Reference documentation for deal.II version 9.1.1
\(\newcommand{\dealcoloneq}{\mathrel{\vcenter{:}}=}\)
Public Member Functions | Private Attributes | List of all members
FunctionDerivative< dim > Class Template Reference

#include <deal.II/base/function_derivative.h>

Inheritance diagram for FunctionDerivative< dim >:
[legend]

Public Member Functions

 FunctionDerivative (const Function< dim > &f, const Point< dim > &direction, const double h=1.e-6)
 
 FunctionDerivative (const Function< dim > &f, const std::vector< Point< dim >> &direction, const double h=1.e-6)
 
void set_formula (typename AutoDerivativeFunction< dim >::DifferenceFormula formula=AutoDerivativeFunction< dim >::Euler)
 
void set_h (const double h)
 
virtual double value (const Point< dim > &p, const unsigned int component=0) const override
 
virtual void vector_value (const Point< dim > &p, Vector< double > &value) const override
 
virtual void value_list (const std::vector< Point< dim >> &points, std::vector< double > &values, const unsigned int component=0) const override
 
std::size_t memory_consumption () const
 
- Public Member Functions inherited from AutoDerivativeFunction< dim >
 AutoDerivativeFunction (const double h, const unsigned int n_components=1, const double initial_time=0.0)
 
virtual ~AutoDerivativeFunction () override=default
 
void set_formula (const DifferenceFormula formula=Euler)
 
void set_h (const double h)
 
virtual Tensor< 1, dim > gradient (const Point< dim > &p, const unsigned int component=0) const override
 
virtual void vector_gradient (const Point< dim > &p, std::vector< Tensor< 1, dim >> &gradients) const override
 
virtual void gradient_list (const std::vector< Point< dim >> &points, std::vector< Tensor< 1, dim >> &gradients, const unsigned int component=0) const override
 
virtual void vector_gradient_list (const std::vector< Point< dim >> &points, std::vector< std::vector< Tensor< 1, dim >>> &gradients) const override
 
- Public Member Functions inherited from Function< dim >
 Function (const unsigned int n_components=1, const time_type initial_time=0.0)
 
virtual ~Function () override=0
 
Functionoperator= (const Function &f)
 
virtual void vector_value_list (const std::vector< Point< dim >> &points, std::vector< Vector< double >> &values) const
 
virtual void vector_values (const std::vector< Point< dim >> &points, std::vector< std::vector< double >> &values) const
 
virtual void vector_gradient (const Point< dim > &p, std::vector< Tensor< 1, dim, double >> &gradients) const
 
virtual void gradient_list (const std::vector< Point< dim >> &points, std::vector< Tensor< 1, dim, double >> &gradients, const unsigned int component=0) const
 
virtual void vector_gradients (const std::vector< Point< dim >> &points, std::vector< std::vector< Tensor< 1, dim, double >>> &gradients) const
 
virtual void vector_gradient_list (const std::vector< Point< dim >> &points, std::vector< std::vector< Tensor< 1, dim, double >>> &gradients) const
 
virtual double laplacian (const Point< dim > &p, const unsigned int component=0) const
 
virtual void vector_laplacian (const Point< dim > &p, Vector< double > &values) const
 
virtual void laplacian_list (const std::vector< Point< dim >> &points, std::vector< double > &values, const unsigned int component=0) const
 
virtual void vector_laplacian_list (const std::vector< Point< dim >> &points, std::vector< Vector< double >> &values) const
 
virtual SymmetricTensor< 2, dim, double > hessian (const Point< dim > &p, const unsigned int component=0) const
 
virtual void vector_hessian (const Point< dim > &p, std::vector< SymmetricTensor< 2, dim, double >> &values) const
 
virtual void hessian_list (const std::vector< Point< dim >> &points, std::vector< SymmetricTensor< 2, dim, double >> &values, const unsigned int component=0) const
 
virtual void vector_hessian_list (const std::vector< Point< dim >> &points, std::vector< std::vector< SymmetricTensor< 2, dim, double >>> &values) const
 
std::size_t memory_consumption () const
 
- Public Member Functions inherited from FunctionTime< Number >
 FunctionTime (const Number initial_time=Number(0.0))
 
virtual ~FunctionTime ()=default
 
Number get_time () const
 
virtual void set_time (const Number new_time)
 
virtual void advance_time (const Number delta_t)
 
- Public Member Functions inherited from Subscriptor
 Subscriptor ()
 
 Subscriptor (const Subscriptor &)
 
 Subscriptor (Subscriptor &&) noexcept
 
virtual ~Subscriptor ()
 
Subscriptoroperator= (const Subscriptor &)
 
Subscriptoroperator= (Subscriptor &&) noexcept
 
void subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
void unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
unsigned int n_subscriptions () const
 
template<typename StreamType >
void list_subscribers (StreamType &stream) const
 
void list_subscribers () const
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 

Private Attributes

const Function< dim > & f
 
double h
 
AutoDerivativeFunction< dim >::DifferenceFormula formula
 
std::vector< Tensor< 1, dim > > incr
 

Additional Inherited Members

- Public Types inherited from AutoDerivativeFunction< dim >
enum  DifferenceFormula { Euler, UpwindEuler, FourthOrder }
 
- Public Types inherited from Function< dim >
using time_type = typename FunctionTime< typename numbers::NumberTraits< double >::real_type >::time_type
 
- Public Types inherited from FunctionTime< Number >
using time_type = Number
 
- Static Public Member Functions inherited from AutoDerivativeFunction< dim >
static DifferenceFormula get_formula_of_order (const unsigned int ord)
 
- Static Public Member Functions inherited from Subscriptor
static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 
- Public Attributes inherited from Function< dim >
const unsigned int n_components
 
- Static Public Attributes inherited from Function< dim >
static const unsigned int dimension
 

Detailed Description

template<int dim>
class FunctionDerivative< dim >

Derivative of a function object. The value access functions of this class return the directional derivative of a function with respect to a direction provided on construction. If b is the vector, the derivative b . grad f is computed. This derivative is evaluated directly, not by computing the gradient of f and its scalar product with b.

The derivative is computed numerically, using one of the provided difference formulas (see set_formula for available schemes). Experimenting with h and the difference scheme may be necessary to obtain sufficient results.

Author
Guido Kanschat, 2000

Definition at line 45 of file function_derivative.h.

Constructor & Destructor Documentation

◆ FunctionDerivative() [1/2]

template<int dim>
FunctionDerivative< dim >::FunctionDerivative ( const Function< dim > &  f,
const Point< dim > &  direction,
const double  h = 1.e-6 
)

Constructor. Provided are the functions to compute derivatives of, the direction vector of the differentiation and the step size h of the difference formula.

Definition at line 26 of file function_derivative.cc.

◆ FunctionDerivative() [2/2]

template<int dim>
FunctionDerivative< dim >::FunctionDerivative ( const Function< dim > &  f,
const std::vector< Point< dim >> &  direction,
const double  h = 1.e-6 
)

Constructor. Provided are the functions to compute derivatives of and the direction vector of the differentiation in each quadrature point and the difference step size.

This is the constructor for a variable velocity field. Most probably, a new object of FunctionDerivative has to be constructed for each set of quadrature points.

The number of quadrature point must still be the same, when values are accessed.

Definition at line 40 of file function_derivative.cc.

Member Function Documentation

◆ set_formula()

template<int dim>
void FunctionDerivative< dim >::set_formula ( typename AutoDerivativeFunction< dim >::DifferenceFormula  formula = AutoDerivativeFunction<dim>::Euler)

Choose the difference formula. This is set to the default in the constructor.

Formulas implemented right now are first order backward Euler (UpwindEuler), second order symmetric Euler (Euler) and a symmetric fourth order formula (FourthOrder).

Definition at line 57 of file function_derivative.cc.

◆ set_h()

template<int dim>
void FunctionDerivative< dim >::set_h ( const double  h)

Change the base step size of the difference formula

Definition at line 81 of file function_derivative.cc.

◆ value()

template<int dim>
double FunctionDerivative< dim >::value ( const Point< dim > &  p,
const unsigned int  component = 0 
) const
overridevirtual

Return the value of the function at the given point. Unless there is only one component (i.e. the function is scalar), you should state the component you want to have evaluated; it defaults to zero, i.e. the first component.

Reimplemented from Function< dim >.

Definition at line 92 of file function_derivative.cc.

◆ vector_value()

template<int dim>
void FunctionDerivative< dim >::vector_value ( const Point< dim > &  p,
Vector< double > &  values 
) const
overridevirtual

Return all components of a vector-valued function at a given point.

values shall have the right size beforehand, i.e. n_components.

The default implementation will call value() for each component.

Reimplemented from Function< dim >.

Definition at line 123 of file function_derivative.cc.

◆ value_list()

template<int dim>
void FunctionDerivative< dim >::value_list ( const std::vector< Point< dim >> &  points,
std::vector< double > &  values,
const unsigned int  component = 0 
) const
overridevirtual

Set values to the point values of the specified component of the function at the points. It is assumed that values already has the right size, i.e. the same size as the points array.

By default, this function repeatedly calls value() for each point separately, to fill the output array.

Reimplemented from Function< dim >.

Definition at line 165 of file function_derivative.cc.

◆ memory_consumption()

template<int dim>
std::size_t FunctionDerivative< dim >::memory_consumption ( ) const

Return an estimate for the memory consumption, in bytes, of this object. This is not exact (but will usually be close) because calculating the memory usage of trees (e.g., std::map) is difficult.

Definition at line 231 of file function_derivative.cc.

Member Data Documentation

◆ f

template<int dim>
const Function<dim>& FunctionDerivative< dim >::f
private

Function for differentiation.

Definition at line 113 of file function_derivative.h.

◆ h

template<int dim>
double FunctionDerivative< dim >::h
private

Step size of the difference formula.

Definition at line 118 of file function_derivative.h.

◆ formula

template<int dim>
AutoDerivativeFunction<dim>::DifferenceFormula FunctionDerivative< dim >::formula
private

Difference formula.

Definition at line 123 of file function_derivative.h.

◆ incr

template<int dim>
std::vector<Tensor<1, dim> > FunctionDerivative< dim >::incr
private

Helper object. Contains the increment vector for the formula.

Definition at line 128 of file function_derivative.h.


The documentation for this class was generated from the following files: