Reference documentation for deal.II version 9.3.3
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
tensor_product_polynomials_bubbles.h
Go to the documentation of this file.
1// ---------------------------------------------------------------------
2//
3// Copyright (C) 2012 - 2021 by the deal.II authors
4//
5// This file is part of the deal.II library.
6//
7// The deal.II library is free software; you can use it, redistribute
8// it, and/or modify it under the terms of the GNU Lesser General
9// Public License as published by the Free Software Foundation; either
10// version 2.1 of the License, or (at your option) any later version.
11// The full text of the license can be found in the file LICENSE.md at
12// the top level directory of deal.II.
13//
14// ---------------------------------------------------------------------
15
16#ifndef dealii_tensor_product_polynomials_bubbles_h
17#define dealii_tensor_product_polynomials_bubbles_h
18
19
20#include <deal.II/base/config.h>
21
23#include <deal.II/base/point.h>
25#include <deal.II/base/tensor.h>
28
29#include <vector>
30
32
52template <int dim>
54{
55public:
60 static const unsigned int dimension = dim;
61
67 template <class Pol>
68 TensorProductPolynomialsBubbles(const std::vector<Pol> &pols);
69
73 void
74 output_indices(std::ostream &out) const;
75
81 void
82 set_numbering(const std::vector<unsigned int> &renumber);
83
87 const std::vector<unsigned int> &
89
93 const std::vector<unsigned int> &
95
108 void
109 evaluate(const Point<dim> & unit_point,
110 std::vector<double> & values,
111 std::vector<Tensor<1, dim>> &grads,
112 std::vector<Tensor<2, dim>> &grad_grads,
113 std::vector<Tensor<3, dim>> &third_derivatives,
114 std::vector<Tensor<4, dim>> &fourth_derivatives) const override;
115
128 double
129 compute_value(const unsigned int i, const Point<dim> &p) const override;
130
143 template <int order>
145 compute_derivative(const unsigned int i, const Point<dim> &p) const;
146
150 virtual Tensor<1, dim>
151 compute_1st_derivative(const unsigned int i,
152 const Point<dim> & p) const override;
153
157 virtual Tensor<2, dim>
158 compute_2nd_derivative(const unsigned int i,
159 const Point<dim> & p) const override;
160
164 virtual Tensor<3, dim>
165 compute_3rd_derivative(const unsigned int i,
166 const Point<dim> & p) const override;
167
171 virtual Tensor<4, dim>
172 compute_4th_derivative(const unsigned int i,
173 const Point<dim> & p) const override;
174
188 compute_grad(const unsigned int i, const Point<dim> &p) const override;
189
203 compute_grad_grad(const unsigned int i, const Point<dim> &p) const override;
204
211 unsigned int
212 n() const;
213
218 std::string
219 name() const override;
220
224 virtual std::unique_ptr<ScalarPolynomialsBase<dim>>
225 clone() const override;
226
227private:
232
236 std::vector<unsigned int> index_map;
237
241 std::vector<unsigned int> index_map_inverse;
242};
243
247/* ---------------- template and inline functions ---------- */
248
249#ifndef DOXYGEN
250
251template <int dim>
252template <class Pol>
254 const std::vector<Pol> &pols)
255 : ScalarPolynomialsBase<dim>(1,
256 Utilities::fixed_power<dim>(pols.size()) + dim)
257 , tensor_polys(pols)
258 , index_map(tensor_polys.n() +
259 ((tensor_polys.polynomials.size() <= 2) ? 1 : dim))
260 , index_map_inverse(tensor_polys.n() +
261 ((tensor_polys.polynomials.size() <= 2) ? 1 : dim))
262{
263 const unsigned int q_degree = tensor_polys.polynomials.size() - 1;
264 const unsigned int n_bubbles = ((q_degree <= 1) ? 1 : dim);
265 // append index for renumbering
266 for (unsigned int i = 0; i < tensor_polys.n() + n_bubbles; ++i)
267 {
268 index_map[i] = i;
269 index_map_inverse[i] = i;
270 }
271}
272
273
274template <int dim>
275inline unsigned int
277{
278 return tensor_polys.n() + dim;
279}
280
281
282template <>
283inline unsigned int
285{
287}
288
289
290template <int dim>
291inline const std::vector<unsigned int> &
293{
294 return index_map;
295}
296
297
298template <int dim>
299inline const std::vector<unsigned int> &
301{
302 return index_map_inverse;
303}
304
305
306template <int dim>
307inline std::string
309{
310 return "TensorProductPolynomialsBubbles";
311}
312
313
314template <int dim>
315template <int order>
318 const unsigned int i,
319 const Point<dim> & p) const
320{
321 const unsigned int q_degree = tensor_polys.polynomials.size() - 1;
322 const unsigned int max_q_indices = tensor_polys.n();
323 Assert(i < max_q_indices + /* n_bubbles= */ ((q_degree <= 1) ? 1 : dim),
325
326 // treat the regular basis functions
327 if (i < max_q_indices)
328 return tensor_polys.template compute_derivative<order>(i, p);
329
330 const unsigned int comp = i - tensor_polys.n();
331
332 Tensor<order, dim> derivative;
333 switch (order)
334 {
335 case 1:
336 {
337 Tensor<1, dim> &derivative_1 =
338 *reinterpret_cast<Tensor<1, dim> *>(&derivative);
339
340 for (unsigned int d = 0; d < dim; ++d)
341 {
342 derivative_1[d] = 1.;
343 // compute grad(4*\prod_{i=1}^d (x_i(1-x_i)))(p)
344 for (unsigned j = 0; j < dim; ++j)
345 derivative_1[d] *=
346 (d == j ? 4 * (1 - 2 * p(j)) : 4 * p(j) * (1 - p(j)));
347 // and multiply with (2*x_i-1)^{r-1}
348 for (unsigned int i = 0; i < q_degree - 1; ++i)
349 derivative_1[d] *= 2 * p(comp) - 1;
350 }
351
352 if (q_degree >= 2)
353 {
354 // add \prod_{i=1}^d 4*(x_i(1-x_i))(p)
355 double value = 1.;
356 for (unsigned int j = 0; j < dim; ++j)
357 value *= 4 * p(j) * (1 - p(j));
358 // and multiply with grad(2*x_i-1)^{r-1}
359 double tmp = value * 2 * (q_degree - 1);
360 for (unsigned int i = 0; i < q_degree - 2; ++i)
361 tmp *= 2 * p(comp) - 1;
362 derivative_1[comp] += tmp;
363 }
364
365 return derivative;
366 }
367 case 2:
368 {
369 Tensor<2, dim> &derivative_2 =
370 *reinterpret_cast<Tensor<2, dim> *>(&derivative);
371
372 double v[dim + 1][3];
373 {
374 for (unsigned int c = 0; c < dim; ++c)
375 {
376 v[c][0] = 4 * p(c) * (1 - p(c));
377 v[c][1] = 4 * (1 - 2 * p(c));
378 v[c][2] = -8;
379 }
380
381 double tmp = 1.;
382 for (unsigned int i = 0; i < q_degree - 1; ++i)
383 tmp *= 2 * p(comp) - 1;
384 v[dim][0] = tmp;
385
386 if (q_degree >= 2)
387 {
388 double tmp = 2 * (q_degree - 1);
389 for (unsigned int i = 0; i < q_degree - 2; ++i)
390 tmp *= 2 * p(comp) - 1;
391 v[dim][1] = tmp;
392 }
393 else
394 v[dim][1] = 0.;
395
396 if (q_degree >= 3)
397 {
398 double tmp = 4 * (q_degree - 2) * (q_degree - 1);
399 for (unsigned int i = 0; i < q_degree - 3; ++i)
400 tmp *= 2 * p(comp) - 1;
401 v[dim][2] = tmp;
402 }
403 else
404 v[dim][2] = 0.;
405 }
406
407 // calculate (\partial_j \partial_k \psi) * monomial
408 Tensor<2, dim> grad_grad_1;
409 for (unsigned int d1 = 0; d1 < dim; ++d1)
410 for (unsigned int d2 = 0; d2 < dim; ++d2)
411 {
412 grad_grad_1[d1][d2] = v[dim][0];
413 for (unsigned int x = 0; x < dim; ++x)
414 {
415 unsigned int derivative = 0;
416 if (d1 == x || d2 == x)
417 {
418 if (d1 == d2)
419 derivative = 2;
420 else
421 derivative = 1;
422 }
423 grad_grad_1[d1][d2] *= v[x][derivative];
424 }
425 }
426
427 // calculate (\partial_j \psi) *(\partial_k monomial)
428 // and (\partial_k \psi) *(\partial_j monomial)
429 Tensor<2, dim> grad_grad_2;
430 Tensor<2, dim> grad_grad_3;
431 for (unsigned int d = 0; d < dim; ++d)
432 {
433 grad_grad_2[d][comp] = v[dim][1];
434 grad_grad_3[comp][d] = v[dim][1];
435 for (unsigned int x = 0; x < dim; ++x)
436 {
437 grad_grad_2[d][comp] *= v[x][d == x];
438 grad_grad_3[comp][d] *= v[x][d == x];
439 }
440 }
441
442 // calculate \psi *(\partial j \partial_k monomial) and sum
443 double psi_value = 1.;
444 for (unsigned int x = 0; x < dim; ++x)
445 psi_value *= v[x][0];
446
447 for (unsigned int d1 = 0; d1 < dim; ++d1)
448 for (unsigned int d2 = 0; d2 < dim; ++d2)
449 derivative_2[d1][d2] =
450 grad_grad_1[d1][d2] + grad_grad_2[d1][d2] + grad_grad_3[d1][d2];
451 derivative_2[comp][comp] += psi_value * v[dim][2];
452
453 return derivative;
454 }
455 default:
456 {
457 Assert(false, ExcNotImplemented());
458 return derivative;
459 }
460 }
461}
462
463
464
465template <int dim>
466inline Tensor<1, dim>
468 const unsigned int i,
469 const Point<dim> & p) const
470{
471 return compute_derivative<1>(i, p);
472}
473
474
475
476template <int dim>
477inline Tensor<2, dim>
479 const unsigned int i,
480 const Point<dim> & p) const
481{
482 return compute_derivative<2>(i, p);
483}
484
485
486
487template <int dim>
488inline Tensor<3, dim>
490 const unsigned int i,
491 const Point<dim> & p) const
492{
493 return compute_derivative<3>(i, p);
494}
495
496
497
498template <int dim>
499inline Tensor<4, dim>
501 const unsigned int i,
502 const Point<dim> & p) const
503{
504 return compute_derivative<4>(i, p);
505}
506
507#endif // DOXYGEN
509
510#endif
Definition: point.h:111
const std::vector< unsigned int > & get_numbering_inverse() const
virtual Tensor< 2, dim > compute_2nd_derivative(const unsigned int i, const Point< dim > &p) const override
std::string name() const override
void evaluate(const Point< dim > &unit_point, std::vector< double > &values, std::vector< Tensor< 1, dim > > &grads, std::vector< Tensor< 2, dim > > &grad_grads, std::vector< Tensor< 3, dim > > &third_derivatives, std::vector< Tensor< 4, dim > > &fourth_derivatives) const override
Tensor< 1, dim > compute_grad(const unsigned int i, const Point< dim > &p) const override
Tensor< order, dim > compute_derivative(const unsigned int i, const Point< dim > &p) const
Tensor< 2, dim > compute_grad_grad(const unsigned int i, const Point< dim > &p) const override
TensorProductPolynomialsBubbles(const std::vector< Pol > &pols)
void set_numbering(const std::vector< unsigned int > &renumber)
virtual Tensor< 1, dim > compute_1st_derivative(const unsigned int i, const Point< dim > &p) const override
virtual Tensor< 3, dim > compute_3rd_derivative(const unsigned int i, const Point< dim > &p) const override
const std::vector< unsigned int > & get_numbering() const
virtual Tensor< 4, dim > compute_4th_derivative(const unsigned int i, const Point< dim > &p) const override
double compute_value(const unsigned int i, const Point< dim > &p) const override
virtual std::unique_ptr< ScalarPolynomialsBase< dim > > clone() const override
#define DEAL_II_NAMESPACE_OPEN
Definition: config.h:402
#define DEAL_II_NAMESPACE_CLOSE
Definition: config.h:403
static ::ExceptionBase & ExcNotImplemented()
#define Assert(cond, exc)
Definition: exceptions.h:1465
static ::ExceptionBase & ExcInternalError()
SymmetricTensor< 2, dim, Number > d(const Tensor< 2, dim, Number > &F, const Tensor< 2, dim, Number > &dF_dt)
T fixed_power(const T t)
Definition: utilities.h:1081
static const unsigned int invalid_unsigned_int
Definition: types.h:196