->face_iterators())
1524 *   if (face->at_boundary())
1525 *   {
1526 *   fe_face_values.reinit(cell, face);
1527 *  
1528 *   pressure_boundary_values.value_list(
1529 *   fe_face_values.get_quadrature_points(), boundary_values);
1530 *  
1531 *   for (unsigned int q = 0; q < n_face_q_points; ++q)
1532 *   for (unsigned int i = 0; i < dofs_per_cell; ++i)
1533 *   local_rhs(i) += -(fe_face_values[velocities].value(i, q) *
1534 *   fe_face_values.normal_vector(q) *
1535 *   boundary_values[q] *
1536 *   fe_face_values.JxW(q));
1537 *   }
1538 *  
1539 * @endcode
1540 *
1541 * The final step in the loop over all cells is to transfer local
1542 * contributions into the global matrix and right hand side
1543 * vector. Note that we use exactly the same interface as in previous
1544 * examples, although we now use block matrices and vectors instead of
1545 * the regular ones. In other words, to the outside world, block
1546 * objects have the same interface as matrices and vectors, but they
1547 * additionally allow to access individual blocks.
1548 *
1549 * @code
1550 *   cell->get_dof_indices(local_dof_indices);
1551 *   for (unsigned int i = 0; i < dofs_per_cell; ++i)
1552 *   for (unsigned int j = 0; j < dofs_per_cell; ++j)
1553 *   system_matrix.add(local_dof_indices[i],
1554 *   local_dof_indices[j],
1555 *   local_matrix(i, j));
1556 *   for (unsigned int i = 0; i < dofs_per_cell; ++i)
1557 *   system_rhs(local_dof_indices[i]) += local_rhs(i);
1558 *   }
1559 *   }
1560 *  
1561 *  
1562 * @endcode
1563 *
1564 *
1565 * <a name="step_20-Implementationoflinearsolversandpreconditioners"></a>
1566 * <h3>Implementation of linear solvers and preconditioners</h3>
1567 *
1568
1569 *
1570 * The linear solvers and preconditioners we use in this example have
1571 * been discussed in significant detail already in the introduction. We
1572 * will therefore not discuss the rationale for our approach here any
1573 * more, but rather only comment on some remaining implementational
1574 * aspects.
1575 *
1576
1577 *
1578 *
1579 * <a name="step_20-MixedLaplacesolve"></a>
1580 * <h4>MixedLaplace::solve</h4>
1581 *
1582
1583 *
1584 * As already outlined in the introduction, the solve function consists
1585 * essentially of two steps. First, we have to form the first equation
1586 * involving the Schur complement and solve for the pressure (component 1
1587 * of the solution). Then, we can reconstruct the velocities from the
1588 * second equation (component 0 of the solution).
1589 *
1590 * @code
1591 *   template <int dim>
1592 *   void MixedLaplaceProblem<dim>::solve()
1593 *   {
1594 * @endcode
1595 *
1596 * As a first step we declare references to all block components of the
1597 * matrix, the right hand side and the solution vector that we will
1598 * need.
1599 *
1600 * @code
1601 *   const auto &M = system_matrix.block(0, 0);
1602 *   const auto &B = system_matrix.block(0, 1);
1603 *  
1604 *   const auto &F = system_rhs.block(0);
1605 *   const auto &G = system_rhs.block(1);
1606 *  
1607 *   auto &U = solution.block(0);
1608 *   auto &P = solution.block(1);
1609 *  
1610 * @endcode
1611 *
1612 * Then, we will create corresponding LinearOperator objects and create
1613 * the <code>op_M_inv</code> operator:
1614 *
1615 * @code
1616 *   const auto op_M = linear_operator(M);
1617 *   const auto op_B = linear_operator(B);
1618 *  
1619 *   ReductionControl reduction_control_M(2000, 1.0e-18, 1.0e-10);
1620 *   SolverCG<Vector<double>> solver_M(reduction_control_M);
1621 *   PreconditionJacobi<SparseMatrix<double>> preconditioner_M;
1622 *  
1623 *   preconditioner_M.initialize(M);
1624 *  
1625 *   const auto op_M_inv = inverse_operator(op_M, solver_M, preconditioner_M);
1626 *  
1627 * @endcode
1628 *
1629 * This allows us to declare the Schur complement <code>op_S</code> and
1630 * the approximate Schur complement <code>op_aS</code>:
1631 *
1632 * @code
1633 *   const auto op_S = transpose_operator(op_B) * op_M_inv * op_B;
1634 *   const auto op_aS =
1635 *   transpose_operator(op_B) * linear_operator(preconditioner_M) * op_B;
1636 *  
1637 * @endcode
1638 *
1639 * We now create a preconditioner out of <code>op_aS</code> that
1640 * applies a fixed number of 30 (inexpensive) CG iterations:
1641 *
1642 * @code
1643 *   IterationNumberControl iteration_number_control_aS(30, 1.e-18);
1644 *   SolverCG<Vector<double>> solver_aS(iteration_number_control_aS);
1645 *  
1646 *   const auto preconditioner_S =
1647 *   inverse_operator(op_aS, solver_aS, PreconditionIdentity());
1648 *  
1649 * @endcode
1650 *
1651 * Now on to the first equation. The right hand side of it is
1652 * @f$B^TM^{-1}F-G@f$, which is what we compute in the first few lines. We
1653 * then solve the first equation with a CG solver and the
1654 * preconditioner we just declared.
1655 *
1656 * @code
1657 *   const auto schur_rhs = transpose_operator(op_B) * op_M_inv * F - G;
1658 *  
1659 *   SolverControl solver_control_S(2000, 1.e-12);
1660 *   SolverCG<Vector<double>> solver_S(solver_control_S);
1661 *  
1662 *   const auto op_S_inv = inverse_operator(op_S, solver_S, preconditioner_S);
1663 *  
1664 *   P = op_S_inv * schur_rhs;
1665 *  
1666 *   std::cout << solver_control_S.last_step()
1667 *   << " CG Schur complement iterations to obtain convergence."
1668 *   << std::endl;
1669 *  
1670 * @endcode
1671 *
1672 * After we have the pressure, we can compute the velocity. The equation
1673 * reads @f$MU=-BP+F@f$, and we solve it by first computing the right hand
1674 * side, and then multiplying it with the object that represents the
1675 * inverse of the @ref GlossMassMatrix "mass matrix":
1676 *
1677 * @code
1678 *   U = op_M_inv * (F - op_B * P);
1679 *   }
1680 *  
1681 *  
1682 * @endcode
1683 *
1684 *
1685 * <a name="step_20-MixedLaplaceProblemclassimplementationcontinued"></a>
1686 * <h3>MixedLaplaceProblem class implementation (continued)</h3>
1687 *
1688
1689 *
1690 *
1691 * <a name="step_20-MixedLaplacecompute_errors"></a>
1692 * <h4>MixedLaplace::compute_errors</h4>
1693 *
1694
1695 *
1696 * After we have dealt with the linear solver and preconditioners, we
1697 * continue with the implementation of our main class. In particular, the
1698 * next task is to compute the errors in our numerical solution, in both the
1699 * pressures as well as velocities.
1700 *
1701
1702 *
1703 * To compute errors in the solution, we have already introduced the
1704 * <code>VectorTools::integrate_difference</code> function in @ref step_7 "step-7" and
1705 * @ref step_11 "step-11". However, there we only dealt with scalar solutions, whereas here
1706 * we have a vector-valued solution with components that even denote
1707 * different quantities and may have different orders of convergence (this
1708 * isn't the case here, by choice of the used finite elements, but is
1709 * frequently the case in mixed finite element applications). What we
1710 * therefore have to do is to `mask' the components that we are interested
1711 * in. This is easily done: the
1712 * <code>VectorTools::integrate_difference</code> function takes as one of its
1713 * arguments a pointer to a weight function (the parameter defaults to the
1714 * null pointer, meaning unit weights). What we have to do is to pass
1715 * a function object that equals one in the components we are interested in,
1716 * and zero in the other ones. For example, to compute the pressure error,
1717 * we should pass a function that represents the constant vector with a unit
1718 * value in component <code>dim</code>, whereas for the velocity the
1719 * constant vector should be one in the first <code>dim</code> components,
1720 * and zero in the location of the pressure.
1721 *
1722
1723 *
1724 * In deal.II, the <code>ComponentSelectFunction</code> does exactly this:
1725 * it wants to know how many vector components the function it is to
1726 * represent should have (in our case this would be <code>dim+1</code>, for
1727 * the joint velocity-pressure space) and which individual or range of
1728 * components should be equal to one. We therefore define two such masks at
1729 * the beginning of the function, following by an object representing the
1730 * exact solution and a vector in which we will store the cellwise errors as
1731 * computed by <code>integrate_difference</code>:
1732 *
1733 * @code
1734 *   template <int dim>
1735 *   void MixedLaplaceProblem<dim>::compute_errors() const
1736 *   {
1737 *   const ComponentSelectFunction<dim> pressure_mask(dim, dim + 1);
1738 *   const ComponentSelectFunction<dim> velocity_mask(std::make_pair(0, dim),
1739 *   dim + 1);
1740 *  
1741 *   PrescribedSolution::ExactSolution<dim> exact_solution;
1742 *   Vector<double> cellwise_errors(triangulation.n_active_cells());
1743 *  
1744 * @endcode
1745 *
1746 * As already discussed in @ref step_7 "step-7", we have to realize that it is
1747 * impossible to integrate the errors exactly. All we can do is
1748 * approximate this integral using quadrature. This actually presents a
1749 * slight twist here: if we naively chose an object of type
1750 * <code>QGauss@<dim@>(degree+1)</code> as one may be inclined to do (this
1751 * is what we used for integrating the linear system), one realizes that
1752 * the error is very small and does not follow the expected convergence
1753 * curves at all. What is happening is that for the mixed finite elements
1754 * used here, the Gauss points happen to be superconvergence points in
1755 * which the pointwise error is much smaller (and converges with higher
1756 * order) than anywhere else. These are therefore not particularly good
1757 * points for integration. To avoid this problem, we simply use a
1758 * trapezoidal rule and iterate it <code>degree+2</code> times in each
1759 * coordinate direction (again as explained in @ref step_7 "step-7"):
1760 *
1761 * @code
1762 *   const QTrapezoid<1> q_trapez;
1763 *   const QIterated<dim> quadrature(q_trapez, degree + 2);
1764 *  
1765 * @endcode
1766 *
1767 * With this, we can then let the library compute the errors and output
1768 * them to the screen:
1769 *
1770 * @code
1771 *   VectorTools::integrate_difference(dof_handler,
1772 *   solution,
1773 *   exact_solution,
1774 *   cellwise_errors,
1775 *   quadrature,
1776 *   VectorTools::L2_norm,
1777 *   &pressure_mask);
1778 *   const double p_l2_error =
1779 *   VectorTools::compute_global_error(triangulation,
1780 *   cellwise_errors,
1781 *   VectorTools::L2_norm);
1782 *  
1783 *   VectorTools::integrate_difference(dof_handler,
1784 *   solution,
1785 *   exact_solution,
1786 *   cellwise_errors,
1787 *   quadrature,
1788 *   VectorTools::L2_norm,
1789 *   &velocity_mask);
1790 *   const double u_l2_error =
1791 *   VectorTools::compute_global_error(triangulation,
1792 *   cellwise_errors,
1793 *   VectorTools::L2_norm);
1794 *  
1795 *   std::cout << "Errors: ||e_p||_L2 = " << p_l2_error
1796 *   << ", ||e_u||_L2 = " << u_l2_error << std::endl;
1797 *   }
1798 *  
1799 *  
1800 * @endcode
1801 *
1802 *
1803 * <a name="step_20-MixedLaplaceoutput_results"></a>
1804 * <h4>MixedLaplace::output_results</h4>
1805 *
1806
1807 *
1808 * The last interesting function is the one in which we generate graphical
1809 * output. Note that all velocity components get the same solution name
1810 * "u". Together with using
1811 * DataComponentInterpretation::component_is_part_of_vector this will
1812 * cause DataOut<dim>::write_vtu() to generate a vector representation of
1813 * the individual velocity components, see @ref step_22 "step-22" or the
1814 * @ref VVOutput "Generating graphical output"
1815 * section of the
1816 * @ref vector_valued
1817 * topic for more information. Finally, it seems inappropriate for higher
1818 * order elements to only show a single bilinear quadrilateral per cell in
1819 * the graphical output. We therefore generate patches of size
1820 * (degree+1)x(degree+1) to capture the full information content of the
1821 * solution. See the @ref step_7 "step-7" tutorial program for more information on this.
1822 *
1823 * @code
1824 *   template <int dim>
1825 *   void MixedLaplaceProblem<dim>::output_results() const
1826 *   {
1827 *   std::vector<std::string> solution_names(dim, "u");
1828 *   solution_names.emplace_back("p");
1829 *   std::vector<DataComponentInterpretation::DataComponentInterpretation>
1830 *   interpretation(dim,
1831 *   DataComponentInterpretation::component_is_part_of_vector);
1832 *   interpretation.push_back(DataComponentInterpretation::component_is_scalar);
1833 *  
1834 *   DataOut<dim> data_out;
1835 *   data_out.add_data_vector(dof_handler,
1836 *   solution,
1837 *   solution_names,
1838 *   interpretation);
1839 *  
1840 *   data_out.build_patches(degree + 1);
1841 *  
1842 *   std::ofstream output("solution.vtu");
1843 *   data_out.write_vtu(output);
1844 *   }
1845 *  
1846 *  
1847 *  
1848 * @endcode
1849 *
1850 *
1851 * <a name="step_20-MixedLaplacerun"></a>
1852 * <h4>MixedLaplace::run</h4>
1853 *
1854
1855 *
1856 * This is the final function of our main class. It's only job is to call
1857 * the other functions in their natural order:
1858 *
1859 * @code
1860 *   template <int dim>
1861 *   void MixedLaplaceProblem<dim>::run()
1862 *   {
1863 *   make_grid_and_dofs();
1864 *   assemble_system();
1865 *   solve();
1866 *   compute_errors();
1867 *   output_results();
1868 *   }
1869 *   } // namespace Step20
1870 *  
1871 *  
1872 * @endcode
1873 *
1874 *
1875 * <a name="step_20-Thecodemaincodefunction"></a>
1876 * <h3>The <code>main</code> function</h3>
1877 *
1878
1879 *
1880 * The main function we stole from @ref step_6 "step-6" instead of @ref step_4 "step-4". It is almost
1881 * equal to the one in @ref step_6 "step-6" (apart from the changed class names, of course),
1882 * the only exception is that we pass the degree of the finite element space
1883 * to the constructor of the mixed Laplace problem (here, we use zero-th order
1884 * elements).
1885 *
1886 * @code
1887 *   int main()
1888 *   {
1889 *   try
1890 *   {
1891 *   using namespace Step20;
1892 *  
1893 *   const unsigned int fe_degree = 0;
1894 *   MixedLaplaceProblem<2> mixed_laplace_problem(fe_degree);
1895 *   mixed_laplace_problem.run();
1896 *   }
1897 *   catch (std::exception &exc)
1898 *   {
1899 *   std::cerr << std::endl
1900 *   << std::endl
1901 *   << "----------------------------------------------------"
1902 *   << std::endl;
1903 *   std::cerr << "Exception on processing: " << std::endl
1904 *   << exc.what() << std::endl
1905 *   << "Aborting!" << std::endl
1906 *   << "----------------------------------------------------"
1907 *   << std::endl;
1908 *  
1909 *   return 1;
1910 *   }
1911 *   catch (...)
1912 *   {
1913 *   std::cerr << std::endl
1914 *   << std::endl
1915 *   << "----------------------------------------------------"
1916 *   << std::endl;
1917 *   std::cerr << "Unknown exception!" << std::endl
1918 *   << "Aborting!" << std::endl
1919 *   << "----------------------------------------------------"
1920 *   << std::endl;
1921 *   return 1;
1922 *   }
1923 *  
1924 *   return 0;
1925 *   }
1926 * @endcode
1927<a name="step_20-Results"></a><h1>Results</h1>
1928
1929
1930<a name="step_20-Outputoftheprogramandgraphicalvisualization"></a><h3>Output of the program and graphical visualization</h3>
1931
1932
1933
1934If we run the program as is, we get this output for the @f$32\times 32@f$
1935mesh we use (for a total of 1024 cells with 1024 pressure degrees of
1936freedom since we use piecewise constants, and 2112 velocities because
1937the Raviart-Thomas element defines one degree per freedom per face and
1938there are @f$1024 + 32 = 1056@f$ faces parallel to the @f$x@f$-axis and the same
1939number parallel to the @f$y@f$-axis):
1940@verbatim
1941\$ make run
1942[ 66%] Built target step-20
1943Scanning dependencies of target run
1944[100%] Run step-20 with Release configuration
1945Number of active cells: 1024
1946Total number of cells: 1365
1947Number of degrees of freedom: 3136 (2112+1024)
194824 CG Schur complement iterations to obtain convergence.
1949Errors: ||e_p||_L2 = 0.0445032, ||e_u||_L2 = 0.010826
1950[100%] Built target run
1951@endverbatim
1952
1953The fact that the number of iterations is so small, of course, is due to
1954the good (but expensive!) preconditioner we have developed. To get
1955confidence in the solution, let us take a look at it. The following three
1956images show (from left to right) the x-velocity, the y-velocity, and the
1957pressure:
1958
1959<table style="width:60%" align="center">
1960 <tr>
1961 <td><img src="https://www.dealii.org/images/steps/developer/step-20.u_new.jpg" width="400" alt=""></td>
1962 <td><img src="https://www.dealii.org/images/steps/developer/step-20.v_new.jpg" width="400" alt=""></td>
1963 <td><img src="https://www.dealii.org/images/steps/developer/step-20.p_new.jpg" width="400" alt=""></td>
1964 </tr>
1965</table>
1966
1967
1968
1969Let us start with the pressure: it is highest at the left and lowest at the
1970right, so flow will be from left to right. In addition, though hardly visible
1971in the graph, we have chosen the pressure field such that the flow left-right
1972flow first channels towards the center and then outward again. Consequently,
1973the x-velocity has to increase to get the flow through the narrow part,
1974something that can easily be seen in the left image. The middle image
1975represents inward flow in y-direction at the left end of the domain, and
1976outward flow in y-direction at the right end of the domain.
1977
1978
1979
1980As an additional remark, note how the x-velocity in the left image is only
1981continuous in x-direction, whereas the y-velocity is continuous in
1982y-direction. The flow fields are discontinuous in the other directions. This
1983very obviously reflects the continuity properties of the Raviart-Thomas
1984elements, which are, in fact, only in the space H(div) and not in the space
1985@f$H^1@f$. Finally, the pressure field is completely discontinuous, but
1986that should not surprise given that we have chosen <code>FE_DGQ(0)</code> as
1987the finite element for that solution component.
1988
1989
1990
1991<a name="step_20-Convergence"></a><h3>Convergence</h3>
1992
1993
1994
1995The program offers two obvious places where playing and observing convergence
1996is in order: the degree of the finite elements used (passed to the constructor
1997of the <code>MixedLaplaceProblem</code> class from <code>main()</code>), and
1998the refinement level (determined in
1999<code>MixedLaplaceProblem::make_grid_and_dofs</code>). What one can do is to
2000change these values and observe the errors computed later on in the course of
2001the program run.
2002
2003
2004
2005If one does this, one finds the following pattern for the @f$L_2@f$ error
2006in the pressure variable:
2007<table align="center" class="doxtable">
2008 <tr>
2009 <th></th>
2010 <th colspan="3" align="center">Finite element order</th>
2011 </tr>
2012 <tr>
2013 <th>Refinement level</th>
2014 <th>0</th>
2015 <th>1</th>
2016 <th>2</th>
2017 </tr>
2018 <tr>
2019 <th>0</th> <td>1.45344</td> <td>0.0831743</td> <td>0.0235186</td>
2020 </tr>
2021 <tr>
2022 <th>1</th> <td>0.715099</td> <td>0.0245341</td> <td>0.00293983</td>
2023 </tr>
2024 <tr>
2025 <th>2</th> <td>0.356383</td> <td>0.0063458</td> <td>0.000367478</td>
2026 </tr>
2027 <tr>
2028 <th>3</th> <td>0.178055</td> <td>0.00159944</td> <td>4.59349e-05</td>
2029 </tr>
2030 <tr>
2031 <th>4</th> <td>0.0890105</td> <td>0.000400669</td> <td>5.74184e-06</td>
2032 </tr>
2033 <tr>
2034 <th>5</th> <td>0.0445032</td> <td>0.000100218</td> <td>7.17799e-07</td>
2035 </tr>
2036 <tr>
2037 <th>6</th> <td>0.0222513</td> <td>2.50576e-05</td> <td>9.0164e-08</td>
2038 </tr>
2039 <tr>
2040 <th></th> <th>@f$O(h)@f$</th> <th>@f$O(h^2)@f$</th> <th>@f$O(h^3)@f$</th>
2041 </tr>
2042</table>
2043
2044The theoretically expected convergence orders are very nicely reflected by the
2045experimentally observed ones indicated in the last row of the table.
2046
2047
2048
2049One can make the same experiment with the @f$L_2@f$ error
2050in the velocity variables:
2051<table align="center" class="doxtable">
2052 <tr>
2053 <th></th>
2054 <th colspan="3" align="center">Finite element order</th>
2055 </tr>
2056 <tr>
2057 <th>Refinement level</th>
2058 <th>0</th>
2059 <th>1</th>
2060 <th>2</th>
2061 </tr>
2062 <tr>
2063 <th>0</th> <td>0.367423</td> <td>0.127657</td> <td>5.10388e-14</td>
2064 </tr>
2065 <tr>
2066 <th>1</th> <td>0.175891</td> <td>0.0319142</td> <td>9.04414e-15</td>
2067 </tr>
2068 <tr>
2069 <th>2</th> <td>0.0869402</td> <td>0.00797856</td> <td>1.23723e-14</td>
2070 </tr>
2071 <tr>
2072 <th>3</th> <td>0.0433435</td> <td>0.00199464</td> <td>1.86345e-07</td>
2073 </tr>
2074 <tr>
2075 <th>4</th> <td>0.0216559</td> <td>0.00049866</td> <td>2.72566e-07</td>
2076 </tr>
2077 <tr>
2078 <th>5</th> <td>0.010826</td> <td>0.000124664</td> <td>3.57141e-07</td>
2079 </tr>
2080 <tr>
2081 <th>6</th> <td>0.00541274</td> <td>3.1166e-05</td> <td>4.46124e-07</td>
2082 </tr>
2083 <tr>
2084 <th></th> <td>@f$O(h)@f$</td> <td>@f$O(h^2)@f$</td> <td>@f$O(h^3)@f$</td>
2085 </tr>
2086</table>
2087The result concerning the convergence order is the same here.
2088
2089
2090
2091<a name="step-20-extensions"></a>
2092<a name="step_20-Possibilitiesforextensions"></a><h3>Possibilities for extensions</h3>
2093
2094
2095<a name="step_20-Morerealisticpermeabilityfields"></a><h4>More realistic permeability fields</h4>
2096
2097
2098Realistic flow computations for ground water or oil reservoir simulations will
2099not use a constant permeability. Here's a first, rather simple way to change
2100this situation: we use a permeability that decays very rapidly away from a
2101central flowline until it hits a background value of 0.001. This is to mimic
2102the behavior of fluids in sandstone: in most of the domain, the sandstone is
2103homogeneous and, while permeable to fluids, not overly so; on the other stone,
2104the stone has cracked, or faulted, along one line, and the fluids flow much
2105easier along this large crack. Here is how we could implement something like
2106this:
2107@code
2108template <int dim>
2109void
2110KInverse<dim>::value_list (const std::vector<Point<dim> > &points,
2111 std::vector<Tensor<2,dim> > &values) const
2112{
2113 AssertDimension (points.size(), values.size());
2114
2115 for (unsigned int p=0; p<points.size(); ++p)
2116 {
2117 values[p].clear ();
2118
2119 const double distance_to_flowline
2120 = std::fabs(points[p][1]-0.2*std::sin(10*points[p][0]));
2121
2122 const double permeability = std::max(std::exp(-(distance_to_flowline*
2123 distance_to_flowline)
2124 / (0.1 * 0.1)),
2125 0.001);
2126
2127 for (unsigned int d=0; d<dim; ++d)
2128 values[p][d][d] = 1./permeability;
2129 }
2130}
2131@endcode
2132Remember that the function returns the inverse of the permeability tensor.
2133
2134
2135
2136With a significantly higher mesh resolution, we can visualize this, here with
2137x- and y-velocity:
2138
2139<table style="width:60%" align="center">
2140 <tr>
2141 <td><img src="https://www.dealii.org/images/steps/developer/step-20.u-wiggle.png" alt=""></td>
2142 <td><img src="https://www.dealii.org/images/steps/developer/step-20.v-wiggle.png" alt=""></td>
2143 </tr>
2144</table>
2145
2146It is obvious how fluids flow essentially only along the middle line, and not
2147anywhere else.
2148
2149
2150
2151Another possibility would be to use a random permeability field. A simple way
2152to achieve this would be to scatter a number of centers around the domain and
2153then use a permeability field that is the sum of (negative) exponentials for
2154each of these centers. Flow would then try to hop from one center of high
2155permeability to the next one. This is an entirely unscientific attempt at
2156describing a random medium, but one possibility to implement this behavior
2157would look like this:
2158@code
2159template <int dim>
2160class KInverse : public TensorFunction<2,dim>
2161{
2162 public:
2163 KInverse ();
2164
2165 virtual void value_list (const std::vector<Point<dim> > &points,
2166 std::vector<Tensor<2,dim> > &values) const;
2167
2168 private:
2169 std::vector<Point<dim> > centers;
2170};
2171
2172
2173template <int dim>
2174KInverse<dim>::KInverse ()
2175{
2176 const unsigned int N = 40;
2177 centers.resize (N);
2178 for (unsigned int i=0; i<N; ++i)
2179 for (unsigned int d=0; d<dim; ++d)
2180 centers[i][d] = 2.*rand()/RAND_MAX-1;
2181}
2182
2183
2184template <int dim>
2185void
2186KInverse<dim>::value_list (const std::vector<Point<dim> > &points,
2187 std::vector<Tensor<2,dim> > &values) const
2188{
2189 AssertDimension (points.size(), values.size());
2190
2191 for (unsigned int p=0; p<points.size(); ++p)
2192 {
2193 values[p].clear ();
2194
2195 double permeability = 0;
2196 for (unsigned int i=0; i<centers.size(); ++i)
2197 permeability += std::exp(-(points[p] - centers[i]).norm_square() / (0.1 * 0.1));
2198
2199 const double normalized_permeability
2200 = std::max(permeability, 0.005);
2201
2202 for (unsigned int d=0; d<dim; ++d)
2203 values[p][d][d] = 1./normalized_permeability;
2204 }
2205}
2206@endcode
2207
2208A piecewise constant interpolation of the diagonal elements of the
2209inverse of this tensor (i.e., of <code>normalized_permeability</code>)
2210looks as follows:
2211
2212<img src="https://www.dealii.org/images/steps/developer/step-20.k-random.png" alt="">
2213
2214
2215With a permeability field like this, we would get x-velocities and pressures as
2216follows:
2217
2218<table style="width:60%" align="center">
2219 <tr>
2220 <td><img src="https://www.dealii.org/images/steps/developer/step-20.u-random.png" alt=""></td>
2221 <td><img src="https://www.dealii.org/images/steps/developer/step-20.p-random.png" alt=""></td>
2222 </tr>
2223</table>
2224
2225We will use these permeability fields again in @ref step_21 "step-21" and @ref step_43 "step-43".
2226
2227
2228<a name="step_20-Betterlinearsolvers"></a><h4>Better linear solvers</h4>
2229
2230
2231As mentioned in the introduction, the Schur complement solver used here is not
2232the best one conceivable (nor is it intended to be a particularly good
2233one). Better ones can be found in the literature and can be built using the
2234same block matrix techniques that were introduced here. We pick up on this
2235theme again in @ref step_22 "step-22", where we first build a Schur complement solver for the
2236Stokes equation as we did here, and then in the <a
2237href="step_22.html#improved-solver">Improved Solvers</a> section discuss better
2238ways based on solving the system as a whole but preconditioning based on
2239individual blocks. We will also come back to this in @ref step_43 "step-43".
2240 *
2241 *
2242<a name="step_20-PlainProg"></a>
2243<h1> The plain program</h1>
2244@include "step-20.cc"
2245*/
Definition fe_q.h:554
Definition point.h:111
virtual void value_list(const std::vector< Point< dim > > &points, std::vector< value_type > &values) const
Point< 2 > second
Definition grid_out.cc:4630
Point< 2 > first
Definition grid_out.cc:4629
unsigned int level
Definition grid_out.cc:4632
#define AssertDimension(dim1, dim2)
void loop(IteratorType begin, std_cxx20::type_identity_t< IteratorType > end, DOFINFO &dinfo, INFOBOX &info, const std::function< void(std_cxx20::type_identity_t< DOFINFO > &, typename INFOBOX::CellInfo &)> &cell_worker, const std::function< void(std_cxx20::type_identity_t< DOFINFO > &, typename INFOBOX::CellInfo &)> &boundary_worker, const std::function< void(std_cxx20::type_identity_t< DOFINFO > &, std_cxx20::type_identity_t< DOFINFO > &, typename INFOBOX::CellInfo &, typename INFOBOX::CellInfo &)> &face_worker, AssemblerType &assembler, const LoopControl &lctrl=LoopControl())
Definition loop.h:564
std::vector< index_type > data
Definition mpi.cc:735
std::size_t size
Definition mpi.cc:734
void component_wise(DoFHandler< dim, spacedim > &dof_handler, const std::vector< unsigned int > &target_component=std::vector< unsigned int >())
std::vector< types::global_dof_index > count_dofs_per_fe_block(const DoFHandler< dim, spacedim > &dof, const std::vector< unsigned int > &target_block=std::vector< unsigned int >())
std::vector< types::global_dof_index > count_dofs_per_fe_component(const DoFHandler< dim, spacedim > &dof_handler, const bool vector_valued_once=false, const std::vector< unsigned int > &target_component={})
void hyper_cube(Triangulation< dim, spacedim > &tria, const double left=0., const double right=1., const bool colorize=false)
void refine(Triangulation< dim, spacedim > &tria, const Vector< Number > &criteria, const double threshold, const unsigned int max_to_mark=numbers::invalid_unsigned_int)
@ matrix
Contents is actually a matrix.
VectorType::value_type * end(VectorType &V)
void run(const Iterator &begin, const std_cxx20::type_identity_t< Iterator > &end, Worker worker, Copier copier, const ScratchData &sample_scratch_data, const CopyData &sample_copy_data, const unsigned int queue_length, const unsigned int chunk_size)
bool check(const ConstraintKinds kind_in, const unsigned int dim)
void copy(const T *begin, const T *end, U *dest)
int(&) functions(const void *v1, const void *v2)
const ::parallel::distributed::Triangulation< dim, spacedim > * triangulation
DEAL_II_HOST constexpr SymmetricTensor< 2, dim, Number > unit_symmetric_tensor()