Reference documentation for deal.II version 9.2.0
|
#include <deal.II/fe/fe_p1nc.h>
Public Member Functions | |
FE_P1NC () | |
virtual std::string | get_name () const override |
virtual UpdateFlags | requires_update_flags (const UpdateFlags flags) const override |
virtual std::unique_ptr< FiniteElement< 2, 2 > > | clone () const override |
virtual | ~FE_P1NC () override=default |
Public Member Functions inherited from FiniteElement< 2, 2 > | |
FiniteElement (const FiniteElementData< dim > &fe_data, const std::vector< bool > &restriction_is_additive_flags, const std::vector< ComponentMask > &nonzero_components) | |
FiniteElement (FiniteElement< dim, spacedim > &&)=default | |
FiniteElement (const FiniteElement< dim, spacedim > &)=default | |
virtual | ~FiniteElement () override=default |
std::pair< std::unique_ptr< FiniteElement< dim, spacedim > >, unsigned int > | operator^ (const unsigned int multiplicity) const |
virtual std::unique_ptr< FiniteElement< dim, spacedim > > | clone () const=0 |
virtual std::string | get_name () const=0 |
const FiniteElement< dim, spacedim > & | operator[] (const unsigned int fe_index) const |
virtual double | shape_value (const unsigned int i, const Point< dim > &p) const |
virtual double | shape_value_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const |
virtual Tensor< 1, dim > | shape_grad (const unsigned int i, const Point< dim > &p) const |
virtual Tensor< 1, dim > | shape_grad_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const |
virtual Tensor< 2, dim > | shape_grad_grad (const unsigned int i, const Point< dim > &p) const |
virtual Tensor< 2, dim > | shape_grad_grad_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const |
virtual Tensor< 3, dim > | shape_3rd_derivative (const unsigned int i, const Point< dim > &p) const |
virtual Tensor< 3, dim > | shape_3rd_derivative_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const |
virtual Tensor< 4, dim > | shape_4th_derivative (const unsigned int i, const Point< dim > &p) const |
virtual Tensor< 4, dim > | shape_4th_derivative_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const |
virtual bool | has_support_on_face (const unsigned int shape_index, const unsigned int face_index) const |
virtual const FullMatrix< double > & | get_restriction_matrix (const unsigned int child, const RefinementCase< dim > &refinement_case=RefinementCase< dim >::isotropic_refinement) const |
virtual const FullMatrix< double > & | get_prolongation_matrix (const unsigned int child, const RefinementCase< dim > &refinement_case=RefinementCase< dim >::isotropic_refinement) const |
bool | prolongation_is_implemented () const |
bool | isotropic_prolongation_is_implemented () const |
bool | restriction_is_implemented () const |
bool | isotropic_restriction_is_implemented () const |
bool | restriction_is_additive (const unsigned int index) const |
const FullMatrix< double > & | constraints (const ::internal::SubfaceCase< dim > &subface_case=::internal::SubfaceCase< dim >::case_isotropic) const |
bool | constraints_are_implemented (const ::internal::SubfaceCase< dim > &subface_case=::internal::SubfaceCase< dim >::case_isotropic) const |
virtual bool | hp_constraints_are_implemented () const |
virtual void | get_interpolation_matrix (const FiniteElement< dim, spacedim > &source, FullMatrix< double > &matrix) const |
virtual void | get_face_interpolation_matrix (const FiniteElement< dim, spacedim > &source, FullMatrix< double > &matrix) const |
virtual void | get_subface_interpolation_matrix (const FiniteElement< dim, spacedim > &source, const unsigned int subface, FullMatrix< double > &matrix) const |
virtual std::vector< std::pair< unsigned int, unsigned int > > | hp_vertex_dof_identities (const FiniteElement< dim, spacedim > &fe_other) const |
virtual std::vector< std::pair< unsigned int, unsigned int > > | hp_line_dof_identities (const FiniteElement< dim, spacedim > &fe_other) const |
virtual std::vector< std::pair< unsigned int, unsigned int > > | hp_quad_dof_identities (const FiniteElement< dim, spacedim > &fe_other) const |
virtual FiniteElementDomination::Domination | compare_for_face_domination (const FiniteElement< dim, spacedim > &fe_other) const final |
virtual FiniteElementDomination::Domination | compare_for_domination (const FiniteElement< dim, spacedim > &fe_other, const unsigned int codim=0) const |
virtual bool | operator== (const FiniteElement< dim, spacedim > &fe) const |
bool | operator!= (const FiniteElement< dim, spacedim > &) const |
std::pair< unsigned int, unsigned int > | system_to_component_index (const unsigned int index) const |
unsigned int | component_to_system_index (const unsigned int component, const unsigned int index) const |
std::pair< unsigned int, unsigned int > | face_system_to_component_index (const unsigned int index) const |
unsigned int | adjust_quad_dof_index_for_face_orientation (const unsigned int index, const bool face_orientation, const bool face_flip, const bool face_rotation) const |
virtual unsigned int | face_to_cell_index (const unsigned int face_dof_index, const unsigned int face, const bool face_orientation=true, const bool face_flip=false, const bool face_rotation=false) const |
unsigned int | adjust_line_dof_index_for_line_orientation (const unsigned int index, const bool line_orientation) const |
const ComponentMask & | get_nonzero_components (const unsigned int i) const |
unsigned int | n_nonzero_components (const unsigned int i) const |
bool | is_primitive () const |
bool | is_primitive (const unsigned int i) const |
unsigned int | n_base_elements () const |
virtual const FiniteElement< dim, spacedim > & | base_element (const unsigned int index) const |
unsigned int | element_multiplicity (const unsigned int index) const |
const FiniteElement< dim, spacedim > & | get_sub_fe (const ComponentMask &mask) const |
virtual const FiniteElement< dim, spacedim > & | get_sub_fe (const unsigned int first_component, const unsigned int n_selected_components) const |
std::pair< std::pair< unsigned int, unsigned int >, unsigned int > | system_to_base_index (const unsigned int index) const |
std::pair< std::pair< unsigned int, unsigned int >, unsigned int > | face_system_to_base_index (const unsigned int index) const |
types::global_dof_index | first_block_of_base (const unsigned int b) const |
std::pair< unsigned int, unsigned int > | component_to_base_index (const unsigned int component) const |
std::pair< unsigned int, unsigned int > | block_to_base_index (const unsigned int block) const |
std::pair< unsigned int, types::global_dof_index > | system_to_block_index (const unsigned int component) const |
unsigned int | component_to_block_index (const unsigned int component) const |
ComponentMask | component_mask (const FEValuesExtractors::Scalar &scalar) const |
ComponentMask | component_mask (const FEValuesExtractors::Vector &vector) const |
ComponentMask | component_mask (const FEValuesExtractors::SymmetricTensor< 2 > &sym_tensor) const |
ComponentMask | component_mask (const BlockMask &block_mask) const |
BlockMask | block_mask (const FEValuesExtractors::Scalar &scalar) const |
BlockMask | block_mask (const FEValuesExtractors::Vector &vector) const |
BlockMask | block_mask (const FEValuesExtractors::SymmetricTensor< 2 > &sym_tensor) const |
BlockMask | block_mask (const ComponentMask &component_mask) const |
virtual std::pair< Table< 2, bool >, std::vector< unsigned int > > | get_constant_modes () const |
const std::vector< Point< dim > > & | get_unit_support_points () const |
bool | has_support_points () const |
virtual Point< dim > | unit_support_point (const unsigned int index) const |
const std::vector< Point< dim - 1 > > & | get_unit_face_support_points () const |
bool | has_face_support_points () const |
virtual Point< dim - 1 > | unit_face_support_point (const unsigned int index) const |
const std::vector< Point< dim > > & | get_generalized_support_points () const |
bool | has_generalized_support_points () const |
GeometryPrimitive | get_associated_geometry_primitive (const unsigned int cell_dof_index) const |
virtual void | convert_generalized_support_point_values_to_dof_values (const std::vector< Vector< double >> &support_point_values, std::vector< double > &nodal_values) const |
virtual std::size_t | memory_consumption () const |
Public Member Functions inherited from Subscriptor | |
Subscriptor () | |
Subscriptor (const Subscriptor &) | |
Subscriptor (Subscriptor &&) noexcept | |
virtual | ~Subscriptor () |
Subscriptor & | operator= (const Subscriptor &) |
Subscriptor & | operator= (Subscriptor &&) noexcept |
void | subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const |
void | unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const |
unsigned int | n_subscriptions () const |
template<typename StreamType > | |
void | list_subscribers (StreamType &stream) const |
void | list_subscribers () const |
template<class Archive > | |
void | serialize (Archive &ar, const unsigned int version) |
Public Member Functions inherited from FiniteElementData< dim > | |
FiniteElementData (const std::vector< unsigned int > &dofs_per_object, const unsigned int n_components, const unsigned int degree, const Conformity conformity=unknown, const BlockIndices &block_indices=BlockIndices()) | |
unsigned int | n_dofs_per_vertex () const |
unsigned int | n_dofs_per_line () const |
unsigned int | n_dofs_per_quad () const |
unsigned int | n_dofs_per_hex () const |
unsigned int | n_dofs_per_face () const |
unsigned int | n_dofs_per_cell () const |
template<int structdim> | |
unsigned int | n_dofs_per_object () const |
unsigned int | n_components () const |
unsigned int | n_blocks () const |
const BlockIndices & | block_indices () const |
unsigned int | tensor_degree () const |
bool | conforms (const Conformity) const |
bool | operator== (const FiniteElementData &) const |
Private Member Functions | |
virtual std::unique_ptr< FiniteElement< 2, 2 >::InternalDataBase > | get_data (const UpdateFlags update_flags, const Mapping< 2, 2 > &, const Quadrature< 2 > &quadrature, ::internal::FEValuesImplementation::FiniteElementRelatedData< 2, 2 > &output_data) const override |
virtual std::unique_ptr< FiniteElement< 2, 2 >::InternalDataBase > | get_face_data (const UpdateFlags update_flags, const Mapping< 2, 2 > &, const Quadrature< 1 > &quadrature, ::internal::FEValuesImplementation::FiniteElementRelatedData< 2, 2 > &output_data) const override |
virtual std::unique_ptr< FiniteElement< 2, 2 >::InternalDataBase > | get_subface_data (const UpdateFlags update_flags, const Mapping< 2, 2 > &, const Quadrature< 1 > &quadrature, ::internal::FEValuesImplementation::FiniteElementRelatedData< 2, 2 > &output_data) const override |
virtual void | fill_fe_values (const Triangulation< 2, 2 >::cell_iterator &cell, const CellSimilarity::Similarity cell_similarity, const Quadrature< 2 > &quadrature, const Mapping< 2, 2 > &mapping, const Mapping< 2, 2 >::InternalDataBase &mapping_internal, const internal::FEValuesImplementation::MappingRelatedData< 2, 2 > &mapping_data, const FiniteElement< 2, 2 >::InternalDataBase &fe_internal, internal::FEValuesImplementation::FiniteElementRelatedData< 2, 2 > &output_data) const override |
virtual void | fill_fe_face_values (const Triangulation< 2, 2 >::cell_iterator &cell, const unsigned int face_no, const Quadrature< 1 > &quadrature, const Mapping< 2, 2 > &mapping, const Mapping< 2, 2 >::InternalDataBase &mapping_internal, const ::internal::FEValuesImplementation::MappingRelatedData< 2, 2 > &mapping_data, const InternalDataBase &fe_internal, ::internal::FEValuesImplementation::FiniteElementRelatedData< 2, 2 > &output_data) const override |
virtual void | fill_fe_subface_values (const Triangulation< 2, 2 >::cell_iterator &cell, const unsigned int face_no, const unsigned int sub_no, const Quadrature< 1 > &quadrature, const Mapping< 2, 2 > &mapping, const Mapping< 2, 2 >::InternalDataBase &mapping_internal, const ::internal::FEValuesImplementation::MappingRelatedData< 2, 2 > &mapping_data, const InternalDataBase &fe_internal, ::internal::FEValuesImplementation::FiniteElementRelatedData< 2, 2 > &output_data) const override |
void | initialize_constraints () |
Static Private Member Functions | |
static std::vector< unsigned int > | get_dpo_vector () |
static std::array< std::array< double, 3 >, 4 > | get_linear_shape_coefficients (const Triangulation< 2, 2 >::cell_iterator &cell) |
Additional Inherited Members | |
Public Types inherited from FiniteElementData< dim > | |
enum | Conformity { unknown = 0x00, L2 = 0x01, Hcurl = 0x02, Hdiv = 0x04, H1 = Hcurl | Hdiv, H2 = 0x0e } |
Static Public Member Functions inherited from FiniteElement< 2, 2 > | |
static ::ExceptionBase & | ExcShapeFunctionNotPrimitive (int arg1) |
static ::ExceptionBase & | ExcFENotPrimitive () |
static ::ExceptionBase & | ExcUnitShapeValuesDoNotExist () |
static ::ExceptionBase & | ExcFEHasNoSupportPoints () |
static ::ExceptionBase & | ExcEmbeddingVoid () |
static ::ExceptionBase & | ExcProjectionVoid () |
static ::ExceptionBase & | ExcWrongInterfaceMatrixSize (int arg1, int arg2) |
static ::ExceptionBase & | ExcInterpolationNotImplemented () |
Static Public Member Functions inherited from Subscriptor | |
static ::ExceptionBase & | ExcInUse (int arg1, std::string arg2, std::string arg3) |
static ::ExceptionBase & | ExcNoSubscriber (std::string arg1, std::string arg2) |
Public Attributes inherited from FiniteElementData< dim > | |
const unsigned int | dofs_per_vertex |
const unsigned int | dofs_per_line |
const unsigned int | dofs_per_quad |
const unsigned int | dofs_per_hex |
const unsigned int | first_line_index |
const unsigned int | first_quad_index |
const unsigned int | first_hex_index |
const unsigned int | first_face_line_index |
const unsigned int | first_face_quad_index |
const unsigned int | dofs_per_face |
const unsigned int | dofs_per_cell |
const unsigned int | components |
const unsigned int | degree |
const Conformity | conforming_space |
const BlockIndices | block_indices_data |
Static Public Attributes inherited from FiniteElement< 2, 2 > | |
static const unsigned int | space_dimension |
Static Public Attributes inherited from FiniteElementData< dim > | |
static const unsigned int | dimension = dim |
Protected Member Functions inherited from FiniteElement< 2, 2 > | |
void | reinit_restriction_and_prolongation_matrices (const bool isotropic_restriction_only=false, const bool isotropic_prolongation_only=false) |
TableIndices< 2 > | interface_constraints_size () const |
virtual std::unique_ptr< InternalDataBase > | get_data (const UpdateFlags update_flags, const Mapping< dim, spacedim > &mapping, const Quadrature< dim > &quadrature, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const=0 |
virtual std::unique_ptr< InternalDataBase > | get_face_data (const UpdateFlags update_flags, const Mapping< dim, spacedim > &mapping, const Quadrature< dim - 1 > &quadrature, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const |
virtual std::unique_ptr< InternalDataBase > | get_subface_data (const UpdateFlags update_flags, const Mapping< dim, spacedim > &mapping, const Quadrature< dim - 1 > &quadrature, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const |
virtual void | fill_fe_values (const typename Triangulation< dim, spacedim >::cell_iterator &cell, const CellSimilarity::Similarity cell_similarity, const Quadrature< dim > &quadrature, const Mapping< dim, spacedim > &mapping, const typename Mapping< dim, spacedim >::InternalDataBase &mapping_internal, const ::internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > &mapping_data, const InternalDataBase &fe_internal, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const=0 |
virtual void | fill_fe_face_values (const typename Triangulation< dim, spacedim >::cell_iterator &cell, const unsigned int face_no, const Quadrature< dim - 1 > &quadrature, const Mapping< dim, spacedim > &mapping, const typename Mapping< dim, spacedim >::InternalDataBase &mapping_internal, const ::internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > &mapping_data, const InternalDataBase &fe_internal, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const=0 |
virtual void | fill_fe_subface_values (const typename Triangulation< dim, spacedim >::cell_iterator &cell, const unsigned int face_no, const unsigned int sub_no, const Quadrature< dim - 1 > &quadrature, const Mapping< dim, spacedim > &mapping, const typename Mapping< dim, spacedim >::InternalDataBase &mapping_internal, const ::internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > &mapping_data, const InternalDataBase &fe_internal, ::internal::FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data) const=0 |
Static Protected Member Functions inherited from FiniteElement< 2, 2 > | |
static std::vector< unsigned int > | compute_n_nonzero_components (const std::vector< ComponentMask > &nonzero_components) |
Protected Attributes inherited from FiniteElement< 2, 2 > | |
std::vector< std::vector< FullMatrix< double > > > | restriction |
std::vector< std::vector< FullMatrix< double > > > | prolongation |
FullMatrix< double > | interface_constraints |
std::vector< Point< dim > > | unit_support_points |
std::vector< Point< dim - 1 > > | unit_face_support_points |
std::vector< Point< dim > > | generalized_support_points |
std::vector< Point< dim - 1 > > | generalized_face_support_points |
Table< 2, int > | adjust_quad_dof_index_for_face_orientation_table |
std::vector< int > | adjust_line_dof_index_for_line_orientation_table |
std::vector< std::pair< unsigned int, unsigned int > > | system_to_component_table |
std::vector< std::pair< unsigned int, unsigned int > > | face_system_to_component_table |
std::vector< std::pair< std::pair< unsigned int, unsigned int >, unsigned int > > | system_to_base_table |
std::vector< std::pair< std::pair< unsigned int, unsigned int >, unsigned int > > | face_system_to_base_table |
BlockIndices | base_to_block_indices |
std::vector< std::pair< std::pair< unsigned int, unsigned int >, unsigned int > > | component_to_base_table |
const std::vector< bool > | restriction_is_additive_flags |
const std::vector< ComponentMask > | nonzero_components |
const std::vector< unsigned int > | n_nonzero_components_table |
const bool | cached_primitivity |
Implementation of the scalar version of the P1 nonconforming finite element, a piecewise linear element on quadrilaterals in 2D. This implementation is only for 2D cells in a 2D space (i.e., codimension 0).
Unlike the usual continuous, \(H^1\) conforming finite elements, the P1 nonconforming element does not enforce continuity across edges. However, it requires the continuity in an integral sense: any function in the space should have the same integral values on two sides of the common edge shared by two adjacent elements.
Thus, each function in the nonconforming element space can be discontinuous, and consequently not included in \(H^1_0\), just like the basis functions in Discontinuous Galerkin (DG) finite element spaces. On the other hand, basis functions in DG spaces are completely discontinuous across edges without any relation between the values from both sides. This is a reason why usual weak formulations for DG schemes contain additional penalty terms for jump across edges to control discontinuity. However, nonconforming elements usually do not need additional terms in their weak formulations because their integrals along edges are the same from both sides, i.e., there is some level of continuity.
Since any function in the P1 nonconforming space is piecewise linear on each element, the function value at the midpoint of each edge is same as the mean value on the edge. Thus the continuity of the integral value across each edge is equivalent to the continuity of the midpoint value of each edge in this case.
Thus for the P1 nonconforming element, the function values at midpoints on edges of a cell are important. The first attempt to define (local) degrees of freedom (DoFs) on a quadrilateral is by using midpoint values of a function.
However, these 4 functionals are not linearly independent because a linear function on 2D is uniquely determined by only 3 independent values. A simple observation reads that any linear function on a quadrilateral should satisfy the 'dice rule': the sum of two function values at the midpoints of the edge pair on opposite sides of a cell is equal to the sum of those at the midpoints of the other edge pair. This is called the 'dice rule' because the number of points on opposite sides of a dice always adds up to the same number as well (in the case of dice, to seven).
In formulas, the dice rule is written as \(\phi(m_0) + \phi(m_1) = \phi(m_2) + \phi(m_3)\) for all \(\phi\) in the function space where \(m_j\) is the midpoint of the edge \(e_j\). Here, we assume the standard numbering convention for edges used in deal.II and described in class GeometryInfo.
Conversely if 4 values at midpoints satisfying the dice rule are given, then there always exists the unique linear function which coincides with 4 midpoints values.
Due to the dice rule, three values at any three midpoints can determine the last value at the last midpoint. It means that the number of independent local functionals on a cell is 3, and this is also the dimension of the linear polynomial space on a cell in 2D.
Before introducing the degrees of freedom, we present 4 local shape functions on a cell. Due to the dice rule, we need a special construction for shape functions. Although the following 4 shape functions are not linearly independent within a cell, they are helpful to define the global basis functions which are linearly independent on the whole domain. Again, we assume the standard numbering for vertices used in deal.II.
* 2---------|---------3 * | | * | | * | | * | | * - - * | | * | | * | | * | | * 0---------|---------1 *
For each vertex \(v_j\) of given cell, there are two edges of which \(v_j\) is one of end points. Consider a linear function such that it has value 0.5 at the midpoints of two adjacent edges, and 0.0 at the two midpoints of the other edges. Note that the set of these values satisfies the dice rule which is described above. We denote such a function associated with vertex \(v_j\) by \(\phi_j\). Then the set of 4 shape functions is a partition of unity on a cell: \(\sum_{j=0}^{3} \phi_j = 1\). (This is easy to see: at each edge midpoint, the sum of the four function adds up to one because two functions have value 0.5 and the other value 0.0. Because the function is globally linear, the only function that can have value 1 at four points must also be globally equal to one.)
The following figures represent \(\phi_j\) for \(j=0,\cdots,3\) with their midpoint values:
shape function \(\phi_0\):
* +--------0.0--------+ * | | * | | * | | * | | * 0.5 0.0 * | | * | | * | | * | | * +--------0.5--------+ *
shape function \(\phi_1\):
* +--------0.0--------+ * | | * | | * | | * | | * 0.0 0.5 * | | * | | * | | * | | * +--------0.5--------+ *
shape function \(\phi_2\):
* +--------0.5--------+ * | | * | | * | | * | | * 0.5 0.0 * | | * | | * | | * | | * +--------0.0--------+ *
shape function \(\phi_3\):
* +--------0.5--------+ * | | * | | * | | * | | * 0.0 0.5 * | | * | | * | | * | | * +--------0.0--------+ *
The local DoFs are defined by the coefficients of the shape functions associated with vertices, respectively. Although these 4 local DoFs are not linearly independent within a single cell, this definition is a good start point for the definition of the global DoFs.
We want to emphasize that the shape functions are constructed on each cell, not on the reference cell only. Usual finite elements are defined based on a 'parametric' concept. It means that a function space for a finite element is defined on one reference cell, and it is transformed into each cell via a mapping from the reference cell. However the P1 nonconforming element does not follow such concept. It defines a function space with linear shape functions on each cell without any help of a function space on the reference cell. In other words, the element is defined in real space, not via a mapping from a reference cell. In this, it is similar to the FE_DGPNonparametric element.
Thus this implementation does not have to compute shape values on the reference cell. Rather, the shape values are computed by construction of the shape functions on each cell independently.
We next have to consider the global basis functions for the element because the system of equations which we ultimately have to solve is for a global system, not local. The global basis functions associated with a node are defined by a cell-wise composition of local shape functions associated with the node on each element.
There is a theoretical result about the linear independence of the global basis functions depending on the type of the boundary condition we consider.
When homogeneous Dirichlet boundary conditions are given, the global basis functions associated with interior nodes are linearly independent. Then, the number of DoFs is equal to the number of interior nodes, and consequently the same as the number of DoFs for the standard bilinear \(Q_1\) finite element.
When Neumann boundary conditions are given, the global basis functions associated with all nodes (including boundary nodes) are actually not linearly independent. There exists one redundancy. Thus in this case, the number of DoFs is equal to the number of all nodes minus 1. This is, again as for the regular \(Q_1\) element.
For a smooth function, we construct a piecewise linear function which belongs to the element space by using its nodal values as DoF values.
Note that for the P1 nonconforming element, two nodal values of a smooth function and its interpolant do not coincide in general, in contrast to ordinary Lagrange finite elements. Of course, it is meaningless to refer 'nodal value' because the element space has nonconformity. But it is also true even though the single global basis function associated with a node is considered the unique 'nodal value' at the node. For instance, consider the basis function associated with a node. Consider two lines representing the level sets for value 0.5 and 0, respectively, by connecting two midpoints. Then we cut the quad into two sub-triangles by the diagonal which is placed along those two lines. It gives another level set for value 0.25 which coincides with the cutting diagonal. Therefore these three level sets are all parallel in the quad and it gives the value 0.75 at the base node, not value 1. This is true whether the quadrilateral is a rectangle, parallelogram, or any other shape.
The original paper for the P1 nonconforming element by Park and Sheen is accessible at https://doi.org/10.1137/S0036142902404923 , see [54] .
FE_P1NC::FE_P1NC | ( | ) |
Constructor for the P1 nonconforming element. It is only for 2D and codimension = 0.
Definition at line 24 of file fe_p1nc.cc.
|
overridevirtualdefault |
Destructor.
|
overridevirtual |
Definition at line 42 of file fe_p1nc.cc.
|
overridevirtual |
Given a set of update flags, compute which other quantities also need to be computed in order to satisfy the request by the given flags. Then return the combination of the original set of flags and those just computed.
As an example, if update_flags
contains update_gradients a finite element class will typically require the computation of the inverse of the Jacobian matrix in order to rotate the gradient of shape functions on the reference cell to the real cell. It would then return not just update_gradients, but also update_covariant_transformation, the flag that makes the mapping class produce the inverse of the Jacobian matrix.
An extensive discussion of the interaction between this function and FEValues can be found in the How Mapping, FiniteElement, and FEValues work together documentation module.
Implements FiniteElement< 2, 2 >.
Definition at line 50 of file fe_p1nc.cc.
|
overridevirtual |
Definition at line 69 of file fe_p1nc.cc.
|
staticprivate |
Return the vector consists of the numbers of degrees of freedom per objects.
Definition at line 77 of file fe_p1nc.cc.
|
staticprivate |
Return the coefficients of 4 local linear shape functions \(\phi_j(x,y) = a x + b y + c\) on given cell. For each local shape function, the array consists of three coefficients is in order of a,b and c.
Definition at line 89 of file fe_p1nc.cc.
|
overrideprivatevirtual |
Do the work which is needed before cellwise data computation. Since the shape functions are constructed independently on each cell, the data on the reference cell is not necessary. It returns an empty variable type of @ InternalDataBase and updates @ update_flags, and computes trivially zero Hessian for each cell if it is needed.
Definition at line 136 of file fe_p1nc.cc.
|
overrideprivatevirtual |
Definition at line 161 of file fe_p1nc.cc.
|
overrideprivatevirtual |
Definition at line 186 of file fe_p1nc.cc.
|
overrideprivatevirtual |
Compute the data on the current cell.
Definition at line 211 of file fe_p1nc.cc.
|
overrideprivatevirtual |
Compute the data on the face of the current cell.
Definition at line 249 of file fe_p1nc.cc.
|
overrideprivatevirtual |
Compute the data on the subface of the current cell.
Definition at line 293 of file fe_p1nc.cc.
|
private |
Create the constraints matrix for hanging edges.
Definition at line 340 of file fe_p1nc.cc.