Reference documentation for deal.II version GIT relicensing-437-g81ec864850 2024-04-19 07:30:02+00:00
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Private Types | Private Member Functions | Private Attributes | Static Private Attributes | List of all members
Functions::ParsedFunction< dim > Class Template Reference

#include <deal.II/base/parsed_function.h>

Inheritance diagram for Functions::ParsedFunction< dim >:
Inheritance graph
[legend]

Public Types

enum  DifferenceFormula { Euler , UpwindEuler , FourthOrder }
 
using time_type = typename FunctionTime< typename numbers::NumberTraits< RangeNumberType >::real_type >::time_type
 

Public Member Functions

 ParsedFunction (const unsigned int n_components=1, const double h=1e-8)
 
void parse_parameters (ParameterHandler &prm)
 
virtual void vector_value (const Point< dim > &p, Vector< double > &values) const override
 
virtual double value (const Point< dim > &p, const unsigned int component=0) const override
 
virtual void set_time (const double newtime) override
 
void set_formula (const DifferenceFormula formula=Euler)
 
void set_h (const double h)
 
virtual Tensor< 1, dim > gradient (const Point< dim > &p, const unsigned int component=0) const override
 
virtual void vector_gradient (const Point< dim > &p, std::vector< Tensor< 1, dim > > &gradients) const override
 
virtual void vector_gradient (const Point< dim > &p, std::vector< Tensor< 1, dim, RangeNumberType > > &gradients) const
 
virtual void gradient_list (const std::vector< Point< dim > > &points, std::vector< Tensor< 1, dim > > &gradients, const unsigned int component=0) const override
 
virtual void gradient_list (const std::vector< Point< dim > > &points, std::vector< Tensor< 1, dim, RangeNumberType > > &gradients, const unsigned int component=0) const
 
virtual void vector_gradient_list (const std::vector< Point< dim > > &points, std::vector< std::vector< Tensor< 1, dim > > > &gradients) const override
 
virtual void vector_gradient_list (const std::vector< Point< dim > > &points, std::vector< std::vector< Tensor< 1, dim, RangeNumberType > > > &gradients) const
 
virtual void vector_value (const Point< dim > &p, Vector< RangeNumberType > &values) const
 
virtual void value_list (const std::vector< Point< dim > > &points, std::vector< RangeNumberType > &values, const unsigned int component=0) const
 
virtual void vector_value_list (const std::vector< Point< dim > > &points, std::vector< Vector< RangeNumberType > > &values) const
 
virtual void vector_values (const std::vector< Point< dim > > &points, std::vector< std::vector< RangeNumberType > > &values) const
 
virtual void vector_gradients (const std::vector< Point< dim > > &points, std::vector< std::vector< Tensor< 1, dim, RangeNumberType > > > &gradients) const
 
virtual RangeNumberType laplacian (const Point< dim > &p, const unsigned int component=0) const
 
virtual void vector_laplacian (const Point< dim > &p, Vector< RangeNumberType > &values) const
 
virtual void laplacian_list (const std::vector< Point< dim > > &points, std::vector< RangeNumberType > &values, const unsigned int component=0) const
 
virtual void vector_laplacian_list (const std::vector< Point< dim > > &points, std::vector< Vector< RangeNumberType > > &values) const
 
virtual SymmetricTensor< 2, dim, RangeNumberType > hessian (const Point< dim > &p, const unsigned int component=0) const
 
virtual void vector_hessian (const Point< dim > &p, std::vector< SymmetricTensor< 2, dim, RangeNumberType > > &values) const
 
virtual void hessian_list (const std::vector< Point< dim > > &points, std::vector< SymmetricTensor< 2, dim, RangeNumberType > > &values, const unsigned int component=0) const
 
virtual void vector_hessian_list (const std::vector< Point< dim > > &points, std::vector< std::vector< SymmetricTensor< 2, dim, RangeNumberType > > > &values) const
 
virtual std::size_t memory_consumption () const
 
Number get_time () const
 
virtual void set_time (const Number new_time)
 
virtual void advance_time (const Number delta_t)
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 
Subscriptor functionality

Classes derived from Subscriptor provide a facility to subscribe to this object. This is mostly used by the SmartPointer class.

void subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
void unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
unsigned int n_subscriptions () const
 
template<typename StreamType >
void list_subscribers (StreamType &stream) const
 
void list_subscribers () const
 

Static Public Member Functions

static void declare_parameters (ParameterHandler &prm, const unsigned int n_components=1)
 
static DifferenceFormula get_formula_of_order (const unsigned int ord)
 
static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 

Public Attributes

const unsigned int n_components
 

Static Public Attributes

static constexpr unsigned int dimension = dim
 

Private Types

using map_value_type = decltype(counter_map)::value_type
 
using map_iterator = decltype(counter_map)::iterator
 

Private Member Functions

void check_no_subscribers () const noexcept
 

Private Attributes

FunctionParser< dim > function_object
 
double h
 
std::vector< Tensor< 1, dim > > ht
 
DifferenceFormula formula
 
Number time
 
std::atomic< unsigned intcounter
 
std::map< std::string, unsigned intcounter_map
 
std::vector< std::atomic< bool > * > validity_pointers
 
const std::type_info * object_info
 

Static Private Attributes

static std::mutex mutex
 

Detailed Description

template<int dim>
class Functions::ParsedFunction< dim >

Friendly interface to the FunctionParser class. This class is meant as a wrapper for the FunctionParser class. It is used in the step-34 tutorial program.

It provides two methods to declare and parse a ParameterHandler object and creates the Function object declared in the parameter file. This class is derived from the AutoDerivativeFunction class, so you don't need to specify derivatives. An example of usage of this class is as follows:

// A parameter handler
// Declare a section for the function we need
prm.enter_subsection("My vector function");
// Create a ParsedFunction
ParsedFunction<dim> my_vector_function(dim);
// Parse an input file.
prm.parse_input(some_input_file);
// Initialize the ParsedFunction object with the given file
prm.enter_subsection("My vector function");
my_vector_function.parse_parameters(prm);
static void declare_parameters(ParameterHandler &prm, const unsigned int n_components=1)
virtual void parse_input(std::istream &input, const std::string &filename="input file", const std::string &last_line="", const bool skip_undefined=false)
void enter_subsection(const std::string &subsection, const bool create_path_if_needed=true)

And here is an example of how the input parameter could look like (see the documentation of the FunctionParser class for a detailed description of the syntax of the function definition):

# A test two dimensional vector function, depending on time
subsection My vector function
set Function constants = kappa=.1, lambda=2.
set Function expression = if(y>.5, kappa*x*(1-x),0); t^2*cos(lambda*pi*x)
set Variable names = x,y,t
end

Definition at line 82 of file parsed_function.h.

Member Typedef Documentation

◆ time_type

template<int dim, typename RangeNumberType = double>
using Function< dim, RangeNumberType >::time_type = typename FunctionTime< typename numbers::NumberTraits<RangeNumberType>::real_type>::time_type
inherited

The scalar-valued real type used for representing time.

Definition at line 168 of file function.h.

◆ map_value_type

using Subscriptor::map_value_type = decltype(counter_map)::value_type
privateinherited

The data type used in counter_map.

Definition at line 229 of file subscriptor.h.

◆ map_iterator

using Subscriptor::map_iterator = decltype(counter_map)::iterator
privateinherited

The iterator type used in counter_map.

Definition at line 234 of file subscriptor.h.

Member Enumeration Documentation

◆ DifferenceFormula

template<int dim>
enum AutoDerivativeFunction::DifferenceFormula
inherited

Names of difference formulas.

Enumerator
Euler 

The symmetric Euler formula of second order:

\[ u'(t) \approx \frac{u(t+h) - u(t-h)}{2h}. \]

UpwindEuler 

The upwind Euler formula of first order:

\[ u'(t) \approx \frac{u(t) - u(t-h)}{h}. \]

FourthOrder 

The fourth order scheme

\[ u'(t) \approx \frac{u(t-2h) - 8u(t-h) + 8u(t+h) - u(t+2h)}{12h}. \]

Definition at line 87 of file auto_derivative_function.h.

Constructor & Destructor Documentation

◆ ParsedFunction()

template<int dim>
Functions::ParsedFunction< dim >::ParsedFunction ( const unsigned int  n_components = 1,
const double  h = 1e-8 
)

Construct a vector function. The vector function which is generated has n_components components (defaults to 1). The parameter h is used to initialize the AutoDerivativeFunction class from which this class is derived.

Definition at line 24 of file parsed_function.cc.

Member Function Documentation

◆ declare_parameters()

template<int dim>
void Functions::ParsedFunction< dim >::declare_parameters ( ParameterHandler prm,
const unsigned int  n_components = 1 
)
static

Declare parameters needed by this class. The additional parameter n_components is used to generate the right code according to the number of components of the function that will parse this ParameterHandler. If the number of components which is parsed does not match the number of components of this object, an assertion is thrown and the program is aborted. The default behavior for this class is to declare the following entries:

set Function constants =
set Function expression = 0
set Variable names = x,y,t

Definition at line 34 of file parsed_function.cc.

◆ parse_parameters()

template<int dim>
void Functions::ParsedFunction< dim >::parse_parameters ( ParameterHandler prm)

Parse parameters needed by this class. If the number of components which is parsed does not match the number of components of this object, an assertion is thrown and the program is aborted. In order for the class to function properly, we follow the same conventions declared in the FunctionParser class (look there for a detailed description of the syntax for function declarations).

The three variables that can be parsed from a parameter file are the following:

set Function constants =
set Function expression =
set Variable names =

Function constants is a collection of pairs in the form name=value, separated by commas, for example:

set Function constants = lambda=1., alpha=2., gamma=3.

These constants can be used in the declaration of the function expression, which follows the convention of the FunctionParser class. In order to specify vector functions, semicolons have to be used to separate the different components, e.g.:

set Function expression = cos(pi*x); cos(pi*y)

The variable names entry can be used to customize the name of the variables used in the Function. It defaults to

set Variable names = x,t

for one dimensional problems,

set Variable names = x,y,t

for two dimensional problems and

set Variable names = x,y,z,t

for three dimensional problems.

The time variable can be set according to specifications in the FunctionTime base class.

Definition at line 113 of file parsed_function.cc.

◆ vector_value() [1/2]

template<int dim>
void Functions::ParsedFunction< dim >::vector_value ( const Point< dim > &  p,
Vector< double > &  values 
) const
overridevirtual

Return all components of a vector-valued function at the given point p.

Definition at line 165 of file parsed_function.cc.

◆ value()

template<int dim>
double Functions::ParsedFunction< dim >::value ( const Point< dim > &  p,
const unsigned int  component = 0 
) const
overridevirtual

Return the value of the function at the given point. Unless there is only one component (i.e. the function is scalar), you should state the component you want to have evaluated; it defaults to zero, i.e. the first component.

Reimplemented from Function< dim, RangeNumberType >.

Definition at line 175 of file parsed_function.cc.

◆ set_time() [1/2]

template<int dim>
void Functions::ParsedFunction< dim >::set_time ( const double  newtime)
overridevirtual

Set the time to a specific value for time-dependent functions.

We need to overwrite this to set the time also in the accessor FunctionParser<dim>.

Definition at line 184 of file parsed_function.cc.

◆ set_formula()

template<int dim>
void AutoDerivativeFunction< dim >::set_formula ( const DifferenceFormula  formula = Euler)
inherited

Choose the difference formula. See the enum DifferenceFormula for available choices.

Definition at line 42 of file auto_derivative_function.cc.

◆ set_h()

template<int dim>
void AutoDerivativeFunction< dim >::set_h ( const double  h)
inherited

Takes the difference step size h. It's within the user's responsibility to choose an appropriate value here. h should be chosen taking into account the absolute value of as well as the amount of local variation of the function. Setting h=1e-6 might be a good choice for functions with an absolute value of about 1, that furthermore does not vary to much.

Definition at line 64 of file auto_derivative_function.cc.

◆ gradient()

template<int dim>
Tensor< 1, dim > AutoDerivativeFunction< dim >::gradient ( const Point< dim > &  p,
const unsigned int  component = 0 
) const
overridevirtualinherited

Return the gradient of the specified component of the function at the given point.

Compute numerical difference quotients using the preset DifferenceFormula.

Reimplemented from Function< dim, RangeNumberType >.

Definition at line 74 of file auto_derivative_function.cc.

◆ vector_gradient() [1/2]

template<int dim>
void AutoDerivativeFunction< dim >::vector_gradient ( const Point< dim > &  p,
std::vector< Tensor< 1, dim > > &  gradients 
) const
overridevirtualinherited

Return the gradient of all components of the function at the given point.

Compute numerical difference quotients using the preset DifferenceFormula.

Definition at line 126 of file auto_derivative_function.cc.

◆ vector_gradient() [2/2]

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_gradient ( const Point< dim > &  p,
std::vector< Tensor< 1, dim, RangeNumberType > > &  gradients 
) const
virtualinherited

◆ gradient_list() [1/2]

template<int dim>
void AutoDerivativeFunction< dim >::gradient_list ( const std::vector< Point< dim > > &  points,
std::vector< Tensor< 1, dim > > &  gradients,
const unsigned int  component = 0 
) const
overridevirtualinherited

Set gradients to the gradients of the specified component of the function at the points. It is assumed that gradients already has the right size, i.e. the same size as the points array.

Compute numerical difference quotients using the preset DifferenceFormula.

Definition at line 203 of file auto_derivative_function.cc.

◆ gradient_list() [2/2]

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::gradient_list ( const std::vector< Point< dim > > &  points,
std::vector< Tensor< 1, dim, RangeNumberType > > &  gradients,
const unsigned int  component = 0 
) const
virtualinherited

Set gradients to the gradients of the specified component of the function at the points. It is assumed that gradients already has the right size, i.e. the same size as the points array.

Reimplemented in Functions::FEFieldFunction< dim, VectorType, spacedim >, Functions::ConstantFunction< dim, RangeNumberType >, and VectorFunctionFromTensorFunction< dim, RangeNumberType >.

◆ vector_gradient_list() [1/2]

template<int dim>
void AutoDerivativeFunction< dim >::vector_gradient_list ( const std::vector< Point< dim > > &  points,
std::vector< std::vector< Tensor< 1, dim > > > &  gradients 
) const
overridevirtualinherited

Set gradients to the gradients of the function at the points, for all components. It is assumed that gradients already has the right size, i.e. the same size as the points array.

The outer loop over gradients is over the points in the list, the inner loop over the different components of the function.

Compute numerical difference quotients using the preset DifferenceFormula.

Definition at line 267 of file auto_derivative_function.cc.

◆ vector_gradient_list() [2/2]

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_gradient_list ( const std::vector< Point< dim > > &  points,
std::vector< std::vector< Tensor< 1, dim, RangeNumberType > > > &  gradients 
) const
virtualinherited

Set gradients to the gradients of the function at the points, for all components. It is assumed that gradients already has the right size, i.e. the same size as the points array.

The outer loop over gradients is over the points in the list, the inner loop over the different components of the function.

Reimplemented in Functions::FEFieldFunction< dim, VectorType, spacedim >, Functions::ConstantFunction< dim, RangeNumberType >, and VectorFunctionFromTensorFunction< dim, RangeNumberType >.

◆ get_formula_of_order()

template<int dim>
AutoDerivativeFunction< dim >::DifferenceFormula AutoDerivativeFunction< dim >::get_formula_of_order ( const unsigned int  ord)
staticinherited

Return a DifferenceFormula of the order ord at minimum.

Definition at line 335 of file auto_derivative_function.cc.

◆ vector_value() [2/2]

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_value ( const Point< dim > &  p,
Vector< RangeNumberType > &  values 
) const
virtualinherited

◆ value_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::value_list ( const std::vector< Point< dim > > &  points,
std::vector< RangeNumberType > &  values,
const unsigned int  component = 0 
) const
virtualinherited

Set values to the point values of the specified component of the function at the points. It is assumed that values already has the right size, i.e. the same size as the points array.

By default, this function repeatedly calls value() for each point separately, to fill the output array.

Reimplemented in Functions::ConstantFunction< dim, RangeNumberType >, and Functions::FEFieldFunction< dim, VectorType, spacedim >.

◆ vector_value_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_value_list ( const std::vector< Point< dim > > &  points,
std::vector< Vector< RangeNumberType > > &  values 
) const
virtualinherited

Set values to the point values of the function at the points. It is assumed that values already has the right size, i.e. the same size as the points array, and that all elements be vectors with the same number of components as this function has.

By default, this function repeatedly calls vector_value() for each point separately, to fill the output array.

Reimplemented in Functions::ConstantFunction< dim, RangeNumberType >, VectorFunctionFromTensorFunction< dim, RangeNumberType >, ComponentSelectFunction< dim, RangeNumberType >, and Functions::FEFieldFunction< dim, VectorType, spacedim >.

◆ vector_values()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_values ( const std::vector< Point< dim > > &  points,
std::vector< std::vector< RangeNumberType > > &  values 
) const
virtualinherited

For each component of the function, fill a vector of values, one for each point.

The default implementation of this function in Function calls value_list() for each component. In order to improve performance, this can be reimplemented in derived classes to speed up performance.

◆ vector_gradients()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_gradients ( const std::vector< Point< dim > > &  points,
std::vector< std::vector< Tensor< 1, dim, RangeNumberType > > > &  gradients 
) const
virtualinherited

For each component of the function, fill a vector of gradient values, one for each point.

The default implementation of this function in Function calls value_list() for each component. In order to improve performance, this can be reimplemented in derived classes to speed up performance.

Reimplemented in VectorFunctionFromTensorFunction< dim, RangeNumberType >.

◆ laplacian()

template<int dim, typename RangeNumberType = double>
virtual RangeNumberType Function< dim, RangeNumberType >::laplacian ( const Point< dim > &  p,
const unsigned int  component = 0 
) const
virtualinherited

◆ vector_laplacian()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_laplacian ( const Point< dim > &  p,
Vector< RangeNumberType > &  values 
) const
virtualinherited

Compute the Laplacian of all components at point p and store them in values.

Reimplemented in Functions::FEFieldFunction< dim, VectorType, spacedim >.

◆ laplacian_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::laplacian_list ( const std::vector< Point< dim > > &  points,
std::vector< RangeNumberType > &  values,
const unsigned int  component = 0 
) const
virtualinherited

Compute the Laplacian of one component at a set of points.

Reimplemented in Functions::FEFieldFunction< dim, VectorType, spacedim >.

◆ vector_laplacian_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_laplacian_list ( const std::vector< Point< dim > > &  points,
std::vector< Vector< RangeNumberType > > &  values 
) const
virtualinherited

Compute the Laplacians of all components at a set of points.

Reimplemented in Functions::FEFieldFunction< dim, VectorType, spacedim >.

◆ hessian()

template<int dim, typename RangeNumberType = double>
virtual SymmetricTensor< 2, dim, RangeNumberType > Function< dim, RangeNumberType >::hessian ( const Point< dim > &  p,
const unsigned int  component = 0 
) const
virtualinherited

◆ vector_hessian()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_hessian ( const Point< dim > &  p,
std::vector< SymmetricTensor< 2, dim, RangeNumberType > > &  values 
) const
virtualinherited

Compute the Hessian of all components at point p and store them in values.

◆ hessian_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::hessian_list ( const std::vector< Point< dim > > &  points,
std::vector< SymmetricTensor< 2, dim, RangeNumberType > > &  values,
const unsigned int  component = 0 
) const
virtualinherited

Compute the Hessian of one component at a set of points.

◆ vector_hessian_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_hessian_list ( const std::vector< Point< dim > > &  points,
std::vector< std::vector< SymmetricTensor< 2, dim, RangeNumberType > > > &  values 
) const
virtualinherited

Compute the Hessians of all components at a set of points.

◆ memory_consumption()

template<int dim, typename RangeNumberType = double>
virtual std::size_t Function< dim, RangeNumberType >::memory_consumption ( ) const
virtualinherited

◆ get_time()

template<typename Number = double>
Number FunctionTime< Number >::get_time ( ) const
inherited

Return the value of the time variable.

◆ set_time() [2/2]

template<typename Number = double>
virtual void FunctionTime< Number >::set_time ( const Number  new_time)
virtualinherited

Set the time to new_time, overwriting the old value.

◆ advance_time()

template<typename Number = double>
virtual void FunctionTime< Number >::advance_time ( const Number  delta_t)
virtualinherited

Advance the time by the given time step delta_t.

◆ subscribe()

void Subscriptor::subscribe ( std::atomic< bool > *const  validity,
const std::string &  identifier = "" 
) const
inherited

Subscribes a user of the object by storing the pointer validity. The subscriber may be identified by text supplied as identifier.

Definition at line 135 of file subscriptor.cc.

◆ unsubscribe()

void Subscriptor::unsubscribe ( std::atomic< bool > *const  validity,
const std::string &  identifier = "" 
) const
inherited

Unsubscribes a user from the object.

Note
The identifier and the validity pointer must be the same as the one supplied to subscribe().

Definition at line 155 of file subscriptor.cc.

◆ n_subscriptions()

unsigned int Subscriptor::n_subscriptions ( ) const
inlineinherited

Return the present number of subscriptions to this object. This allows to use this class for reference counted lifetime determination where the last one to unsubscribe also deletes the object.

Definition at line 300 of file subscriptor.h.

◆ list_subscribers() [1/2]

template<typename StreamType >
void Subscriptor::list_subscribers ( StreamType &  stream) const
inlineinherited

List the subscribers to the input stream.

Definition at line 317 of file subscriptor.h.

◆ list_subscribers() [2/2]

void Subscriptor::list_subscribers ( ) const
inherited

List the subscribers to deallog.

Definition at line 203 of file subscriptor.cc.

◆ serialize()

template<class Archive >
void Subscriptor::serialize ( Archive &  ar,
const unsigned int  version 
)
inlineinherited

Read or write the data of this object to or from a stream for the purpose of serialization using the BOOST serialization library.

This function does not actually serialize any of the member variables of this class. The reason is that what this class stores is only who subscribes to this object, but who does so at the time of storing the contents of this object does not necessarily have anything to do with who subscribes to the object when it is restored. Consequently, we do not want to overwrite the subscribers at the time of restoring, and then there is no reason to write the subscribers out in the first place.

Definition at line 309 of file subscriptor.h.

◆ check_no_subscribers()

void Subscriptor::check_no_subscribers ( ) const
privatenoexceptinherited

Check that there are no objects subscribing to this object. If this check passes then it is safe to destroy the current object. It this check fails then this function will either abort or print an error message to deallog (by using the AssertNothrow mechanism), but will not throw an exception.

Note
Since this function is just a consistency check it does nothing in release mode.
If this function is called when there is an uncaught exception then, rather than aborting, this function prints an error message to the standard error stream and returns.

Definition at line 52 of file subscriptor.cc.

Member Data Documentation

◆ function_object

template<int dim>
FunctionParser<dim> Functions::ParsedFunction< dim >::function_object
private

The object with which we do computations.

Definition at line 215 of file parsed_function.h.

◆ h

template<int dim>
double AutoDerivativeFunction< dim >::h
privateinherited

Step size of the difference formula. Set by the set_h() function.

Definition at line 222 of file auto_derivative_function.h.

◆ ht

template<int dim>
std::vector<Tensor<1, dim> > AutoDerivativeFunction< dim >::ht
privateinherited

Includes the unit vectors scaled by h.

Definition at line 227 of file auto_derivative_function.h.

◆ formula

template<int dim>
DifferenceFormula AutoDerivativeFunction< dim >::formula
privateinherited

Difference formula. Set by the set_formula() function.

Definition at line 232 of file auto_derivative_function.h.

◆ dimension

template<int dim, typename RangeNumberType = double>
constexpr unsigned int Function< dim, RangeNumberType >::dimension = dim
staticconstexprinherited

Export the value of the template parameter as a static member constant. Sometimes useful for some expression template programming.

Definition at line 158 of file function.h.

◆ n_components

template<int dim, typename RangeNumberType = double>
const unsigned int Function< dim, RangeNumberType >::n_components
inherited

Number of vector components.

Definition at line 163 of file function.h.

◆ time

template<typename Number = double>
Number FunctionTime< Number >::time
privateinherited

Store the present time.

Definition at line 112 of file function_time.h.

◆ counter

std::atomic<unsigned int> Subscriptor::counter
mutableprivateinherited

Store the number of objects which subscribed to this object. Initially, this number is zero, and upon destruction it shall be zero again (i.e. all objects which subscribed should have unsubscribed again).

The creator (and owner) of an object is counted in the map below if HE manages to supply identification.

We use the mutable keyword in order to allow subscription to constant objects also.

This counter may be read from and written to concurrently in multithreaded code: hence we use the std::atomic class template.

Definition at line 218 of file subscriptor.h.

◆ counter_map

std::map<std::string, unsigned int> Subscriptor::counter_map
mutableprivateinherited

In this map, we count subscriptions for each different identification string supplied to subscribe().

Definition at line 224 of file subscriptor.h.

◆ validity_pointers

std::vector<std::atomic<bool> *> Subscriptor::validity_pointers
mutableprivateinherited

In this vector, we store pointers to the validity bool in the SmartPointer objects that subscribe to this class.

Definition at line 240 of file subscriptor.h.

◆ object_info

const std::type_info* Subscriptor::object_info
mutableprivateinherited

Pointer to the typeinfo object of this object, from which we can later deduce the class name. Since this information on the derived class is neither available in the destructor, nor in the constructor, we obtain it in between and store it here.

Definition at line 248 of file subscriptor.h.

◆ mutex

std::mutex Subscriptor::mutex
staticprivateinherited

A mutex used to ensure data consistency when accessing the mutable members of this class. This lock is used in the subscribe() and unsubscribe() functions, as well as in list_subscribers().

Definition at line 271 of file subscriptor.h.


The documentation for this class was generated from the following files: