Reference documentation for deal.II version 9.1.1
\(\newcommand{\dealcoloneq}{\mathrel{\vcenter{:}}=}\)
Namespaces | Classes | Enumerations | Functions

Namespaces

 BlockVectorIterators
 
 DoFHandlerImplementation
 
 SolverGMRESImplementation
 
 SymmetricTensorAccessors
 
 SymmetricTensorImplementation
 
 TriangulationImplementation
 

Classes

class  AlignedVectorCopy
 
class  AlignedVectorDefaultInitialize
 
class  AlignedVectorMove
 
class  AlignedVectorSet
 
struct  bool2type
 
struct  CurlType
 
struct  CurlType< 1, NumberType >
 
struct  CurlType< 2, NumberType >
 
struct  CurlType< 3, NumberType >
 
struct  EvaluatorTensorProduct
 
struct  EvaluatorTensorProduct< evaluate_evenodd, dim, n_rows, n_columns, Number, Number2 >
 
struct  EvaluatorTensorProduct< evaluate_general, dim, 0, 0, Number, Number2 >
 
struct  EvaluatorTensorProduct< evaluate_general, dim, n_rows, n_columns, Number, Number2 >
 
struct  EvaluatorTensorProduct< evaluate_symmetric, dim, n_rows, n_columns, Number, Number2 >
 
struct  EvaluatorTensorProduct< evaluate_symmetric_hierarchical, dim, n_rows, n_columns, Number, Number2 >
 
struct  FEEvaluationImpl
 
struct  FEEvaluationImplBasisChange
 
struct  FEEvaluationImplCollocation
 
struct  FEEvaluationImplTransformToCollocation
 
struct  int2type
 
struct  is_explicitly_convertible
 
struct  MFWorkerInterface
 
struct  NumberType
 
struct  NumberType< Tensor< rank, dim, T > >
 
struct  NumberType< VectorizedArray< T > >
 
struct  ProductTypeImpl
 
class  SolverBicgstabData
 
class  SubfaceCase
 
struct  SubfacePossibilities
 
struct  SubfacePossibilities< 0 >
 
struct  SubfacePossibilities< 1 >
 
struct  SubfacePossibilities< 2 >
 
struct  SubfacePossibilities< 3 >
 
struct  TableEntry
 

Enumerations

enum  EvaluatorVariant { evaluate_general, evaluate_symmetric, evaluate_evenodd, evaluate_symmetric_hierarchical }
 

Functions

static ::ExceptionBaseExcAccessToUninitializedField ()
 
template<class DI >
bool is_active_iterator (const DI &)
 
template<typename DoFHandlerType >
void extract_interpolation_matrices (const DoFHandlerType &, ::Table< 2, FullMatrix< double >> &)
 

Detailed Description

This namespace defines the copy and set functions used in AlignedVector. These functions operate in parallel when there are enough elements in the vector.

Enumeration Type Documentation

◆ EvaluatorVariant

In this namespace, the evaluator routines that evaluate the tensor products are implemented.

Enumerator
evaluate_general 

Do not use anything more than the tensor product structure of the finite element.

evaluate_symmetric 

Perform evaluation by exploiting symmetry in the finite element: i.e., skip some computations by utilizing the symmetry in the shape functions and quadrature points.

evaluate_evenodd 

Use symmetry to apply the operator to even and odd parts of the input vector separately: see the documentation of the EvaluatorTensorProduct specialization for more information.

evaluate_symmetric_hierarchical 

Use symmetry in Legendre and similar polynomial spaces where the shape functions with even number are symmetric about the center of the quadrature points (think about even polynomial degrees) and the shape functions with odd number are anti-symmetric about the center of the quadrature points (think about odd polynomial degrees). This allows to use a strategy similar to the even-odd technique but without separate coefficient arrays. See the documentation of the EvaluatorTensorProduct specialization for more information.

Definition at line 36 of file tensor_product_kernels.h.

Function Documentation

◆ is_active_iterator()

template<class DI >
bool internal::is_active_iterator ( const DI &  )
inline

Find out if an iterator supports inactive cells.

Definition at line 46 of file loop.h.

◆ extract_interpolation_matrices()

template<typename DoFHandlerType >
void internal::extract_interpolation_matrices ( const DoFHandlerType &  ,
::Table< 2, FullMatrix< double >> &   
)

Generate a table that contains interpolation matrices between each combination of finite elements used in a DoFHandler of some kind. Since not all elements can be interpolated onto each other, the table may contain empty matrices for those combinations of elements for which no such interpolation is implemented.

Definition at line 201 of file solution_transfer.cc.