Reference documentation for deal.II version 9.3.3
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
fe_abf.cc
Go to the documentation of this file.
1// ---------------------------------------------------------------------
2//
3// Copyright (C) 2003 - 2021 by the deal.II authors
4//
5// This file is part of the deal.II library.
6//
7// The deal.II library is free software; you can use it, redistribute
8// it, and/or modify it under the terms of the GNU Lesser General
9// Public License as published by the Free Software Foundation; either
10// version 2.1 of the License, or (at your option) any later version.
11// The full text of the license can be found in the file LICENSE.md at
12// the top level directory of deal.II.
13//
14// ---------------------------------------------------------------------
15
16
20#include <deal.II/base/table.h>
22
24
25#include <deal.II/fe/fe.h>
26#include <deal.II/fe/fe_abf.h>
27#include <deal.II/fe/fe_tools.h>
29#include <deal.II/fe/mapping.h>
30
31#include <deal.II/grid/tria.h>
33
34#include <iostream>
35#include <memory>
36#include <sstream>
37
39
40// TODO: implement the adjust_quad_dof_index_for_face_orientation_table and
41// adjust_line_dof_index_for_line_orientation_table fields, and write tests
42// similar to bits/face_orientation_and_fe_q_*
43
44template <int dim>
45FE_ABF<dim>::FE_ABF(const unsigned int deg)
46 : FE_PolyTensor<dim>(
47 PolynomialsABF<dim>(deg),
49 dim,
50 deg + 2,
51 FiniteElementData<dim>::Hdiv),
52 std::vector<bool>(PolynomialsABF<dim>::n_polynomials(deg), true),
53 std::vector<ComponentMask>(PolynomialsABF<dim>::n_polynomials(deg),
54 std::vector<bool>(dim, true)))
55 , rt_order(deg)
56{
57 Assert(dim >= 2, ExcImpossibleInDim(dim));
58 const unsigned int n_dofs = this->n_dofs_per_cell();
59
61 // First, initialize the
62 // generalized support points and
63 // quadrature weights, since they
64 // are required for interpolation.
66
67 // Now compute the inverse node matrix, generating the correct
68 // basis functions from the raw ones. For a discussion of what
69 // exactly happens here, see FETools::compute_node_matrix.
71 this->inverse_node_matrix.reinit(n_dofs, n_dofs);
73 // From now on, the shape functions provided by FiniteElement::shape_value
74 // and similar functions will be the correct ones, not
75 // the raw shape functions from the polynomial space anymore.
76
77 // Reinit the vectors of
78 // restriction and prolongation
79 // matrices to the right sizes.
80 // Restriction only for isotropic
81 // refinement
83 // Fill prolongation matrices with embedding operators
84 FETools::compute_embedding_matrices(*this, this->prolongation, false, 1.e-10);
85
87
88 // TODO: the implementation makes the assumption that all faces have the
89 // same number of dofs
91 const unsigned int face_no = 0;
92
93 // TODO[TL]: for anisotropic refinement we will probably need a table of
94 // submatrices with an array for each refine case
95 std::vector<FullMatrix<double>> face_embeddings(
96 1 << (dim - 1),
98 this->n_dofs_per_face(face_no)));
99 // TODO: Something goes wrong there. The error of the least squares fit
100 // is to large ...
101 // FETools::compute_face_embedding_matrices(*this, face_embeddings.data(), 0,
102 // 0);
103 this->interface_constraints.reinit((1 << (dim - 1)) *
104 this->n_dofs_per_face(face_no),
105 this->n_dofs_per_face(face_no));
106 unsigned int target_row = 0;
107 for (const auto &face_embedding : face_embeddings)
108 for (unsigned int i = 0; i < face_embedding.m(); ++i)
109 {
110 for (unsigned int j = 0; j < face_embedding.n(); ++j)
111 this->interface_constraints(target_row, j) = face_embedding(i, j);
112 ++target_row;
113 }
114
115 // We need to initialize the dof permutation table and the one for the sign
116 // change.
118}
119
120
121template <int dim>
122void
124{
125 // for 1D and 2D, do nothing
126 if (dim < 3)
127 return;
128
129 // TODO: Implement this for this class
130 return;
131}
132
133
134template <int dim>
135std::string
137{
138 // note that the
139 // FETools::get_fe_by_name
140 // function depends on the
141 // particular format of the string
142 // this function returns, so they
143 // have to be kept in synch
144
145 std::ostringstream namebuf;
146
147 namebuf << "FE_ABF<" << dim << ">(" << rt_order << ")";
148
149 return namebuf.str();
150}
151
152
153
154template <int dim>
155std::unique_ptr<FiniteElement<dim, dim>>
157{
158 return std::make_unique<FE_ABF<dim>>(rt_order);
159}
160
161
162//---------------------------------------------------------------------------
163// Auxiliary and internal functions
164//---------------------------------------------------------------------------
165
166
167
168// Version for 2d and higher. See above for 1d version
169template <int dim>
170void
172{
173 QGauss<dim> cell_quadrature(deg + 2);
174 const unsigned int n_interior_points = cell_quadrature.size();
175
176 // TODO: the implementation makes the assumption that all faces have the
177 // same number of dofs
178 AssertDimension(this->n_unique_faces(), 1);
179 const unsigned int face_no = 0;
180
181 unsigned int n_face_points = (dim > 1) ? 1 : 0;
182 // compute (deg+1)^(dim-1)
183 for (unsigned int d = 1; d < dim; ++d)
184 n_face_points *= deg + 1;
185
186 this->generalized_support_points.resize(
187 GeometryInfo<dim>::faces_per_cell * n_face_points + n_interior_points);
188 this->generalized_face_support_points[face_no].resize(n_face_points);
189
190
191 // These might be required when the faces contribution is computed
192 // Therefore they will be initialized at this point.
193 std::array<std::unique_ptr<AnisotropicPolynomials<dim>>, dim> polynomials_abf;
194
195 // Generate x_1^{i} x_2^{r+1} ...
196 for (unsigned int dd = 0; dd < dim; ++dd)
197 {
198 std::vector<std::vector<Polynomials::Polynomial<double>>> poly(dim);
199 for (unsigned int d = 0; d < dim; ++d)
200 poly[d].push_back(Polynomials::Monomial<double>(deg + 1));
202
203 polynomials_abf[dd] = std::make_unique<AnisotropicPolynomials<dim>>(poly);
204 }
205
206 // Number of the point being entered
207 unsigned int current = 0;
208
209 if (dim > 1)
210 {
211 QGauss<dim - 1> face_points(deg + 1);
214
215 boundary_weights.reinit(n_face_points, legendre.n());
216
217 // Assert (face_points.size() == this->n_dofs_per_face(),
218 // ExcInternalError());
219
220 for (unsigned int k = 0; k < n_face_points; ++k)
221 {
222 this->generalized_face_support_points[face_no][k] =
223 face_points.point(k);
224 // Compute its quadrature
225 // contribution for each
226 // moment.
227 for (unsigned int i = 0; i < legendre.n(); ++i)
228 {
229 boundary_weights(k, i) =
230 face_points.weight(k) *
231 legendre.compute_value(i, face_points.point(k));
232 }
233 }
234
235 Quadrature<dim> faces =
237 face_points);
238 for (; current < GeometryInfo<dim>::faces_per_cell * n_face_points;
239 ++current)
240 {
241 // Enter the support point
242 // into the vector
243 this->generalized_support_points[current] = faces.point(current);
244 }
245
246
247 // Now initialize edge interior weights for the ABF elements.
248 // These are completely independent from the usual edge moments. They
249 // stem from applying the Gauss theorem to the nodal values, which
250 // was necessary to cast the ABF elements into the deal.II framework
251 // for vector valued elements.
252 boundary_weights_abf.reinit(faces.size(), polynomials_abf[0]->n() * dim);
253 for (unsigned int k = 0; k < faces.size(); ++k)
254 {
255 for (unsigned int i = 0; i < polynomials_abf[0]->n() * dim; ++i)
256 {
257 boundary_weights_abf(k, i) =
258 polynomials_abf[i % dim]->compute_value(i / dim,
259 faces.point(k)) *
260 faces.weight(k);
261 }
262 }
263 }
264
265 // Create Legendre basis for the
266 // space D_xi Q_k
267 if (deg > 0)
268 {
269 std::array<std::unique_ptr<AnisotropicPolynomials<dim>>, dim> polynomials;
270
271 for (unsigned int dd = 0; dd < dim; ++dd)
272 {
273 std::vector<std::vector<Polynomials::Polynomial<double>>> poly(dim);
274 for (unsigned int d = 0; d < dim; ++d)
277
278 polynomials[dd] = std::make_unique<AnisotropicPolynomials<dim>>(poly);
279 }
280
281 interior_weights.reinit(
282 TableIndices<3>(n_interior_points, polynomials[0]->n(), dim));
283
284 for (unsigned int k = 0; k < cell_quadrature.size(); ++k)
285 {
286 for (unsigned int i = 0; i < polynomials[0]->n(); ++i)
287 for (unsigned int d = 0; d < dim; ++d)
288 interior_weights(k, i, d) =
289 cell_quadrature.weight(k) *
290 polynomials[d]->compute_value(i, cell_quadrature.point(k));
291 }
292 }
293
294
295 // Decouple the creation of the generalized support points
296 // from computation of interior weights.
297 for (unsigned int k = 0; k < cell_quadrature.size(); ++k)
298 this->generalized_support_points[current++] = cell_quadrature.point(k);
299
300 // Additional functionality for the ABF elements
301 // TODO: Here the canonical extension of the principle
302 // behind the ABF elements is implemented. It is unclear,
303 // if this really leads to the ABF spaces in 3D!
304 interior_weights_abf.reinit(TableIndices<3>(cell_quadrature.size(),
305 polynomials_abf[0]->n() * dim,
306 dim));
307 Tensor<1, dim> poly_grad;
308
309 for (unsigned int k = 0; k < cell_quadrature.size(); ++k)
310 {
311 for (unsigned int i = 0; i < polynomials_abf[0]->n() * dim; ++i)
312 {
313 poly_grad =
314 polynomials_abf[i % dim]->compute_grad(i / dim,
315 cell_quadrature.point(k)) *
316 cell_quadrature.weight(k);
317 // The minus sign comes from the use of the Gauss theorem to replace
318 // the divergence.
319 for (unsigned int d = 0; d < dim; ++d)
320 interior_weights_abf(k, i, d) = -poly_grad[d];
321 }
322 }
323
324 Assert(current == this->generalized_support_points.size(),
326}
327
328
329
330// This function is the same Raviart-Thomas interpolation performed by
331// interpolate. Still, we cannot use interpolate, since it was written
332// for smooth functions. The functions interpolated here are not
333// smooth, maybe even not continuous. Therefore, we must double the
334// number of quadrature points in each direction in order to integrate
335// only smooth functions.
336
337// Then again, the interpolated function is chosen such that the
338// moments coincide with the function to be interpolated.
339
340template <int dim>
341void
343{
344 if (dim == 1)
345 {
346 unsigned int iso = RefinementCase<dim>::isotropic_refinement - 1;
347 for (unsigned int i = 0; i < GeometryInfo<dim>::max_children_per_cell;
348 ++i)
349 this->restriction[iso][i].reinit(0, 0);
350 return;
351 }
352 unsigned int iso = RefinementCase<dim>::isotropic_refinement - 1;
353 QGauss<dim - 1> q_base(rt_order + 1);
354 const unsigned int n_face_points = q_base.size();
355 // First, compute interpolation on
356 // subfaces
357 for (unsigned int face : GeometryInfo<dim>::face_indices())
358 {
359 // The shape functions of the
360 // child cell are evaluated
361 // in the quadrature points
362 // of a full face.
363 Quadrature<dim> q_face =
365 // Store shape values, since the
366 // evaluation suffers if not
367 // ordered by point
368 Table<2, double> cached_values_face(this->n_dofs_per_cell(),
369 q_face.size());
370 for (unsigned int k = 0; k < q_face.size(); ++k)
371 for (unsigned int i = 0; i < this->n_dofs_per_cell(); ++i)
372 cached_values_face(i, k) = this->shape_value_component(
374
375 for (unsigned int sub = 0; sub < GeometryInfo<dim>::max_children_per_face;
376 ++sub)
377 {
378 // The weight functions for
379 // the coarse face are
380 // evaluated on the subface
381 // only.
383 this->reference_cell(), q_base, face, sub);
384 const unsigned int child = GeometryInfo<dim>::child_cell_on_face(
386
387 // On a certain face, we must
388 // compute the moments of ALL
389 // fine level functions with
390 // the coarse level weight
391 // functions belonging to
392 // that face. Due to the
393 // orthogonalization process
394 // when building the shape
395 // functions, these weights
396 // are equal to the
397 // corresponding shape
398 // functions.
399 for (unsigned int k = 0; k < n_face_points; ++k)
400 for (unsigned int i_child = 0; i_child < this->n_dofs_per_cell();
401 ++i_child)
402 for (unsigned int i_face = 0;
403 i_face < this->n_dofs_per_face(face);
404 ++i_face)
405 {
406 // The quadrature
407 // weights on the
408 // subcell are NOT
409 // transformed, so we
410 // have to do it here.
411 this->restriction[iso][child](
412 face * this->n_dofs_per_face(face) + i_face, i_child) +=
413 Utilities::fixed_power<dim - 1>(.5) * q_sub.weight(k) *
414 cached_values_face(i_child, k) *
415 this->shape_value_component(
416 face * this->n_dofs_per_face(face) + i_face,
417 q_sub.point(k),
419 }
420 }
421 }
422
423 if (rt_order == 0)
424 return;
425
426 // Create Legendre basis for the
427 // space D_xi Q_k. Here, we cannot
428 // use the shape functions
429 std::array<std::unique_ptr<AnisotropicPolynomials<dim>>, dim> polynomials;
430 for (unsigned int dd = 0; dd < dim; ++dd)
431 {
432 std::vector<std::vector<Polynomials::Polynomial<double>>> poly(dim);
433 for (unsigned int d = 0; d < dim; ++d)
435 poly[dd] = Polynomials::Legendre::generate_complete_basis(rt_order - 1);
436
437 polynomials[dd] = std::make_unique<AnisotropicPolynomials<dim>>(poly);
438 }
439
440 // TODO: the implementation makes the assumption that all faces have the
441 // same number of dofs
442 AssertDimension(this->n_unique_faces(), 1);
443 const unsigned int face_no = 0;
444
445 QGauss<dim> q_cell(rt_order + 1);
446 const unsigned int start_cell_dofs =
447 GeometryInfo<dim>::faces_per_cell * this->n_dofs_per_face(face_no);
448
449 // Store shape values, since the
450 // evaluation suffers if not
451 // ordered by point
452 Table<3, double> cached_values_cell(this->n_dofs_per_cell(),
453 q_cell.size(),
454 dim);
455 for (unsigned int k = 0; k < q_cell.size(); ++k)
456 for (unsigned int i = 0; i < this->n_dofs_per_cell(); ++i)
457 for (unsigned int d = 0; d < dim; ++d)
458 cached_values_cell(i, k, d) =
459 this->shape_value_component(i, q_cell.point(k), d);
460
461 for (unsigned int child = 0; child < GeometryInfo<dim>::max_children_per_cell;
462 ++child)
463 {
464 Quadrature<dim> q_sub =
466 q_cell,
467 child);
468
469 for (unsigned int k = 0; k < q_sub.size(); ++k)
470 for (unsigned int i_child = 0; i_child < this->n_dofs_per_cell();
471 ++i_child)
472 for (unsigned int d = 0; d < dim; ++d)
473 for (unsigned int i_weight = 0; i_weight < polynomials[d]->n();
474 ++i_weight)
475 {
476 this->restriction[iso][child](start_cell_dofs + i_weight * dim +
477 d,
478 i_child) +=
479 q_sub.weight(k) * cached_values_cell(i_child, k, d) *
480 polynomials[d]->compute_value(i_weight, q_sub.point(k));
481 }
482 }
483}
484
485
486
487template <int dim>
488std::vector<unsigned int>
489FE_ABF<dim>::get_dpo_vector(const unsigned int rt_order)
490{
491 if (dim == 1)
492 {
493 Assert(false, ExcImpossibleInDim(1));
494 return std::vector<unsigned int>();
495 }
496
497 // the element is face-based (not
498 // to be confused with George
499 // W. Bush's Faith Based
500 // Initiative...), and we have
501 // (rt_order+1)^(dim-1) DoFs per face
502 unsigned int dofs_per_face = 1;
503 for (int d = 0; d < dim - 1; ++d)
504 dofs_per_face *= rt_order + 1;
505
506 // and then there are interior dofs
507 const unsigned int interior_dofs = dim * (rt_order + 1) * dofs_per_face;
508
509 std::vector<unsigned int> dpo(dim + 1);
510 dpo[dim - 1] = dofs_per_face;
511 dpo[dim] = interior_dofs;
512
513 return dpo;
514}
515
516//---------------------------------------------------------------------------
517// Data field initialization
518//---------------------------------------------------------------------------
519
520template <int dim>
521bool
522FE_ABF<dim>::has_support_on_face(const unsigned int shape_index,
523 const unsigned int face_index) const
524{
525 AssertIndexRange(shape_index, this->n_dofs_per_cell());
527
528 // Return computed values if we
529 // know them easily. Otherwise, it
530 // is always safe to return true.
531 switch (rt_order)
532 {
533 case 0:
534 {
535 switch (dim)
536 {
537 case 2:
538 {
539 // only on the one
540 // non-adjacent face
541 // are the values
542 // actually zero. list
543 // these in a table
544 return (face_index !=
546 }
547
548 default:
549 return true;
550 }
551 }
552
553 default: // other rt_order
554 return true;
555 }
556
557 return true;
558}
559
560
561
562template <int dim>
563void
565 const std::vector<Vector<double>> &support_point_values,
566 std::vector<double> & nodal_values) const
567{
568 Assert(support_point_values.size() == this->generalized_support_points.size(),
569 ExcDimensionMismatch(support_point_values.size(),
570 this->generalized_support_points.size()));
571 Assert(support_point_values[0].size() == this->n_components(),
572 ExcDimensionMismatch(support_point_values[0].size(),
573 this->n_components()));
574 Assert(nodal_values.size() == this->n_dofs_per_cell(),
575 ExcDimensionMismatch(nodal_values.size(), this->n_dofs_per_cell()));
576
577 std::fill(nodal_values.begin(), nodal_values.end(), 0.);
578
579 const unsigned int n_face_points = boundary_weights.size(0);
580 for (unsigned int face : GeometryInfo<dim>::face_indices())
581 for (unsigned int k = 0; k < n_face_points; ++k)
582 for (unsigned int i = 0; i < boundary_weights.size(1); ++i)
583 {
584 nodal_values[i + face * this->n_dofs_per_face(face)] +=
585 boundary_weights(k, i) *
586 support_point_values[face * n_face_points + k][GeometryInfo<
587 dim>::unit_normal_direction[face]];
588 }
589
590 // TODO: the implementation makes the assumption that all faces have the
591 // same number of dofs
592 AssertDimension(this->n_unique_faces(), 1);
593 const unsigned int face_no = 0;
594
595 const unsigned int start_cell_dofs =
596 GeometryInfo<dim>::faces_per_cell * this->n_dofs_per_face(face_no);
597 const unsigned int start_cell_points =
598 GeometryInfo<dim>::faces_per_cell * n_face_points;
599
600 for (unsigned int k = 0; k < interior_weights.size(0); ++k)
601 for (unsigned int i = 0; i < interior_weights.size(1); ++i)
602 for (unsigned int d = 0; d < dim; ++d)
603 nodal_values[start_cell_dofs + i * dim + d] +=
604 interior_weights(k, i, d) *
605 support_point_values[k + start_cell_points][d];
606
607 const unsigned int start_abf_dofs =
608 start_cell_dofs + interior_weights.size(1) * dim;
609
610 // Cell integral of ABF terms
611 for (unsigned int k = 0; k < interior_weights_abf.size(0); ++k)
612 for (unsigned int i = 0; i < interior_weights_abf.size(1); ++i)
613 for (unsigned int d = 0; d < dim; ++d)
614 nodal_values[start_abf_dofs + i] +=
615 interior_weights_abf(k, i, d) *
616 support_point_values[k + start_cell_points][d];
617
618 // Face integral of ABF terms
619 for (unsigned int face : GeometryInfo<dim>::face_indices())
620 {
621 const double n_orient = GeometryInfo<dim>::unit_normal_orientation[face];
622 for (unsigned int fp = 0; fp < n_face_points; ++fp)
623 {
624 // TODO: Check what the face_orientation, face_flip and face_rotation
625 // have to be in 3D
627 this->reference_cell(), face, false, false, false, n_face_points);
628 for (unsigned int i = 0; i < boundary_weights_abf.size(1); ++i)
629 nodal_values[start_abf_dofs + i] +=
630 n_orient * boundary_weights_abf(k + fp, i) *
631 support_point_values[face * n_face_points + fp][GeometryInfo<
632 dim>::unit_normal_direction[face]];
633 }
634 }
635
636 // TODO: Check if this "correction" can be removed.
637 for (unsigned int i = 0; i < boundary_weights_abf.size(1); ++i)
638 if (std::fabs(nodal_values[start_abf_dofs + i]) < 1.0e-16)
639 nodal_values[start_abf_dofs + i] = 0.0;
640}
641
642
643
644template <int dim>
645std::size_t
647{
648 Assert(false, ExcNotImplemented());
649 return 0;
650}
651
652
653
654/*-------------- Explicit Instantiations -------------------------------*/
655#include "fe_abf.inst"
656
void initialize_quad_dof_index_permutation_and_sign_change()
Definition: fe_abf.cc:123
virtual std::unique_ptr< FiniteElement< dim, dim > > clone() const override
Definition: fe_abf.cc:156
virtual void convert_generalized_support_point_values_to_dof_values(const std::vector< Vector< double > > &support_point_values, std::vector< double > &nodal_values) const override
Definition: fe_abf.cc:564
virtual std::size_t memory_consumption() const override
Definition: fe_abf.cc:646
void initialize_restriction()
Definition: fe_abf.cc:342
virtual bool has_support_on_face(const unsigned int shape_index, const unsigned int face_index) const override
Definition: fe_abf.cc:522
virtual std::string get_name() const override
Definition: fe_abf.cc:136
static std::vector< unsigned int > get_dpo_vector(const unsigned int degree)
Definition: fe_abf.cc:489
void initialize_support_points(const unsigned int rt_degree)
Definition: fe_abf.cc:171
friend class FE_ABF
Definition: fe_abf.h:254
FullMatrix< double > inverse_node_matrix
std::vector< MappingKind > mapping_kind
unsigned int n_dofs_per_cell() const
unsigned int n_dofs_per_face(unsigned int face_no=0, unsigned int child=0) const
unsigned int n_unique_faces() const
void reinit_restriction_and_prolongation_matrices(const bool isotropic_restriction_only=false, const bool isotropic_prolongation_only=false)
FullMatrix< double > interface_constraints
Definition: fe.h:2430
std::vector< std::vector< FullMatrix< double > > > prolongation
Definition: fe.h:2418
void invert(const FullMatrix< number2 > &M)
static std::vector< Polynomial< double > > generate_complete_basis(const unsigned int degree)
Definition: polynomial.cc:744
static std::vector< Polynomial< number > > generate_complete_basis(const unsigned int degree)
Definition: polynomial.cc:565
static DataSetDescriptor face(const unsigned int face_no, const bool face_orientation, const bool face_flip, const bool face_rotation, const unsigned int n_quadrature_points)
Definition: qprojector.cc:1365
static void project_to_subface(const SubQuadrature &quadrature, const unsigned int face_no, const unsigned int subface_no, std::vector< Point< dim > > &q_points, const RefinementCase< dim - 1 > &ref_case=RefinementCase< dim - 1 >::isotropic_refinement)
static Quadrature< dim > project_to_all_faces(const Quadrature< dim - 1 > &quadrature)
Definition: qprojector.h:579
static Quadrature< dim > project_to_child(const Quadrature< dim > &quadrature, const unsigned int child_no)
Definition: qprojector.cc:1238
static void project_to_face(const SubQuadrature &quadrature, const unsigned int face_no, std::vector< Point< dim > > &q_points)
const Point< dim > & point(const unsigned int i) const
double weight(const unsigned int i) const
unsigned int size() const
Definition: vector.h:110
#define DEAL_II_NAMESPACE_OPEN
Definition: config.h:402
#define DEAL_II_NAMESPACE_CLOSE
Definition: config.h:403
static ::ExceptionBase & ExcNotImplemented()
#define Assert(cond, exc)
Definition: exceptions.h:1465
static ::ExceptionBase & ExcImpossibleInDim(int arg1)
#define AssertDimension(dim1, dim2)
Definition: exceptions.h:1622
#define AssertIndexRange(index, range)
Definition: exceptions.h:1690
static ::ExceptionBase & ExcInternalError()
static ::ExceptionBase & ExcDimensionMismatch(std::size_t arg1, std::size_t arg2)
@ mapping_raviart_thomas
Definition: mapping.h:120
Expression fabs(const Expression &x)
void compute_embedding_matrices(const FiniteElement< dim, spacedim > &fe, std::vector< std::vector< FullMatrix< number > > > &matrices, const bool isotropic_only=false, const double threshold=1.e-12)
FullMatrix< double > compute_node_matrix(const FiniteElement< dim, spacedim > &fe)
std::vector< unsigned int > get_dpo_vector(const unsigned int degree)
void reference_cell(Triangulation< dim, spacedim > &tria, const ReferenceCell &reference_cell)
SymmetricTensor< 2, dim, Number > d(const Tensor< 2, dim, Number > &F, const Tensor< 2, dim, Number > &dF_dt)
void reinit(MatrixBlock< MatrixType > &v, const BlockSparsityPattern &p)
Definition: matrix_block.h:618
double legendre(unsigned int l, double x)
Definition: cmath.h:75
STL namespace.
static unsigned int child_cell_on_face(const RefinementCase< dim > &ref_case, const unsigned int face, const unsigned int subface, const bool face_orientation=true, const bool face_flip=false, const bool face_rotation=false, const RefinementCase< dim - 1 > &face_refinement_case=RefinementCase< dim - 1 >::isotropic_refinement)