Reference documentation for deal.II version 9.1.1
\(\newcommand{\dealcoloneq}{\mathrel{\vcenter{:}}=}\)
function_spherical.cc
1 // ---------------------------------------------------------------------
2 //
3 // Copyright (C) 2016 - 2018 by the deal.II authors
4 //
5 // This file is part of the deal.II library.
6 //
7 // The deal.II library is free software; you can use it, redistribute
8 // it, and/or modify it under the terms of the GNU Lesser General
9 // Public License as published by the Free Software Foundation; either
10 // version 2.1 of the License, or (at your option) any later version.
11 // The full text of the license can be found in the file LICENSE.md at
12 // the top level directory of deal.II.
13 //
14 // ---------------------------------------------------------------------
15 
16 #include <deal.II/base/function_spherical.h>
17 #include <deal.II/base/geometric_utilities.h>
18 #include <deal.II/base/point.h>
19 
20 #include <algorithm>
21 #include <cmath>
22 
23 DEAL_II_NAMESPACE_OPEN
24 namespace Functions
25 {
26  // other implementations/notes:
27  // https://github.com/apache/commons-math/blob/master/src/main/java/org/apache/commons/math4/geometry/euclidean/threed/SphericalCoordinates.java
28  // http://mathworld.wolfram.com/SphericalCoordinates.html
29 
30  /*derivation of Hessian in Maxima as function of tensor products of unit
31  vectors:
32 
33  depends(ur,[theta,phi]);
34  depends(utheta,theta);
35  depends(uphi,[theta,phi]);
36  depends(f,[r,theta,phi]);
37  declare([f,r,theta,phi], scalar)@f$
38  dotscrules: true;
39  grads(a):=ur.diff(a,r)+(1/r)*uphi.diff(a,phi)+(1/(r*sin(phi)))*utheta.diff(a,theta);
40 
41 
42  H : factor(grads(grads(f)));
43  H2: subst([diff(ur,theta)=sin(phi)*utheta,
44  diff(utheta,theta)=-cos(phi)*uphi-sin(phi)*ur,
45  diff(uphi,theta)=cos(phi)*utheta,
46  diff(ur,phi)=uphi,
47  diff(uphi,phi)=-ur],
48  H);
49  H3: trigsimp(fullratsimp(H2));
50 
51 
52  srules : [diff(f,r)=sg0,
53  diff(f,theta)=sg1,
54  diff(f,phi)=sg2,
55  diff(f,r,2)=sh0,
56  diff(f,theta,2)=sh1,
57  diff(f,phi,2)=sh2,
58  diff(f,r,1,theta,1)=sh3,
59  diff(f,r,1,phi,1)=sh4,
60  diff(f,theta,1,phi,1)=sh5,
61  cos(phi)=cos_phi,
62  cos(theta)=cos_theta,
63  sin(phi)=sin_phi,
64  sin(theta)=sin_theta
65  ]@f$
66 
67  c_utheta2 : distrib(subst(srules, ratcoeff(expand(H3), utheta.utheta)));
68  c_utheta_ur : (subst(srules, ratcoeff(expand(H3), utheta.ur)));
69  (subst(srules, ratcoeff(expand(H3), ur.utheta))) - c_utheta_ur;
70  c_utheta_uphi : (subst(srules, ratcoeff(expand(H3), utheta.uphi)));
71  (subst(srules, ratcoeff(expand(H3), uphi.utheta))) - c_utheta_uphi;
72  c_ur2 : (subst(srules, ratcoeff(expand(H3), ur.ur)));
73  c_ur_uphi : (subst(srules, ratcoeff(expand(H3), ur.uphi)));
74  (subst(srules, ratcoeff(expand(H3), uphi.ur))) - c_ur_uphi;
75  c_uphi2 : (subst(srules, ratcoeff(expand(H3), uphi.uphi)));
76 
77 
78  where (used later to do tensor products):
79 
80  ur : [cos(theta)*sin(phi), sin(theta)*sin(phi), cos(phi)];
81  utheta : [-sin(theta), cos(theta), 0];
82  uphi : [cos(theta)*cos(phi), sin(theta)*cos(phi), -sin(phi)];
83 
84  with the following proof of substitution rules above:
85 
86  -diff(ur,theta)+sin(phi)*utheta;
87  trigsimp(-diff(utheta,theta)-cos(phi)*uphi-sin(phi)*ur);
88  -diff(uphi,theta)+cos(phi)*utheta;
89  -diff(ur,phi)+uphi;
90  -diff(uphi,phi)-ur;
91 
92  */
93 
94  namespace
95  {
99  template <int dim>
100  void
101  set_unit_vectors(const double cos_theta,
102  const double sin_theta,
103  const double cos_phi,
104  const double sin_phi,
105  Tensor<1, dim> &unit_r,
106  Tensor<1, dim> &unit_theta,
107  Tensor<1, dim> &unit_phi)
108  {
109  unit_r[0] = cos_theta * sin_phi;
110  unit_r[1] = sin_theta * sin_phi;
111  unit_r[2] = cos_phi;
112 
113  unit_theta[0] = -sin_theta;
114  unit_theta[1] = cos_theta;
115  unit_theta[2] = 0.;
116 
117  unit_phi[0] = cos_theta * cos_phi;
118  unit_phi[1] = sin_theta * cos_phi;
119  unit_phi[2] = -sin_phi;
120  }
121 
122 
126  template <int dim>
127  void add_outer_product(SymmetricTensor<2, dim> &out,
128  const double val,
129  const Tensor<1, dim> & in1,
130  const Tensor<1, dim> & in2)
131  {
132  if (val != 0.)
133  for (unsigned int i = 0; i < dim; i++)
134  for (unsigned int j = i; j < dim; j++)
135  out[i][j] += (in1[i] * in2[j] + in1[j] * in2[i]) * val;
136  }
137 
141  template <int dim>
142  void add_outer_product(SymmetricTensor<2, dim> &out,
143  const double val,
144  const Tensor<1, dim> & in)
145  {
146  if (val != 0.)
147  for (unsigned int i = 0; i < dim; i++)
148  for (unsigned int j = i; j < dim; j++)
149  out[i][j] += val * in[i] * in[j];
150  }
151  } // namespace
152 
153 
154 
155  template <int dim>
157  const unsigned int n_components)
158  : Function<dim>(n_components)
159  , coordinate_system_offset(p)
160  {
161  AssertThrow(dim == 3, ExcNotImplemented());
162  }
163 
164 
165 
166  template <int dim>
167  double
169  const unsigned int component) const
170  {
171  const Point<dim> p = p_ - coordinate_system_offset;
172  const std::array<double, dim> sp =
174  return svalue(sp, component);
175  }
176 
177 
178 
179  template <int dim>
182  const unsigned int /*component*/) const
183 
184  {
185  Assert(false, ExcNotImplemented());
186  return {};
187  }
188 
189 
190 
191  template <>
193  Spherical<3>::gradient(const Point<3> &p_, const unsigned int component) const
194  {
195  constexpr int dim = 3;
196  const Point<dim> p = p_ - coordinate_system_offset;
197  const std::array<double, dim> sp =
199  const std::array<double, dim> sg = sgradient(sp, component);
200 
201  // somewhat backwards, but we need cos/sin's for unit vectors
202  const double cos_theta = std::cos(sp[1]);
203  const double sin_theta = std::sin(sp[1]);
204  const double cos_phi = std::cos(sp[2]);
205  const double sin_phi = std::sin(sp[2]);
206 
207  Tensor<1, dim> unit_r, unit_theta, unit_phi;
208  set_unit_vectors(
209  cos_theta, sin_theta, cos_phi, sin_phi, unit_r, unit_theta, unit_phi);
210 
211  Tensor<1, dim> res;
212 
213  if (sg[0] != 0.)
214  {
215  res += unit_r * sg[0];
216  }
217 
218  if (sg[1] * sin_phi != 0.)
219  {
220  Assert(sp[0] != 0., ExcDivideByZero());
221  res += unit_theta * sg[1] / (sp[0] * sin_phi);
222  }
223 
224  if (sg[2] != 0.)
225  {
226  Assert(sp[0] != 0., ExcDivideByZero());
227  res += unit_phi * sg[2] / sp[0];
228  }
229 
230  return res;
231  }
232 
233 
234 
235  template <int dim>
238  const unsigned int /*component*/) const
239  {
240  Assert(false, ExcNotImplemented());
241  return {};
242  }
243 
244 
245 
246  template <>
248  Spherical<3>::hessian(const Point<3> &p_, const unsigned int component) const
249 
250  {
251  constexpr int dim = 3;
252  const Point<dim> p = p_ - coordinate_system_offset;
253  const std::array<double, dim> sp =
255  const std::array<double, dim> sg = sgradient(sp, component);
256  const std::array<double, 6> sh = shessian(sp, component);
257 
258  // somewhat backwards, but we need cos/sin's for unit vectors
259  const double cos_theta = std::cos(sp[1]);
260  const double sin_theta = std::sin(sp[1]);
261  const double cos_phi = std::cos(sp[2]);
262  const double sin_phi = std::sin(sp[2]);
263  const double r = sp[0];
264 
265  Tensor<1, dim> unit_r, unit_theta, unit_phi;
266  set_unit_vectors(
267  cos_theta, sin_theta, cos_phi, sin_phi, unit_r, unit_theta, unit_phi);
268 
269  const double sin_phi2 = sin_phi * sin_phi;
270  const double r2 = r * r;
271  Assert(r != 0., ExcDivideByZero());
272 
273  const double c_utheta2 =
274  sg[0] / r + ((sin_phi != 0.) ? (cos_phi * sg[2]) / (r2 * sin_phi) +
275  sh[1] / (r2 * sin_phi2) :
276  0.);
277  const double c_utheta_ur =
278  ((sin_phi != 0.) ? (r * sh[3] - sg[1]) / (r2 * sin_phi) : 0.);
279  const double c_utheta_uphi =
280  ((sin_phi != 0.) ? (sh[5] * sin_phi - cos_phi * sg[1]) / (r2 * sin_phi2) :
281  0.);
282  const double c_ur2 = sh[0];
283  const double c_ur_uphi = (r * sh[4] - sg[2]) / r2;
284  const double c_uphi2 = (sh[2] + r * sg[0]) / r2;
285 
286  // go through each tensor product
288 
289  add_outer_product(res, c_utheta2, unit_theta);
290 
291  add_outer_product(res, c_utheta_ur, unit_theta, unit_r);
292 
293  add_outer_product(res, c_utheta_uphi, unit_theta, unit_phi);
294 
295  add_outer_product(res, c_ur2, unit_r);
296 
297  add_outer_product(res, c_ur_uphi, unit_r, unit_phi);
298 
299  add_outer_product(res, c_uphi2, unit_phi);
300 
301  return res;
302  }
303 
304 
305 
306  template <int dim>
307  std::size_t
308  Spherical<dim>::memory_consumption() const
309  {
310  return sizeof(Spherical<dim>);
311  }
312 
313 
314 
315  template <int dim>
316  double
317  Spherical<dim>::svalue(const std::array<double, dim> & /* sp */,
318  const unsigned int /*component*/) const
319  {
320  AssertThrow(false, ExcNotImplemented());
321  return 0.;
322  }
323 
324 
325 
326  template <int dim>
327  std::array<double, dim>
328  Spherical<dim>::sgradient(const std::array<double, dim> & /* sp */,
329  const unsigned int /*component*/) const
330  {
331  AssertThrow(false, ExcNotImplemented());
332  return std::array<double, dim>();
333  }
334 
335 
336 
337  template <int dim>
338  std::array<double, 6>
339  Spherical<dim>::shessian(const std::array<double, dim> & /* sp */,
340  const unsigned int /*component*/) const
341  {
342  AssertThrow(false, ExcNotImplemented());
343  return std::array<double, 6>();
344  }
345 
346 
347 
348  // explicit instantiations
349  template class Spherical<1>;
350  template class Spherical<2>;
351  template class Spherical<3>;
352 
353 } // namespace Functions
354 
355 DEAL_II_NAMESPACE_CLOSE
virtual double value(const Point< dim > &point, const unsigned int component=0) const override
virtual std::array< double, 6 > shessian(const std::array< double, dim > &sp, const unsigned int component) const
Spherical(const Point< dim > &center=Point< dim >(), const unsigned int n_components=1)
#define AssertThrow(cond, exc)
Definition: exceptions.h:1519
static ::ExceptionBase & ExcDivideByZero()
virtual std::array< double, dim > sgradient(const std::array< double, dim > &sp, const unsigned int component) const
virtual SymmetricTensor< 2, dim > hessian(const Point< dim > &p, const unsigned int component=0) const override
virtual double svalue(const std::array< double, dim > &sp, const unsigned int component) const
virtual Tensor< 1, dim > gradient(const Point< dim > &p, const unsigned int component=0) const override
std::array< double, dim > to_spherical(const Point< dim > &point)
#define Assert(cond, exc)
Definition: exceptions.h:1407
static ::ExceptionBase & ExcNotImplemented()