Reference documentation for deal.II version 9.5.0
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
Public Types | Public Member Functions | Static Public Member Functions | Private Types | Private Member Functions | Private Attributes | Static Private Attributes | List of all members
LinearAlgebra::TpetraWrappers::Vector< Number > Class Template Reference

#include <deal.II/lac/trilinos_tpetra_vector.h>

Inheritance diagram for LinearAlgebra::TpetraWrappers::Vector< Number >:
[legend]

Public Types

using value_type = Number
 
using size_type = typename VectorSpaceVector< Number >::size_type
 
using real_type = typename numbers::NumberTraits< Number >::real_type
 

Public Member Functions

 Vector ()
 
 Vector (const Vector &V)
 
 Vector (const IndexSet &parallel_partitioner, const MPI_Comm communicator)
 
void reinit (const IndexSet &parallel_partitioner, const MPI_Comm communicator, const bool omit_zeroing_entries=false)
 
virtual void reinit (const VectorSpaceVector< Number > &V, const bool omit_zeroing_entries=false) override
 
Vectoroperator= (const Vector &V)
 
virtual Vectoroperator= (const Number s) override
 
virtual void import_elements (const ReadWriteVector< Number > &V, VectorOperation::values operation, std::shared_ptr< const Utilities::MPI::CommunicationPatternBase > communication_pattern={}) override
 
virtual void import (const ReadWriteVector< Number > &V, VectorOperation::values operation, std::shared_ptr< const Utilities::MPI::CommunicationPatternBase > communication_pattern={}) override
 
virtual Vectoroperator*= (const Number factor) override
 
virtual Vectoroperator/= (const Number factor) override
 
virtual Vectoroperator+= (const VectorSpaceVector< Number > &V) override
 
virtual Vectoroperator-= (const VectorSpaceVector< Number > &V) override
 
virtual Number operator* (const VectorSpaceVector< Number > &V) const override
 
virtual void add (const Number a) override
 
virtual void add (const Number a, const VectorSpaceVector< Number > &V) override
 
virtual void add (const Number a, const VectorSpaceVector< Number > &V, const Number b, const VectorSpaceVector< Number > &W) override
 
virtual void sadd (const Number s, const Number a, const VectorSpaceVector< Number > &V) override
 
virtual void scale (const VectorSpaceVector< Number > &scaling_factors) override
 
virtual void equ (const Number a, const VectorSpaceVector< Number > &V) override
 
virtual bool all_zero () const override
 
virtual Number mean_value () const override
 
virtual LinearAlgebra::VectorSpaceVector< Number >::real_type l1_norm () const override
 
virtual LinearAlgebra::VectorSpaceVector< Number >::real_type l2_norm () const override
 
virtual LinearAlgebra::VectorSpaceVector< Number >::real_type linfty_norm () const override
 
virtual Number add_and_dot (const Number a, const VectorSpaceVector< Number > &V, const VectorSpaceVector< Number > &W) override
 
bool has_ghost_elements () const
 
virtual size_type size () const override
 
size_type locally_owned_size () const
 
MPI_Comm get_mpi_communicator () const
 
virtual ::IndexSet locally_owned_elements () const override
 
const Tpetra::Vector< Number, int, types::signed_global_dof_index > & trilinos_vector () const
 
Tpetra::Vector< Number, int, types::signed_global_dof_index > & trilinos_vector ()
 
virtual void print (std::ostream &out, const unsigned int precision=3, const bool scientific=true, const bool across=true) const override
 
virtual std::size_t memory_consumption () const override
 
virtual void compress (VectorOperation::values)
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 
Subscriptor functionality

Classes derived from Subscriptor provide a facility to subscribe to this object. This is mostly used by the SmartPointer class.

void subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
void unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
unsigned int n_subscriptions () const
 
template<typename StreamType >
void list_subscribers (StreamType &stream) const
 
void list_subscribers () const
 

Static Public Member Functions

static ::ExceptionBaseExcDifferentParallelPartitioning ()
 
static ::ExceptionBaseExcVectorTypeNotCompatible ()
 
static ::ExceptionBaseExcTrilinosError (int arg1)
 
static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 

Private Types

using map_value_type = decltype(counter_map)::value_type
 
using map_iterator = decltype(counter_map)::iterator
 

Private Member Functions

void create_tpetra_comm_pattern (const IndexSet &source_index_set, const MPI_Comm mpi_comm)
 
void check_no_subscribers () const noexcept
 

Private Attributes

std::unique_ptr< Tpetra::Vector< Number, int, types::signed_global_dof_index > > vector
 
::IndexSet source_stored_elements
 
std::shared_ptr< const TpetraWrappers::CommunicationPatterntpetra_comm_pattern
 
std::atomic< unsigned intcounter
 
std::map< std::string, unsigned intcounter_map
 
std::vector< std::atomic< bool > * > validity_pointers
 
const std::type_info * object_info
 

Static Private Attributes

static std::mutex mutex
 

Detailed Description

template<typename Number>
class LinearAlgebra::TpetraWrappers::Vector< Number >

This class implements a wrapper to the Trilinos distributed vector class Tpetra::Vector. This class is derived from the LinearAlgebra::VectorSpaceVector class and requires Trilinos to be compiled with MPI support.

Tpetra uses Kokkos for thread-parallelism and chooses the execution and memory space automatically depending on Kokkos configuration. The priority is ranked from highest to lowest:

In case Kokkos was configured with GPU support, this class performs its actions on the GPU. In particular, there is no need for manually synchronizing memory between host and device.

Definition at line 116 of file trilinos_tpetra_vector.h.

Member Typedef Documentation

◆ value_type

template<typename Number >
using LinearAlgebra::TpetraWrappers::Vector< Number >::value_type = Number

Definition at line 119 of file trilinos_tpetra_vector.h.

◆ size_type

template<typename Number >
using LinearAlgebra::TpetraWrappers::Vector< Number >::size_type = typename VectorSpaceVector<Number>::size_type

Definition at line 121 of file trilinos_tpetra_vector.h.

◆ real_type

template<typename Number >
using LinearAlgebra::VectorSpaceVector< Number >::real_type = typename numbers::NumberTraits<Number>::real_type
inherited

Definition at line 61 of file vector_space_vector.h.

◆ map_value_type

using Subscriptor::map_value_type = decltype(counter_map)::value_type
privateinherited

The data type used in counter_map.

Definition at line 230 of file subscriptor.h.

◆ map_iterator

using Subscriptor::map_iterator = decltype(counter_map)::iterator
privateinherited

The iterator type used in counter_map.

Definition at line 235 of file subscriptor.h.

Constructor & Destructor Documentation

◆ Vector() [1/3]

template<typename Number >
LinearAlgebra::TpetraWrappers::Vector< Number >::Vector ( )

Constructor. Create a vector of dimension zero.

◆ Vector() [2/3]

template<typename Number >
LinearAlgebra::TpetraWrappers::Vector< Number >::Vector ( const Vector< Number > &  V)

Copy constructor. Sets the dimension and the partitioning to that of the given vector and copies all elements.

◆ Vector() [3/3]

template<typename Number >
LinearAlgebra::TpetraWrappers::Vector< Number >::Vector ( const IndexSet parallel_partitioner,
const MPI_Comm  communicator 
)
explicit

This constructor takes an IndexSet that defines how to distribute the individual components among the MPI processors. Since it also includes information about the size of the vector, this is all we need to generate a parallel vector.

Member Function Documentation

◆ reinit() [1/2]

template<typename Number >
void LinearAlgebra::TpetraWrappers::Vector< Number >::reinit ( const IndexSet parallel_partitioner,
const MPI_Comm  communicator,
const bool  omit_zeroing_entries = false 
)

Reinit functionality. This function destroys the old vector content and generates a new one based on the input partitioning. The flag omit_zeroing_entries determines whether the vector should be filled with zero (false) or left untouched (true).

◆ reinit() [2/2]

template<typename Number >
virtual void LinearAlgebra::TpetraWrappers::Vector< Number >::reinit ( const VectorSpaceVector< Number > &  V,
const bool  omit_zeroing_entries = false 
)
overridevirtual

Change the dimension to that of the vector V. The elements of V are not copied.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ operator=() [1/2]

template<typename Number >
Vector & LinearAlgebra::TpetraWrappers::Vector< Number >::operator= ( const Vector< Number > &  V)

Copy function. This function takes a Vector and copies all the elements. The Vector will have the same parallel distribution as V.

◆ operator=() [2/2]

template<typename Number >
virtual Vector & LinearAlgebra::TpetraWrappers::Vector< Number >::operator= ( const Number  s)
overridevirtual

Sets all elements of the vector to the scalar s. This operation is only allowed if s is equal to zero.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ import_elements()

template<typename Number >
virtual void LinearAlgebra::TpetraWrappers::Vector< Number >::import_elements ( const ReadWriteVector< Number > &  V,
VectorOperation::values  operation,
std::shared_ptr< const Utilities::MPI::CommunicationPatternBase communication_pattern = {} 
)
overridevirtual

Imports all the elements present in the vector's IndexSet from the input vector V. VectorOperation::values operation is used to decide if the elements in V should be added to the current vector or replace the current elements. The last parameter can be used if the same communication pattern is used multiple times. This can be used to improve performance.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ import()

template<typename Number >
virtual void LinearAlgebra::TpetraWrappers::Vector< Number >::import ( const ReadWriteVector< Number > &  V,
VectorOperation::values  operation,
std::shared_ptr< const Utilities::MPI::CommunicationPatternBase communication_pattern = {} 
)
inlineoverridevirtual

◆ operator*=()

template<typename Number >
virtual Vector & LinearAlgebra::TpetraWrappers::Vector< Number >::operator*= ( const Number  factor)
overridevirtual

Multiply the entire vector by a fixed factor.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ operator/=()

template<typename Number >
virtual Vector & LinearAlgebra::TpetraWrappers::Vector< Number >::operator/= ( const Number  factor)
overridevirtual

Divide the entire vector by a fixed factor.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ operator+=()

template<typename Number >
virtual Vector & LinearAlgebra::TpetraWrappers::Vector< Number >::operator+= ( const VectorSpaceVector< Number > &  V)
overridevirtual

Add the vector V to the present one.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ operator-=()

template<typename Number >
virtual Vector & LinearAlgebra::TpetraWrappers::Vector< Number >::operator-= ( const VectorSpaceVector< Number > &  V)
overridevirtual

Subtract the vector V from the present one.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ operator*()

template<typename Number >
virtual Number LinearAlgebra::TpetraWrappers::Vector< Number >::operator* ( const VectorSpaceVector< Number > &  V) const
overridevirtual

Return the scalar product of two vectors. The vectors need to have the same layout.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ add() [1/3]

template<typename Number >
virtual void LinearAlgebra::TpetraWrappers::Vector< Number >::add ( const Number  a)
overridevirtual

Add a to all components. Note that is a scalar not a vector.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ add() [2/3]

template<typename Number >
virtual void LinearAlgebra::TpetraWrappers::Vector< Number >::add ( const Number  a,
const VectorSpaceVector< Number > &  V 
)
overridevirtual

Simple addition of a multiple of a vector, i.e. *this += a*V. The vectors need to have the same layout.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ add() [3/3]

template<typename Number >
virtual void LinearAlgebra::TpetraWrappers::Vector< Number >::add ( const Number  a,
const VectorSpaceVector< Number > &  V,
const Number  b,
const VectorSpaceVector< Number > &  W 
)
overridevirtual

Multiple addition of multiple of a vector, i.e. *this> += a*V+b*W. The vectors need to have the same layout.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ sadd()

template<typename Number >
virtual void LinearAlgebra::TpetraWrappers::Vector< Number >::sadd ( const Number  s,
const Number  a,
const VectorSpaceVector< Number > &  V 
)
overridevirtual

Scaling and simple addition of a multiple of a vector, i.e. this = s(*this)+a*V.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ scale()

template<typename Number >
virtual void LinearAlgebra::TpetraWrappers::Vector< Number >::scale ( const VectorSpaceVector< Number > &  scaling_factors)
overridevirtual

Scale each element of this vector by the corresponding element in the argument. This function is mostly meant to simulate multiplication (and immediate re-assignment) by a diagonal scaling matrix. The vectors need to have the same layout.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ equ()

template<typename Number >
virtual void LinearAlgebra::TpetraWrappers::Vector< Number >::equ ( const Number  a,
const VectorSpaceVector< Number > &  V 
)
overridevirtual

Assignment *this = a*V.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ all_zero()

template<typename Number >
virtual bool LinearAlgebra::TpetraWrappers::Vector< Number >::all_zero ( ) const
overridevirtual

Return whether the vector contains only elements with value zero.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ mean_value()

template<typename Number >
virtual Number LinearAlgebra::TpetraWrappers::Vector< Number >::mean_value ( ) const
overridevirtual

Return the mean value of the element of this vector.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ l1_norm()

template<typename Number >
virtual LinearAlgebra::VectorSpaceVector< Number >::real_type LinearAlgebra::TpetraWrappers::Vector< Number >::l1_norm ( ) const
overridevirtual

Return the l1 norm of the vector (i.e., the sum of the absolute values of all entries among all processors).

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ l2_norm()

template<typename Number >
virtual LinearAlgebra::VectorSpaceVector< Number >::real_type LinearAlgebra::TpetraWrappers::Vector< Number >::l2_norm ( ) const
overridevirtual

Return the l2 norm of the vector (i.e., the square root of the sum of the square of all entries among all processors).

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ linfty_norm()

template<typename Number >
virtual LinearAlgebra::VectorSpaceVector< Number >::real_type LinearAlgebra::TpetraWrappers::Vector< Number >::linfty_norm ( ) const
overridevirtual

Return the maximum norm of the vector (i.e., the maximum absolute value among all entries and among all processors).

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ add_and_dot()

template<typename Number >
virtual Number LinearAlgebra::TpetraWrappers::Vector< Number >::add_and_dot ( const Number  a,
const VectorSpaceVector< Number > &  V,
const VectorSpaceVector< Number > &  W 
)
overridevirtual

Performs a combined operation of a vector addition and a subsequent inner product, returning the value of the inner product. In other words, the result of this function is the same as if the user called

this->add(a, V);
return_value = *this * W;
virtual void add(const Number a) override

The reason this function exists is that this operation involves less memory transfer than calling the two functions separately. This method only needs to load three vectors, this, V, W, whereas calling separate methods means to load the calling vector this twice. Since most vector operations are memory transfer limited, this reduces the time by 25% (or 50% if W equals this).

The vectors need to have the same layout.

For complex-valued vectors, the scalar product in the second step is implemented as \(\left<v,w\right>=\sum_i v_i \bar{w_i}\).

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ has_ghost_elements()

template<typename Number >
bool Vector< Number >::has_ghost_elements
inline

This function always returns false and is present only for backward compatibility.

Definition at line 468 of file trilinos_tpetra_vector.h.

◆ size()

template<typename Number >
virtual size_type LinearAlgebra::TpetraWrappers::Vector< Number >::size ( ) const
overridevirtual

Return the global size of the vector, equal to the sum of the number of locally owned indices among all processors.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ locally_owned_size()

template<typename Number >
size_type LinearAlgebra::TpetraWrappers::Vector< Number >::locally_owned_size ( ) const

Return the local size of the vector, i.e., the number of indices owned locally.

◆ get_mpi_communicator()

template<typename Number >
MPI_Comm LinearAlgebra::TpetraWrappers::Vector< Number >::get_mpi_communicator ( ) const

Return the underlying MPI communicator.

◆ locally_owned_elements()

template<typename Number >
virtual ::IndexSet LinearAlgebra::TpetraWrappers::Vector< Number >::locally_owned_elements ( ) const
overridevirtual

Return an index set that describes which elements of this vector are owned by the current processor. As a consequence, the index sets returned on different processors if this is a distributed vector will form disjoint sets that add up to the complete index set. Obviously, if a vector is created on only one processor, then the result would satisfy

vec.locally_owned_elements() == complete_index_set(vec.size())
IndexSet complete_index_set(const IndexSet::size_type N)
Definition index_set.h:1089

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ trilinos_vector() [1/2]

template<typename Number >
const Tpetra::Vector< Number, int, types::signed_global_dof_index > & LinearAlgebra::TpetraWrappers::Vector< Number >::trilinos_vector ( ) const

Return a const reference to the underlying Trilinos Tpetra::Vector class.

◆ trilinos_vector() [2/2]

template<typename Number >
Tpetra::Vector< Number, int, types::signed_global_dof_index > & LinearAlgebra::TpetraWrappers::Vector< Number >::trilinos_vector ( )

Return a (modifiable) reference to the underlying Trilinos Tpetra::Vector class.

◆ print()

template<typename Number >
virtual void LinearAlgebra::TpetraWrappers::Vector< Number >::print ( std::ostream &  out,
const unsigned int  precision = 3,
const bool  scientific = true,
const bool  across = true 
) const
overridevirtual

Prints the vector to the output stream out.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ memory_consumption()

template<typename Number >
virtual std::size_t LinearAlgebra::TpetraWrappers::Vector< Number >::memory_consumption ( ) const
overridevirtual

Return the memory consumption of this class in bytes.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ create_tpetra_comm_pattern()

template<typename Number >
void LinearAlgebra::TpetraWrappers::Vector< Number >::create_tpetra_comm_pattern ( const IndexSet source_index_set,
const MPI_Comm  mpi_comm 
)
private

Create the CommunicationPattern for the communication between the IndexSet source_index_set and the current vector based on the communicator mpi_comm.

◆ compress()

template<typename Number >
virtual void LinearAlgebra::VectorSpaceVector< Number >::compress ( VectorOperation::values  )
inlinevirtualinherited

This function does nothing and only exists for backward compatibility.

Reimplemented in LinearAlgebra::distributed::BlockVector< Number >, LinearAlgebra::distributed::Vector< Number, MemorySpace >, and LinearAlgebra::distributed::Vector< double >.

Definition at line 238 of file vector_space_vector.h.

◆ subscribe()

void Subscriptor::subscribe ( std::atomic< bool > *const  validity,
const std::string &  identifier = "" 
) const
inherited

Subscribes a user of the object by storing the pointer validity. The subscriber may be identified by text supplied as identifier.

Definition at line 136 of file subscriptor.cc.

◆ unsubscribe()

void Subscriptor::unsubscribe ( std::atomic< bool > *const  validity,
const std::string &  identifier = "" 
) const
inherited

Unsubscribes a user from the object.

Note
The identifier and the validity pointer must be the same as the one supplied to subscribe().

Definition at line 156 of file subscriptor.cc.

◆ n_subscriptions()

unsigned int Subscriptor::n_subscriptions ( ) const
inlineinherited

Return the present number of subscriptions to this object. This allows to use this class for reference counted lifetime determination where the last one to unsubscribe also deletes the object.

Definition at line 300 of file subscriptor.h.

◆ list_subscribers() [1/2]

template<typename StreamType >
void Subscriptor::list_subscribers ( StreamType &  stream) const
inlineinherited

List the subscribers to the input stream.

Definition at line 317 of file subscriptor.h.

◆ list_subscribers() [2/2]

void Subscriptor::list_subscribers ( ) const
inherited

List the subscribers to deallog.

Definition at line 204 of file subscriptor.cc.

◆ serialize()

template<class Archive >
void Subscriptor::serialize ( Archive &  ar,
const unsigned int  version 
)
inlineinherited

Read or write the data of this object to or from a stream for the purpose of serialization using the BOOST serialization library.

This function does not actually serialize any of the member variables of this class. The reason is that what this class stores is only who subscribes to this object, but who does so at the time of storing the contents of this object does not necessarily have anything to do with who subscribes to the object when it is restored. Consequently, we do not want to overwrite the subscribers at the time of restoring, and then there is no reason to write the subscribers out in the first place.

Definition at line 309 of file subscriptor.h.

◆ check_no_subscribers()

void Subscriptor::check_no_subscribers ( ) const
privatenoexceptinherited

Check that there are no objects subscribing to this object. If this check passes then it is safe to destroy the current object. It this check fails then this function will either abort or print an error message to deallog (by using the AssertNothrow mechanism), but will not throw an exception.

Note
Since this function is just a consistency check it does nothing in release mode.
If this function is called when there is an uncaught exception then, rather than aborting, this function prints an error message to the standard error stream and returns.

Definition at line 53 of file subscriptor.cc.

Member Data Documentation

◆ vector

template<typename Number >
std::unique_ptr< Tpetra::Vector<Number, int, types::signed_global_dof_index> > LinearAlgebra::TpetraWrappers::Vector< Number >::vector
private

Pointer to the actual Tpetra vector object.

Definition at line 450 of file trilinos_tpetra_vector.h.

◆ source_stored_elements

template<typename Number >
::IndexSet LinearAlgebra::TpetraWrappers::Vector< Number >::source_stored_elements
private

IndexSet of the elements of the last imported vector.

Definition at line 455 of file trilinos_tpetra_vector.h.

◆ tpetra_comm_pattern

template<typename Number >
std::shared_ptr<const TpetraWrappers::CommunicationPattern> LinearAlgebra::TpetraWrappers::Vector< Number >::tpetra_comm_pattern
private

CommunicationPattern for the communication between the source_stored_elements IndexSet and the current vector.

Definition at line 462 of file trilinos_tpetra_vector.h.

◆ counter

std::atomic<unsigned int> Subscriptor::counter
mutableprivateinherited

Store the number of objects which subscribed to this object. Initially, this number is zero, and upon destruction it shall be zero again (i.e. all objects which subscribed should have unsubscribed again).

The creator (and owner) of an object is counted in the map below if HE manages to supply identification.

We use the mutable keyword in order to allow subscription to constant objects also.

This counter may be read from and written to concurrently in multithreaded code: hence we use the std::atomic class template.

Definition at line 219 of file subscriptor.h.

◆ counter_map

std::map<std::string, unsigned int> Subscriptor::counter_map
mutableprivateinherited

In this map, we count subscriptions for each different identification string supplied to subscribe().

Definition at line 225 of file subscriptor.h.

◆ validity_pointers

std::vector<std::atomic<bool> *> Subscriptor::validity_pointers
mutableprivateinherited

In this vector, we store pointers to the validity bool in the SmartPointer objects that subscribe to this class.

Definition at line 241 of file subscriptor.h.

◆ object_info

const std::type_info* Subscriptor::object_info
mutableprivateinherited

Pointer to the typeinfo object of this object, from which we can later deduce the class name. Since this information on the derived class is neither available in the destructor, nor in the constructor, we obtain it in between and store it here.

Definition at line 249 of file subscriptor.h.

◆ mutex

std::mutex Subscriptor::mutex
staticprivateinherited

A mutex used to ensure data consistency when printing out the list of subscribers.

Definition at line 271 of file subscriptor.h.


The documentation for this class was generated from the following files: