Reference documentation for deal.II version 9.2.0
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Bibliography
[1]

Mark Ainsworth and Bill Senior. An adaptive refinement strategy for hp-finite element computations. Applied Numerical Mathematics, 26(1–2):165–178, 1998.

[2]

Wolfgang Bangerth and Rolf Rannacher. Finite element approximation of the acoustic wave equation: Error control and mesh adaptation. East–West J. Numer. Math., 7(4):263–282, 1999.

[3]

Wolfgang Bangerth and Rolf Rannacher. Adaptive finite element techniques for the acoustic wave equation. J. Comput. Acoustics, 9(2):575–591, 2001.

[4]

Wolfgang Bangerth and Rolf Rannacher. Adaptive Finite Element Methods for Differential Equations. Birkhäuser Verlag, 2003.

[5]

Wolfgang Bangerth. Mesh adaptivity and error control for a finite element approximation of the elastic wave equation. In Alfredo Bermúdez, Dolores Gómez, Christophe Hazard, Patrick Joly, and Jean E. Roberts, editors, Proceedings of the Fifth International Conference on Mathematical and Numerical Aspects of Wave Propagation (Waves2000), Santiago de Compostela, Spain, 2000, pages 725–729. SIAM, 2000.

[6]

Wolfgang Bangerth. Adaptive Finite Element Methods for the Identification of Distributed Parameters in Partial Differential Equations. PhD thesis, University of Heidelberg, 2002.

[7]

Roland Becker and Rolf Rannacher. A feed-back approach to error control in finite element methods: Basic analysis and examples. East-West J. Numer. Math, 4:237–264, 1996.

[8]

Roland Becker and Rolf Rannacher. Weighted a posteriori error control in FE methods. In H. G. Bock et al., editor, ENUMATH 97, pages 621–637. World Scientific Publ., Singapore, 1998.

[9]

Roland Becker and Rolf Rannacher. An optimal control approach to error estimation and mesh adaptation in finite element methods. Acta Numerica, 10:1–102, 2001.

[10]

Roland Becker. An Adaptive Finite Element Method for the Incompressible Navier-Stokes Equations on Time-dependent Domains. Dissertation, Universität Heidelberg, 1995.

[11]

Roland Becker. Weighted error estimators for the incompressible Navier-Stokes equations. Preprint 98-20, Universität Heidelberg, 1998.

[12]

Susanne C. Brenner and Li-Yeng Sung. c0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. Journal of Scientific Computing, 22-23(1-3):83–118, June 2005.

[13]

S. C. Brenner, T. Gudi, and L. y. Sung. An a posteriori error estimator for a quadratic c0-interior penalty method for the biharmonic problem. IMA Journal of Numerical Analysis, 30(3):777–798, March 2009.

[14]

Susanne C. Brenner. c0 interior penalty methods. In Lecture Notes in Computational Science and Engineering, pages 79–147. Springer Berlin Heidelberg, 2011.

[15]

Alexander N. Brooks and Thomas J. R. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg., 32(1-3):199–259, 1982. FENOMECH ''81, Part I (Stuttgart, 1981).

[16]

Thomas C. Clevenger, Timo Heister, Guido Kanschat, and Martin Kronbichler. A flexible, parallel, adaptive geometric multigrid method for fem. submitted, 2019.

[17]

Bernardo Cockburn, Jayadeep Gopalakrishnan, and Raytcho Lazarov. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal., 47(2):1319–1365, 2009.

[18]

Stéphane Commend, Andrzej Truty, and Thomas Zimmermann. Stabilized finite elements applied to elastoplasticity: I. mixed displacement–pressure formulation. Computer Methods in Applied Mechanics and Engineering, 193(33):3559–3586, 2004.

[19]

Denis Davydov, Tymofiy Gerasimov, Jean-Paul Pelteret, and Paul Steinmann. Convergence study of the h-adaptive PUM and the hp-adaptive FEM applied to eigenvalue problems in quantum mechanics. Advanced Modeling and Simulation in Engineering Sciences, 4(1):7,

[20]

Huo-Yuan Duan and Qun Lin. Mixed finite elements of least-squares type for elasticity. Computer Methods in Applied Mechanics and Engineering, 194(9):1093–1112, 2005.

[21]

Tino Eibner and Jens Markus Melenk. An adaptive strategy for hp-FEM based on testing for analyticity. Computational Mechanics, 39(5):575–595, 2007.

[22]

H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford, New York, 2005.

[23]

G. Engel, K. Garikipati, T.J.R. Hughes, M.G. Larson, L. Mazzei, and R.L. Taylor. Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Computer Methods in Applied Mechanics and Engineering, 191(34):3669–3750, July 2002.

[24]

Alexandre Ern and Jean-Luc Guermond. Theory and practice of finite elements, volume 159 of Applied Mathematical Sciences. Springer-Verlag, New York, 2004.

[25]

Niklas Fehn, Wolfgang A. Wall, and Martin Kronbichler. A matrix-free high-order discontinuous Galerkin compressible Navier–Stokes solver: A performance comparison of compressible and incompressible formulations for turbulent incompressible flows. International Journal for Numerical Methods in Fluids, 89(3):71–102,

[26]

B. X. Fraeijs de Veubeke. Displacement and equilibrium models in the finite element method. In O. C. Zienkiewicz and G. S. Holister, editors, Stress Analysis, pages 275–284. Wiley, New York, 1965.

[27]

Christian Führer and Guido Kanschat. A posteriori error control in radiative transfer. Computing, 58(4):317–334, 1997.

[28]

Rene Gassmöller, Harsha Lokavarapu, Eric Heien, Elbridge Gerry Puckett, and Wolfgang Bangerth. Flexible and scalable particle-in-cell methods with adaptive mesh refinement for geodynamic computations. Geochemistry, Geophysics, Geosystems, 19(9):3596–3604, 2018.

[29]

Gregor J. Gassner. A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM Journal on Scientific Computing, 35(3):A1233–A1253, 2013.

[30]

Jean-Luc Guermond and Bojan Popov. Fast estimation of the maximum wave speed in the riemann problem for the euler equations. J. Comput. Phys., 321:908–926, 2016.

[31]

Jean-Luc Guermond and Bojan Popov. Invariant domains and first-order continuous finite element approximation for hyperbolic systems. SIAM J. Numer. Anal., 54(4):2466–2489, 2016.

[32]

Jean-Luc Guermond, Murtazo Nazarov, Bojan Popov, and Ignacio Tomas. Second-order invariant domain preserving approximation of the Euler equations using convex limiting. SIAM J. Sci. Comput., 40(5):A3211–A3239, 2018.

[33]

R. J. Guyan. Reduction of stiffness and mass matrices. AIAA Journal, 3(2):380–380, feb 1965.

[34]

Ralf Hartmann and Paul Houston. Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws.

[35]

Ralf Hartmann and Paul Houston. Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations. Journal of Computational Physics, 183(2):508–532, 2002.

[36]

Ralf Hartmann. Adaptive Finite Element Methods for the Compressible Euler Equations. PhD thesis, Universität Heidelberg, 2002.

[37]

Paul Houston and Endre Süli. A note on the design of hp-adaptive finite element methods for elliptic partial differential equations. Computer Methods in Applied Mechanics and Engineering, 194(2):229–243, 2005.

[38]

Volker John and Petr Knobloch. On discontinuity—capturing methods for convection—diffusion equations. In Numerical Mathematics and Advanced Applications, pages 336–344. Springer, 2006.

[39]

C. Johnson and J. Pitkäranta. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp., 46(173):1–26, 1986.

[40]

Guido Kanschat. Parallel and Adaptive Galerkin Methods for Radiative Transfer Problems. Dissertation, Universität Heidelberg, 1996.

[41]

Guido Kanschat. Notes on applied mathematics: Iterative methods, schwarz preconditioners and multigrid. 2015.

[42]

Ohannes A Karakashian and Frederic Pascal. A posteriori error estimates for a discontinuous galerkin approximation of second-order elliptic problems. SIAM Journal on Numerical Analysis, 41(6):2374–2399, 2003.

[43]

R. Bruce Kellogg. On the Poisson equation with intersecting interfaces. Applicable Analysis, 4(2):101–129, 1974.

[44]

D. W. Kelly, J. P. De S. R. Gago, O. C. Zienkiewicz, and I. Babuska. A posteriori error analysis and adaptive processes in the finite element method: Part I–error analysis. Int. J. Num. Meth. Engrg., 19:1593–1619, 1983.

[45]

Christopher A. Kennedy, Mark H. Carpenter, and R. Micheal Lewis. Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Applied Numerical Mathematics, 35:177–219, 2000.

[46]

LIG Kovasznay. Laminar flow behind a two-dimensional grid. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 44, pages 58–62. Cambridge University Press, 1948.

[47]

Martin Kronbichler and Katharina Kormann. Fast matrix-free evaluation of discontinuous Galerkin finite element operators. ACM Transactions on Mathematical Software, 45(3):29:1–29:40, 2019.

[48]

Martin Kronbichler, Svenja Schoeder, Christopher Müller, and Wolfgang A. Wall. Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation. International Journal for Numerical Methods in Engineering, 106(9):712–739, 2016.

[49]

Rainald Lohner. Edge-Based Compressible Flow Solvers. John Wiley & Sons, Ltd, 2008.

[50]

Catherine Mavriplis. Adaptive mesh strategies for the spectral element method. Computer Methods in Applied Mechanics and Engineering, 116(1):77–86, 1994.

[51]

Jens Markus Melenk and Barbara I. Wohlmuth. On residual-based a posteriori error estimation in hp-FEM. Advances in Computational Mathematics, 15(1):311–331, 2001.

[52]

Mo Mu. PDE.Mart: A network-based problem-solving environment for PDEs. ACM Trans. Math. Software., 31(4):508–531, 2005.

[53]

N. C. Nguyen and J. Peraire. Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics. J. Comput. Phys., 231(18):5955–5988, 2012.

[54]

Chunjae Park and Dongwoo Sheen. P1-nonconforming quadrilateral finite element methods for second-order elliptic problems. SIAM Journal on Numerical Analysis, 41(2):624–640, 2003.

[55]

Rolf Rannacher and Franz-Theo Suttmeier. A feed-back approach to error control in finite element methods: Application to linear elasticity. Computational Mechanics, 19(5):434–446, 1997.

[56]

Rolf Rannacher and Franz-Theo Suttmeier. A posteriori error control in finite element methods via duality techniques: Application to perfect plasticity. Computational Mechanics, 21(2):123–133, 1998.

[57]

Rolf Rannacher and Franz-Theo Suttmeier. A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 176(1):333–361, 1999.

[58]

Béatrice Rivière, Mary F. Wheeler, and Vivette Girault. Computational Geosciences, 3(3/4):337–360, 1999.

[59]

Y. Saad. A Flexible Inner-Outer Preconditioned GMRES Algorithm. Technical Report 91-279, Minnesota Supercomputer Institute, University of Minnesota, 1991.

[60]

Svenja Schoeder, Katharina Kormann, Wolfgang A. Wall, and Martin Kronbichler. Efficient explicit time stepping of high order discontinuous Galerkin schemes for waves. SIAM J. Sci. Comput., 40(6):C803–C826, 2018.

[61]

Barry Smith, Petter Bjorstad, and William Gropp. Domain decomposition: parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, 2004.

[62]

Franz-Theo Suttmeier. Adaptive Finite Element Approximation of Problems in Elasto-Plasticity Theory. Dissertation, Universität Heidelberg, 1996.

[63]

Eleuterio F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag, Berlin, Heidelberg, 2009.

[64]

Andrea Toselli and Olof Widlund. Domain decomposition methods-algorithms and theory, volume 34. Springer Science & Business Media, 2006.

[65]

Kostas Tselios and Theodore E. Simos. Optimized Runge–Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. Physics Letters A, 363:38–48, 2007.

[66]

Zhuoran Wang, Graham Harper, Patrick O'Leary, Jiangguo Liu, and Simon Tavener. deal.II implementation of a weak galerkin finite element solver for darcy flow. In Lecture Notes in Computer Science, pages 495–509. Springer International Publishing, 2019.

[67]

Garth N. Wells and Nguyen Tien Dung. A c0 discontinuous galerkin formulation for kirchhoff plates. Computer Methods in Applied Mechanics and Engineering, 196(35-36):3370–3380, July 2007.