![]() |
Reference documentation for deal.II version 9.3.3
|
Enumerations | |
enum | EvaluatorVariant { evaluate_general , evaluate_symmetric , evaluate_evenodd , evaluate_symmetric_hierarchical } |
enum class | EvaluatorQuantity { value , gradient , hessian } |
Functions | |
template<int dim> | |
Point< dim+1 > | create_higher_dim_point (const Point< dim > &point, const unsigned int component_in_dim_plus_1, const double coordinate_value) |
internal::GenericDoFsPerObject | expand (const unsigned int dim, const std::vector< unsigned int > &dofs_per_object, const ::ReferenceCell reference_cell) |
template<typename MatrixType > | |
void | reinit (MatrixBlock< MatrixType > &v, const BlockSparsityPattern &p) |
template<typename number > | |
void | reinit (MatrixBlock<::SparseMatrix< number > > &v, const BlockSparsityPattern &p) |
template<typename VectorizedArrayType , typename Number2 > | |
void | do_vectorized_read (const Number2 *src_ptr, VectorizedArrayType &dst) |
template<typename Number , unsigned int width> | |
void | do_vectorized_read (const Number *src_ptr, VectorizedArray< Number, width > &dst) |
template<typename VectorizedArrayType , typename Number2 > | |
void | do_vectorized_gather (const Number2 *src_ptr, const unsigned int *indices, VectorizedArrayType &dst) |
template<typename Number , unsigned int width> | |
void | do_vectorized_gather (const Number *src_ptr, const unsigned int *indices, VectorizedArray< Number, width > &dst) |
template<typename VectorizedArrayType , typename Number2 > | |
void | do_vectorized_add (const VectorizedArrayType src, Number2 *dst_ptr) |
template<typename Number , unsigned int width> | |
void | do_vectorized_add (const VectorizedArray< Number, width > src, Number *dst_ptr) |
template<typename VectorizedArrayType , typename Number2 > | |
void | do_vectorized_scatter_add (const VectorizedArrayType src, const unsigned int *indices, Number2 *dst_ptr) |
template<typename Number , unsigned int width> | |
void | do_vectorized_scatter_add (const VectorizedArray< Number, width > src, const unsigned int *indices, Number *dst_ptr) |
template<typename Number > | |
void | adjust_for_face_orientation (const unsigned int dim, const unsigned int n_components, const unsigned int face_orientation, const Table< 2, unsigned int > &orientation_map, const bool integrate, const bool values, const bool gradients, const unsigned int n_q_points, Number *tmp_values, Number *values_quad, Number *gradients_quad) |
template<int n_face_orientations, typename Processor > | |
static bool | fe_face_evaluation_process_and_io (Processor &proc) |
static ::ExceptionBase & | ExcAccessToUninitializedField () |
static ::ExceptionBase & | ExcMatrixFreeAccessToUninitializedMappingField (std::string arg1) |
template<int dim, typename Number , typename Number2 > | |
std::pair< typename ProductTypeNoPoint< Number, Number2 >::type, Tensor< 1, dim, typename ProductTypeNoPoint< Number, Number2 >::type > > | evaluate_tensor_product_value_and_gradient (const std::vector< Polynomials::Polynomial< double > > &poly, const std::vector< Number > &values, const Point< dim, Number2 > &p, const bool d_linear=false, const std::vector< unsigned int > &renumber={}) |
template<int dim, typename Number , typename Number2 > | |
void | integrate_add_tensor_product_value_and_gradient (const std::vector< Polynomials::Polynomial< double > > &poly, const Number2 &value, const Tensor< 1, dim, Number2 > &gradient, const Point< dim, Number > &p, AlignedVector< Number2 > &values, const std::vector< unsigned int > &renumber={}) |
template<typename VectorType , typename std::enable_if<!has_local_element< VectorType >::value, VectorType >::type * = nullptr> | |
VectorType::value_type | vector_access (const VectorType &vec, const unsigned int entry) |
template<typename VectorType , typename std::enable_if<!has_local_element< VectorType >::value, VectorType >::type * = nullptr> | |
VectorType::value_type & | vector_access (VectorType &vec, const unsigned int entry) |
template<typename VectorType , typename std::enable_if< has_add_local_element< VectorType >::value, VectorType >::type * = nullptr> | |
void | vector_access_add (VectorType &vec, const unsigned int entry, const typename VectorType::value_type &val) |
template<typename VectorType , typename std::enable_if< has_add_local_element< VectorType >::value, VectorType >::type * = nullptr> | |
void | vector_access_add_global (VectorType &vec, const types::global_dof_index entry, const typename VectorType::value_type &val) |
template<typename VectorType , typename std::enable_if< has_set_local_element< VectorType >::value, VectorType >::type * = nullptr> | |
void | vector_access_set (VectorType &vec, const unsigned int entry, const typename VectorType::value_type &val) |
template<typename VectorType , typename std::enable_if<!has_partitioners_are_compatible< VectorType >::value, VectorType >::type * = nullptr> | |
void | check_vector_compatibility (const VectorType &vec, const internal::MatrixFreeFunctions::DoFInfo &dof_info) |
template<class DI > | |
bool | is_active_iterator (const DI &) |
template<class ACCESSOR > | |
bool | is_active_iterator (const TriaActiveIterator< ACCESSOR > &) |
template<class ACCESSOR > | |
bool | is_active_iterator (const ::FilteredIterator< TriaActiveIterator< ACCESSOR > > &) |
template<int dim, class DOFINFO , class A > | |
void | assemble (const MeshWorker::DoFInfoBox< dim, DOFINFO > &dinfo, A *assembler) |
template<int dim> | |
unsigned int | get_degree (const std::vector< BarycentricPolynomial< dim > > &polys) |
template<int dim, int spacedim> | |
std::string | policy_to_string (const ::internal::DoFHandlerImplementation::Policy::PolicyBase< dim, spacedim > &policy) |
template<class VectorType > | |
VectorType::value_type | get_vector_element (const VectorType &vector, const types::global_dof_index cell_number) |
IndexSet::value_type | get_vector_element (const IndexSet &is, const types::global_dof_index cell_number) |
template<int dim, int spacedim> | |
std::vector< unsigned int > | make_shape_function_to_row_table (const FiniteElement< dim, spacedim > &fe) |
template<typename Number , typename Number2 > | |
void | do_function_values (const Number2 *dof_values_ptr, const ::Table< 2, double > &shape_values, std::vector< Number > &values) |
template<int dim, int spacedim, typename VectorType > | |
void | do_function_values (const typename VectorType::value_type *dof_values_ptr, const ::Table< 2, double > &shape_values, const FiniteElement< dim, spacedim > &fe, const std::vector< unsigned int > &shape_function_to_row_table, ArrayView< VectorType > values, const bool quadrature_points_fastest=false, const unsigned int component_multiple=1) |
template<int order, int spacedim, typename Number > | |
void | do_function_derivatives (const Number *dof_values_ptr, const ::Table< 2, Tensor< order, spacedim > > &shape_derivatives, std::vector< Tensor< order, spacedim, Number > > &derivatives) |
template<int order, int dim, int spacedim, typename Number > | |
void | do_function_derivatives (const Number *dof_values_ptr, const ::Table< 2, Tensor< order, spacedim > > &shape_derivatives, const FiniteElement< dim, spacedim > &fe, const std::vector< unsigned int > &shape_function_to_row_table, ArrayView< std::vector< Tensor< order, spacedim, Number > > > derivatives, const bool quadrature_points_fastest=false, const unsigned int component_multiple=1) |
template<int spacedim, typename Number , typename Number2 > | |
void | do_function_laplacians (const Number2 *dof_values_ptr, const ::Table< 2, Tensor< 2, spacedim > > &shape_hessians, std::vector< Number > &laplacians) |
template<int dim, int spacedim, typename VectorType , typename Number > | |
void | do_function_laplacians (const Number *dof_values_ptr, const ::Table< 2, Tensor< 2, spacedim > > &shape_hessians, const FiniteElement< dim, spacedim > &fe, const std::vector< unsigned int > &shape_function_to_row_table, std::vector< VectorType > &laplacians, const bool quadrature_points_fastest=false, const unsigned int component_multiple=1) |
Tensor< 1, 3 > | apply_exponential_map (const Tensor< 1, 3 > &u, const Tensor< 1, 3 > &dir) |
Tensor< 1, 3 > | projected_direction (const Tensor< 1, 3 > &u, const Tensor< 1, 3 > &v) |
template<int spacedim> | |
Point< spacedim > | compute_normal (const Tensor< 1, spacedim > &, bool=false) |
Point< 3 > | compute_normal (const Tensor< 1, 3 > &vector, bool normalize=false) |
template<int dim, int spacedim> | |
void | extract_interpolation_matrices (const ::DoFHandler< dim, spacedim > &dof, ::Table< 2, FullMatrix< double > > &matrices) |
template<int dim, int spacedim> | |
void | restriction_additive (const FiniteElement< dim, spacedim > &, std::vector< std::vector< bool > > &) |
template<int dim, int spacedim> | |
void | restriction_additive (const ::hp::FECollection< dim, spacedim > &fe, std::vector< std::vector< bool > > &restriction_is_additive) |
Variables | |
static constexpr double | invalid_pull_back_coordinate = 20.0 |
This namespace defines the copy and set functions used in AlignedVector. These functions operate in parallel when there are enough elements in the vector.
In this namespace, the evaluator routines that evaluate the tensor products are implemented.
Enumerator | |
---|---|
evaluate_general | Do not use anything more than the tensor product structure of the finite element. |
evaluate_symmetric | Perform evaluation by exploiting symmetry in the finite element: i.e., skip some computations by utilizing the symmetry in the shape functions and quadrature points. |
evaluate_evenodd | Use symmetry to apply the operator to even and odd parts of the input vector separately: see the documentation of the EvaluatorTensorProduct specialization for more information. |
evaluate_symmetric_hierarchical | Use symmetry in Legendre and similar polynomial spaces where the shape functions with even number are symmetric about the center of the quadrature points (think about even polynomial degrees) and the shape functions with odd number are anti-symmetric about the center of the quadrature points (think about odd polynomial degrees). This allows to use a strategy similar to the even-odd technique but without separate coefficient arrays. See the documentation of the EvaluatorTensorProduct specialization for more information. |
Definition at line 37 of file tensor_product_kernels.h.
|
strong |
Determine which quantity should be computed via the tensor product kernels.
Enumerator | |
---|---|
value | Evaluate/integrate by shape functions. |
gradient | Evaluate/integrate by gradients of the shape functions. |
hessian | Evaluate/integrate by hessians of the shape functions. |
Definition at line 74 of file tensor_product_kernels.h.
Point< dim+1 > internal::create_higher_dim_point | ( | const Point< dim > & | point, |
const unsigned int | component_in_dim_plus_1, | ||
const double | coordinate_value | ||
) |
Creates a (dim + 1
)-dimensional point by copying over the coordinates of the incoming dim
-dimensional point and setting the "missing" (dim + 1
)-dimensional component to the incoming coordinate value.
For example, given the input \{(x, y), 2, z \} this function creates the point (x, y, z).
The coordinates of the dim
-dimensional point are written to the coordinates of the (dim + 1
)-dimensional point in the order of the convention given by the function coordinate_to_one_dim_higher. Thus, the order of coordinates on the lower-dimensional point are not preserved: \{(z, x), 1, y \} creates the point (x, y, z).
Definition at line 24 of file function_restriction.cc.
internal::GenericDoFsPerObject internal::expand | ( | const unsigned int | dim, |
const std::vector< unsigned int > & | dofs_per_object, | ||
const ::ReferenceCell | reference_cell | ||
) |
Utility function to convert "dofs per object" information of a dim
dimensional reference cell reference_cell
.
Definition at line 25 of file fe_data.cc.
void internal::reinit | ( | MatrixBlock< MatrixType > & | v, |
const BlockSparsityPattern & | p | ||
) |
Definition at line 618 of file matrix_block.h.
void internal::reinit | ( | MatrixBlock<::SparseMatrix< number > > & | v, |
const BlockSparsityPattern & | p | ||
) |
Definition at line 627 of file matrix_block.h.
void internal::do_vectorized_read | ( | const Number2 * | src_ptr, |
VectorizedArrayType & | dst | ||
) |
Definition at line 2381 of file evaluation_kernels.h.
void internal::do_vectorized_read | ( | const Number * | src_ptr, |
VectorizedArray< Number, width > & | dst | ||
) |
Definition at line 2393 of file evaluation_kernels.h.
void internal::do_vectorized_gather | ( | const Number2 * | src_ptr, |
const unsigned int * | indices, | ||
VectorizedArrayType & | dst | ||
) |
Definition at line 2403 of file evaluation_kernels.h.
void internal::do_vectorized_gather | ( | const Number * | src_ptr, |
const unsigned int * | indices, | ||
VectorizedArray< Number, width > & | dst | ||
) |
Definition at line 2417 of file evaluation_kernels.h.
void internal::do_vectorized_add | ( | const VectorizedArrayType | src, |
Number2 * | dst_ptr | ||
) |
Definition at line 2429 of file evaluation_kernels.h.
void internal::do_vectorized_add | ( | const VectorizedArray< Number, width > | src, |
Number * | dst_ptr | ||
) |
Definition at line 2441 of file evaluation_kernels.h.
void internal::do_vectorized_scatter_add | ( | const VectorizedArrayType | src, |
const unsigned int * | indices, | ||
Number2 * | dst_ptr | ||
) |
Definition at line 2453 of file evaluation_kernels.h.
void internal::do_vectorized_scatter_add | ( | const VectorizedArray< Number, width > | src, |
const unsigned int * | indices, | ||
Number * | dst_ptr | ||
) |
Definition at line 2467 of file evaluation_kernels.h.
void internal::adjust_for_face_orientation | ( | const unsigned int | dim, |
const unsigned int | n_components, | ||
const unsigned int | face_orientation, | ||
const Table< 2, unsigned int > & | orientation_map, | ||
const bool | integrate, | ||
const bool | values, | ||
const bool | gradients, | ||
const unsigned int | n_q_points, | ||
Number * | tmp_values, | ||
Number * | values_quad, | ||
Number * | gradients_quad | ||
) |
Definition at line 2485 of file evaluation_kernels.h.
|
static |
Definition at line 2850 of file evaluation_kernels.h.
|
inline |
Compute the polynomial interpolation of a tensor product shape function \varphi_i given a vector of coefficients u_i in the form u_h(\mathbf{x}) = \sum_{i=1}^{k^d} \varphi_i(\mathbf{x}) u_i. The shape functions \varphi_i(\mathbf{x}) =
\prod_{d=1}^{\text{dim}}\varphi_{i_d}^\text{1D}(x_d) represent a tensor product. The function returns a pair with the value of the interpolation as the first component and the gradient in reference coordinates as the second component. Note that for compound types (e.g. the values
field begin a Point<spacedim> argument), the components of the gradient are sorted as Tensor<1, dim, Tensor<1, spacedim>> with the derivatives as the first index; this is a consequence of the generic arguments in the function.
poly | The underlying one-dimensional polynomial basis \{\varphi^{1D}_{i_1}\} given as a vector of polynomials. |
values | The expansion coefficients u_i of type Number in the polynomial interpolation. The coefficients can be simply double variables but e.g. also Point<spacedim> in case they define arithmetic operations with the type Number2 . |
p | The position in reference coordinates where the interpolation should be evaluated. |
d_linear | Flag to specify whether a d-linear (linear in 1D, bi-linear in 2D, tri-linear in 3D) interpolation should be made, which allows to unroll loops and considerably speed up evaluation. |
renumber | Optional parameter to specify a renumbering in the coefficient vector, assuming that values[renumber[i]] returns the lexicographic (tensor product) entry of the coefficients. If the vector is entry, the values are assumed to be sorted lexicographically. |
Definition at line 2389 of file tensor_product_kernels.h.
|
inline |
Same as evaluate_tensor_product_value_and_gradient() but for integration.
Definition at line 2531 of file tensor_product_kernels.h.
|
inline |
Definition at line 42 of file vector_access_internal.h.
|
inline |
Definition at line 56 of file vector_access_internal.h.
|
inline |
Definition at line 93 of file vector_access_internal.h.
|
inline |
Definition at line 119 of file vector_access_internal.h.
|
inline |
Definition at line 145 of file vector_access_internal.h.
|
inline |
Definition at line 176 of file vector_access_internal.h.
|
inline |
|
inline |
|
inline |
void internal::assemble | ( | const MeshWorker::DoFInfoBox< dim, DOFINFO > & | dinfo, |
A * | assembler | ||
) |
unsigned int internal::get_degree | ( | const std::vector< BarycentricPolynomial< dim > > & | polys | ) |
Get the highest degree of the barycentric polynomial (in Cartesian coordinates).
Definition at line 29 of file polynomials_barycentric.cc.
std::string internal::policy_to_string | ( | const ::internal::DoFHandlerImplementation::Policy::PolicyBase< dim, spacedim > & | policy | ) |
Definition at line 51 of file dof_handler.cc.
|
inline |
Definition at line 61 of file fe_values.cc.
|
inline |
Definition at line 70 of file fe_values.cc.
|
inline |
Definition at line 81 of file fe_values.cc.
void internal::do_function_values | ( | const Number2 * | dof_values_ptr, |
const ::Table< 2, double > & | shape_values, | ||
std::vector< Number > & | values | ||
) |
Definition at line 3073 of file fe_values.cc.
void internal::do_function_values | ( | const typename VectorType::value_type * | dof_values_ptr, |
const ::Table< 2, double > & | shape_values, | ||
const FiniteElement< dim, spacedim > & | fe, | ||
const std::vector< unsigned int > & | shape_function_to_row_table, | ||
ArrayView< VectorType > | values, | ||
const bool | quadrature_points_fastest = false , |
||
const unsigned int | component_multiple = 1 |
||
) |
Definition at line 3113 of file fe_values.cc.
void internal::do_function_derivatives | ( | const Number * | dof_values_ptr, |
const ::Table< 2, Tensor< order, spacedim > > & | shape_derivatives, | ||
std::vector< Tensor< order, spacedim, Number > > & | derivatives | ||
) |
Definition at line 3224 of file fe_values.cc.
void internal::do_function_derivatives | ( | const Number * | dof_values_ptr, |
const ::Table< 2, Tensor< order, spacedim > > & | shape_derivatives, | ||
const FiniteElement< dim, spacedim > & | fe, | ||
const std::vector< unsigned int > & | shape_function_to_row_table, | ||
ArrayView< std::vector< Tensor< order, spacedim, Number > > > | derivatives, | ||
const bool | quadrature_points_fastest = false , |
||
const unsigned int | component_multiple = 1 |
||
) |
Definition at line 3264 of file fe_values.cc.
void internal::do_function_laplacians | ( | const Number2 * | dof_values_ptr, |
const ::Table< 2, Tensor< 2, spacedim > > & | shape_hessians, | ||
std::vector< Number > & | laplacians | ||
) |
Definition at line 3371 of file fe_values.cc.
void internal::do_function_laplacians | ( | const Number * | dof_values_ptr, |
const ::Table< 2, Tensor< 2, spacedim > > & | shape_hessians, | ||
const FiniteElement< dim, spacedim > & | fe, | ||
const std::vector< unsigned int > & | shape_function_to_row_table, | ||
std::vector< VectorType > & | laplacians, | ||
const bool | quadrature_points_fastest = false , |
||
const unsigned int | component_multiple = 1 |
||
) |
Definition at line 3408 of file fe_values.cc.
Tensor< 1, 3 > internal::apply_exponential_map | ( | const Tensor< 1, 3 > & | u, |
const Tensor< 1, 3 > & | dir | ||
) |
Definition at line 51 of file manifold_lib.cc.
Definition at line 71 of file manifold_lib.cc.
Point< spacedim > internal::compute_normal | ( | const Tensor< 1, spacedim > & | , |
bool | = false |
||
) |
Definition at line 82 of file manifold_lib.cc.
Definition at line 89 of file manifold_lib.cc.
void internal::extract_interpolation_matrices | ( | const ::DoFHandler< dim, spacedim > & | dof, |
::Table< 2, FullMatrix< double > > & | matrices | ||
) |
Generate a table that contains interpolation matrices between each combination of finite elements used in a DoFHandler of some kind. Since not all elements can be interpolated onto each other, the table may contain empty matrices for those combinations of elements for which no such interpolation is implemented.
Definition at line 220 of file solution_transfer.cc.
void internal::restriction_additive | ( | const FiniteElement< dim, spacedim > & | , |
std::vector< std::vector< bool > > & | |||
) |
Definition at line 257 of file solution_transfer.cc.
void internal::restriction_additive | ( | const ::hp::FECollection< dim, spacedim > & | fe, |
std::vector< std::vector< bool > > & | restriction_is_additive | ||
) |
Definition at line 263 of file solution_transfer.cc.
|
staticconstexpr |
Definition at line 45 of file manifold_lib.cc.