Reference documentation for deal.II version Git 98872c4d47 2020-10-01 08:48:12 +0200
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Classes | Public Types | Public Member Functions | Static Public Member Functions | Protected Attributes | Private Attributes | List of all members
SolverFGMRES< VectorType > Class Template Reference

#include <deal.II/lac/solver_gmres.h>

Inheritance diagram for SolverFGMRES< VectorType >:
[legend]

Classes

struct  AdditionalData
 

Public Types

using vector_type = VectorType
 

Public Member Functions

 SolverFGMRES (SolverControl &cn, VectorMemory< VectorType > &mem, const AdditionalData &data=AdditionalData())
 
 SolverFGMRES (SolverControl &cn, const AdditionalData &data=AdditionalData())
 
template<typename MatrixType , typename PreconditionerType >
void solve (const MatrixType &A, VectorType &x, const VectorType &b, const PreconditionerType &preconditioner)
 
boost::signals2::connection connect (const std::function< SolverControl::State(const unsigned int iteration, const double check_value, const VectorType &current_iterate)> &slot)
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 
Subscriptor functionality

Classes derived from Subscriptor provide a facility to subscribe to this object. This is mostly used by the SmartPointer class.

void subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
void unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
unsigned int n_subscriptions () const
 
template<typename StreamType >
void list_subscribers (StreamType &stream) const
 
void list_subscribers () const
 

Static Public Member Functions

static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 

Protected Attributes

GrowingVectorMemory< VectorTypestatic_vector_memory
 
VectorMemory< VectorType > & memory
 
boost::signals2::signal< SolverControl::State(const unsigned int iteration, const double check_value, const VectorType &current_iterate), StateCombineriteration_status
 

Private Attributes

AdditionalData additional_data
 
FullMatrix< doubleH
 
FullMatrix< doubleH1
 

Detailed Description

template<class VectorType = Vector<double>>
class SolverFGMRES< VectorType >

Implementation of the Generalized minimal residual method with flexible preconditioning (flexible GMRES or FGMRES).

This flexible version of the GMRES method allows for the use of a different preconditioner in each iteration step. Therefore, it is also more robust with respect to inaccurate evaluation of the preconditioner. An important application is the use of a Krylov space method inside the preconditioner. As opposed to SolverGMRES which allows one to choose between left and right preconditioning, this solver always applies the preconditioner from the right.

FGMRES needs two vectors in each iteration steps yielding a total of 2*SolverFGMRES::AdditionalData::max_basis_size+1 auxiliary vectors. Otherwise, FGMRES requires roughly the same number of operations per iteration compared to GMRES, except one application of the preconditioner less at each restart and at the end of solve().

For more details see [69].

Definition at line 459 of file solver_gmres.h.

Member Typedef Documentation

◆ vector_type

template<class VectorType = Vector<double>>
using SolverBase< VectorType >::vector_type = VectorType
inherited

An alias for the underlying vector type

Definition at line 347 of file solver.h.

Constructor & Destructor Documentation

◆ SolverFGMRES() [1/2]

template<class VectorType = Vector<double>>
SolverFGMRES< VectorType >::SolverFGMRES ( SolverControl cn,
VectorMemory< VectorType > &  mem,
const AdditionalData data = AdditionalData() 
)

Constructor.

◆ SolverFGMRES() [2/2]

template<class VectorType = Vector<double>>
SolverFGMRES< VectorType >::SolverFGMRES ( SolverControl cn,
const AdditionalData data = AdditionalData() 
)

Constructor. Use an object of type GrowingVectorMemory as a default to allocate memory.

Member Function Documentation

◆ solve()

template<class VectorType = Vector<double>>
template<typename MatrixType , typename PreconditionerType >
void SolverFGMRES< VectorType >::solve ( const MatrixType &  A,
VectorType x,
const VectorType b,
const PreconditionerType &  preconditioner 
)

Solve the linear system \(Ax=b\) for x.

◆ connect()

template<class VectorType >
boost::signals2::connection SolverBase< VectorType >::connect ( const std::function< SolverControl::State(const unsigned int iteration, const double check_value, const VectorType &current_iterate)> &  slot)
inlineinherited

Connect a function object that will be called periodically within iterative solvers. This function is used to attach monitors to iterative solvers, either to determine when convergence has happened, or simply to observe the progress of an iteration. See the documentation of this class for more information.

Parameters
slotA function object specified here will, with each call, receive the number of the current iteration, the value that is used to check for convergence (typically the residual of the current iterate with respect to the linear system to be solved) and the currently best available guess for the current iterate. Note that some solvers do not update the approximate solution in every iteration but only after convergence or failure has been determined (GMRES is an example); in such cases, the vector passed as the last argument to the signal is simply the best approximate at the time the signal is called, but not the vector that will be returned if the signal's return value indicates that the iteration should be terminated. The function object must return a SolverControl::State value that indicates whether the iteration should continue, has failed, or has succeeded. The results of all connected functions will then be combined to determine what should happen with the iteration.
Returns
A connection object that represents the connection from the signal to the function object. It can be used to disconnect the function object again from the signal. See the documentation of the BOOST Signals2 library for more information on connection management.

Definition at line 554 of file solver.h.

◆ subscribe()

void Subscriptor::subscribe ( std::atomic< bool > *const  validity,
const std::string &  identifier = "" 
) const
inherited

Subscribes a user of the object by storing the pointer validity. The subscriber may be identified by text supplied as identifier.

Definition at line 136 of file subscriptor.cc.

◆ unsubscribe()

void Subscriptor::unsubscribe ( std::atomic< bool > *const  validity,
const std::string &  identifier = "" 
) const
inherited

Unsubscribes a user from the object.

Note
The identifier and the validity pointer must be the same as the one supplied to subscribe().

Definition at line 156 of file subscriptor.cc.

◆ n_subscriptions()

unsigned int Subscriptor::n_subscriptions ( ) const
inlineinherited

Return the present number of subscriptions to this object. This allows to use this class for reference counted lifetime determination where the last one to unsubscribe also deletes the object.

Definition at line 300 of file subscriptor.h.

◆ list_subscribers() [1/2]

template<typename StreamType >
void Subscriptor::list_subscribers ( StreamType &  stream) const
inlineinherited

List the subscribers to the input stream.

Definition at line 317 of file subscriptor.h.

◆ list_subscribers() [2/2]

void Subscriptor::list_subscribers ( ) const
inherited

List the subscribers to deallog.

Definition at line 204 of file subscriptor.cc.

◆ serialize()

template<class Archive >
void Subscriptor::serialize ( Archive &  ar,
const unsigned int  version 
)
inlineinherited

Read or write the data of this object to or from a stream for the purpose of serialization.

This function does not actually serialize any of the member variables of this class. The reason is that what this class stores is only who subscribes to this object, but who does so at the time of storing the contents of this object does not necessarily have anything to do with who subscribes to the object when it is restored. Consequently, we do not want to overwrite the subscribers at the time of restoring, and then there is no reason to write the subscribers out in the first place.

Definition at line 309 of file subscriptor.h.

Member Data Documentation

◆ additional_data

template<class VectorType = Vector<double>>
AdditionalData SolverFGMRES< VectorType >::additional_data
private

Additional flags.

Definition at line 508 of file solver_gmres.h.

◆ H

template<class VectorType = Vector<double>>
FullMatrix<double> SolverFGMRES< VectorType >::H
private

Projected system matrix

Definition at line 513 of file solver_gmres.h.

◆ H1

template<class VectorType = Vector<double>>
FullMatrix<double> SolverFGMRES< VectorType >::H1
private

Auxiliary matrix for inverting H

Definition at line 518 of file solver_gmres.h.

◆ static_vector_memory

template<class VectorType = Vector<double>>
GrowingVectorMemory<VectorType> SolverBase< VectorType >::static_vector_memory
mutableprotectedinherited

A static vector memory object to be used whenever no such object has been given to the constructor.

Definition at line 415 of file solver.h.

◆ memory

template<class VectorType = Vector<double>>
VectorMemory<VectorType>& SolverBase< VectorType >::memory
protectedinherited

A reference to an object that provides memory for auxiliary vectors.

Definition at line 420 of file solver.h.

◆ iteration_status

template<class VectorType = Vector<double>>
boost::signals2::signal< SolverControl::State(const unsigned int iteration, const double check_value, const VectorType & current_iterate), StateCombiner> SolverBase< VectorType >::iteration_status
protectedinherited

A signal that iterative solvers can execute at the end of every iteration (or in an otherwise periodic fashion) to find out whether we should continue iterating or not. The signal may call one or more slots that each will make this determination by themselves, and the result over all slots (function calls) will be determined by the StateCombiner object.

The arguments passed to the signal are (i) the number of the current iteration; (ii) the value that is used to determine convergence (oftentimes the residual, but in other cases other quantities may be used as long as they converge to zero as the iterate approaches the solution of the linear system); and (iii) a vector that corresponds to the current best guess for the solution at the point where the signal is called. Note that some solvers do not update the approximate solution in every iteration but only after convergence or failure has been determined (GMRES is an example); in such cases, the vector passed as the last argument to the signal is simply the best approximate at the time the signal is called, but not the vector that will be returned if the signal's return value indicates that the iteration should be terminated.

Definition at line 471 of file solver.h.


The documentation for this class was generated from the following file: