Reference documentation for deal.II version 9.3.3
internal::EvaluatorTensorProduct< evaluate_symmetric, dim, n_rows, n_columns, Number, Number2 > Struct Template Reference

#include <deal.II/matrix_free/tensor_product_kernels.h>

Public Member Functions

EvaluatorTensorProduct (const AlignedVector< Number2 > &shape_values, const AlignedVector< Number2 > &shape_gradients, const AlignedVector< Number2 > &shape_hessians, const unsigned int dummy1=0, const unsigned int dummy2=0)

template<int direction, bool contract_over_rows, bool add>
void values (const Number in[], Number out[]) const

template<int direction, bool contract_over_rows, bool add>
void gradients (const Number in[], Number out[]) const

template<int direction, bool contract_over_rows, bool add>
void hessians (const Number in[], Number out[]) const

Public Attributes

const Number2 * shape_values

const Number2 * shape_gradients

const Number2 * shape_hessians

Static Public Attributes

static constexpr unsigned int n_rows_of_product

static constexpr unsigned int n_columns_of_product

Detailed Description

template<int dim, int n_rows, int n_columns, typename Number, typename Number2>
struct internal::EvaluatorTensorProduct< evaluate_symmetric, dim, n_rows, n_columns, Number, Number2 >

Internal evaluator for 1d-3d shape function using the tensor product form of the basis functions. This class specializes the general application of tensor-product based elements for "symmetric" finite elements, i.e., when the shape functions are symmetric about 0.5 and the quadrature points are, too.

Template Parameters
 dim Space dimension in which this class is applied n_rows Number of rows in the transformation matrix, which corresponds to the number of 1d shape functions in the usual tensor contraction setting n_columns Number of columns in the transformation matrix, which corresponds to the number of 1d shape functions in the usual tensor contraction setting Number Abstract number type for input and output arrays Number2 Abstract number type for coefficient arrays (defaults to same type as the input/output arrays); must implement operator* with Number and produce Number as an output to be a valid type

Definition at line 1016 of file tensor_product_kernels.h.

◆ EvaluatorTensorProduct()

template<int dim, int n_rows, int n_columns, typename Number , typename Number2 >
 internal::EvaluatorTensorProduct< evaluate_symmetric, dim, n_rows, n_columns, Number, Number2 >::EvaluatorTensorProduct ( const AlignedVector< Number2 > & shape_values, const AlignedVector< Number2 > & shape_gradients, const AlignedVector< Number2 > & shape_hessians, const unsigned int dummy1 = 0, const unsigned int dummy2 = 0 )
inline

Constructor, taking the data from ShapeInfo

Definition at line 1031 of file tensor_product_kernels.h.

◆ values()

template<int dim, int n_rows, int n_columns, typename Number , typename Number2 >
template<int direction, bool contract_over_rows, bool add>
 void internal::EvaluatorTensorProduct< evaluate_symmetric, dim, n_rows, n_columns, Number, Number2 >::values ( const Number in[], Number out[] ) const
inline

Definition at line 1102 of file tensor_product_kernels.h.

template<int dim, int n_rows, int n_columns, typename Number , typename Number2 >
template<int direction, bool contract_over_rows, bool add>
 void internal::EvaluatorTensorProduct< evaluate_symmetric, dim, n_rows, n_columns, Number, Number2 >::gradients ( const Number in[], Number out[] ) const
inline

Definition at line 1290 of file tensor_product_kernels.h.

◆ hessians()

template<int dim, int n_rows, int n_columns, typename Number , typename Number2 >
template<int direction, bool contract_over_rows, bool add>
 void internal::EvaluatorTensorProduct< evaluate_symmetric, dim, n_rows, n_columns, Number, Number2 >::hessians ( const Number in[], Number out[] ) const
inline

Definition at line 1426 of file tensor_product_kernels.h.

◆ n_rows_of_product

template<int dim, int n_rows, int n_columns, typename Number , typename Number2 >
 constexpr unsigned int internal::EvaluatorTensorProduct< evaluate_symmetric, dim, n_rows, n_columns, Number, Number2 >::n_rows_of_product
staticconstexpr
Initial value:
=
Utilities::pow(n_rows, dim)
constexpr T pow(const T base, const int iexp)
Definition: utilities.h:461

Definition at line 1023 of file tensor_product_kernels.h.

◆ n_columns_of_product

template<int dim, int n_rows, int n_columns, typename Number , typename Number2 >
 constexpr unsigned int internal::EvaluatorTensorProduct< evaluate_symmetric, dim, n_rows, n_columns, Number, Number2 >::n_columns_of_product
staticconstexpr
Initial value:
=
Utilities::pow(n_columns, dim)

Definition at line 1025 of file tensor_product_kernels.h.

◆ shape_values

template<int dim, int n_rows, int n_columns, typename Number , typename Number2 >
 const Number2* internal::EvaluatorTensorProduct< evaluate_symmetric, dim, n_rows, n_columns, Number, Number2 >::shape_values

Definition at line 1065 of file tensor_product_kernels.h.

template<int dim, int n_rows, int n_columns, typename Number , typename Number2 >
 const Number2* internal::EvaluatorTensorProduct< evaluate_symmetric, dim, n_rows, n_columns, Number, Number2 >::shape_gradients

Definition at line 1066 of file tensor_product_kernels.h.

◆ shape_hessians

template<int dim, int n_rows, int n_columns, typename Number , typename Number2 >
 const Number2* internal::EvaluatorTensorProduct< evaluate_symmetric, dim, n_rows, n_columns, Number, Number2 >::shape_hessians

Definition at line 1067 of file tensor_product_kernels.h.

The documentation for this struct was generated from the following file: