26 template <
typename number>
30 for (
unsigned int i = 0; i < J.size(); ++i)
32 for (
unsigned int i = 0; i < R.size(); ++i)
34 for (
unsigned int i = 0; i < M1.size(); ++i)
37 for (
unsigned int i = 0; i < M2.size(); ++i)
40 quadrature_data.reset_values();
44 template <
typename number>
60 template <
int dim,
int spacedim,
typename number>
68 template <
int dim,
int spacedim,
typename number>
79 template <
int dim,
int spacedim,
typename number>
85 Assert(
false, ExcPureFunction());
89 template <
int dim,
int spacedim,
typename number>
95 Assert(
false, ExcPureFunction());
99 template <
int dim,
int spacedim,
typename number>
107 Assert(
false, ExcPureFunction());
size_type block_size(const unsigned int i) const
virtual void cell(DoFInfo< dim, spacedim, number > &dinfo, IntegrationInfo< dim, spacedim > &info) const
virtual void face(DoFInfo< dim, spacedim, number > &dinfo1, DoFInfo< dim, spacedim, number > &dinfo2, IntegrationInfo< dim, spacedim > &info1, IntegrationInfo< dim, spacedim > &info2) const
virtual void boundary(DoFInfo< dim, spacedim, number > &dinfo, IntegrationInfo< dim, spacedim > &info) const
std::size_t memory_consumption() const
void reinit(const BlockIndices &local_sizes)
#define DEAL_II_NAMESPACE_OPEN
#define DEAL_II_NAMESPACE_CLOSE
#define Assert(cond, exc)
@ matrix
Contents is actually a matrix.
std::enable_if< std::is_fundamental< T >::value, std::size_t >::type memory_consumption(const T &t)
SymmetricTensor< 2, dim, Number > b(const Tensor< 2, dim, Number > &F)
void reinit(MatrixBlock< MatrixType > &v, const BlockSparsityPattern &p)