Reference documentation for deal.II version 9.3.3
|
#include <deal.II/base/function_lib.h>
Public Types | |
using | time_type = typename FunctionTime< typename numbers::NumberTraits< RangeNumberType >::real_type >::time_type |
Public Member Functions | |
CutOffFunctionBase (const double radius=1., const Point< dim > center=Point< dim >(), const unsigned int n_components=1, const unsigned int select=CutOffFunctionBase< dim >::no_component, const bool integrate_to_one=false, const double unitary_integral_value=1.0) | |
virtual | ~CutOffFunctionBase ()=default |
virtual void | set_center (const Point< dim > &p) |
virtual void | set_radius (const double r) |
const Point< dim > & | get_center () const |
double | get_radius () const |
bool | integrates_to_one () const |
virtual RangeNumberType | value (const Point< dim > &p, const unsigned int component=0) const |
virtual void | vector_value (const Point< dim > &p, Vector< RangeNumberType > &values) const |
virtual void | value_list (const std::vector< Point< dim > > &points, std::vector< RangeNumberType > &values, const unsigned int component=0) const |
virtual void | vector_value_list (const std::vector< Point< dim > > &points, std::vector< Vector< RangeNumberType > > &values) const |
virtual void | vector_values (const std::vector< Point< dim > > &points, std::vector< std::vector< RangeNumberType > > &values) const |
virtual Tensor< 1, dim, RangeNumberType > | gradient (const Point< dim > &p, const unsigned int component=0) const |
virtual void | vector_gradient (const Point< dim > &p, std::vector< Tensor< 1, dim, RangeNumberType > > &gradients) const |
virtual void | gradient_list (const std::vector< Point< dim > > &points, std::vector< Tensor< 1, dim, RangeNumberType > > &gradients, const unsigned int component=0) const |
virtual void | vector_gradients (const std::vector< Point< dim > > &points, std::vector< std::vector< Tensor< 1, dim, RangeNumberType > > > &gradients) const |
virtual void | vector_gradient_list (const std::vector< Point< dim > > &points, std::vector< std::vector< Tensor< 1, dim, RangeNumberType > > > &gradients) const |
virtual RangeNumberType | laplacian (const Point< dim > &p, const unsigned int component=0) const |
virtual void | vector_laplacian (const Point< dim > &p, Vector< RangeNumberType > &values) const |
virtual void | laplacian_list (const std::vector< Point< dim > > &points, std::vector< RangeNumberType > &values, const unsigned int component=0) const |
virtual void | vector_laplacian_list (const std::vector< Point< dim > > &points, std::vector< Vector< RangeNumberType > > &values) const |
virtual SymmetricTensor< 2, dim, RangeNumberType > | hessian (const Point< dim > &p, const unsigned int component=0) const |
virtual void | vector_hessian (const Point< dim > &p, std::vector< SymmetricTensor< 2, dim, RangeNumberType > > &values) const |
virtual void | hessian_list (const std::vector< Point< dim > > &points, std::vector< SymmetricTensor< 2, dim, RangeNumberType > > &values, const unsigned int component=0) const |
virtual void | vector_hessian_list (const std::vector< Point< dim > > &points, std::vector< std::vector< SymmetricTensor< 2, dim, RangeNumberType > > > &values) const |
virtual std::size_t | memory_consumption () const |
numbers::NumberTraits< double >::real_type | get_time () const |
virtual void | set_time (const numbers::NumberTraits< double >::real_type new_time) |
virtual void | advance_time (const numbers::NumberTraits< double >::real_type delta_t) |
Public Attributes | |
const unsigned int | n_components |
Static Public Attributes | |
static const unsigned int | no_component = numbers::invalid_unsigned_int |
static const unsigned int | dimension = dim |
Protected Attributes | |
Point< dim > | center |
double | radius |
const unsigned int | selected |
bool | integrate_to_one |
const double | unitary_integral_value |
double | rescaling |
Private Attributes | |
numbers::NumberTraits< double >::real_type | time |
Subscriptor functionality | |
Classes derived from Subscriptor provide a facility to subscribe to this object. This is mostly used by the SmartPointer class. | |
void | subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const |
void | unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const |
unsigned int | n_subscriptions () const |
template<typename StreamType > | |
void | list_subscribers (StreamType &stream) const |
void | list_subscribers () const |
template<class Archive > | |
void | serialize (Archive &ar, const unsigned int version) |
std::atomic< unsigned int > | counter |
std::map< std::string, unsigned int > | counter_map |
std::vector< std::atomic< bool > * > | validity_pointers |
const std::type_info * | object_info |
using | map_value_type = decltype(counter_map)::value_type |
using | map_iterator = decltype(counter_map)::iterator |
static std::mutex | mutex |
static ::ExceptionBase & | ExcInUse (int arg1, std::string arg2, std::string arg3) |
static ::ExceptionBase & | ExcNoSubscriber (std::string arg1, std::string arg2) |
void | check_no_subscribers () const noexcept |
Base function for cut-off function. This class stores the center and the radius of the supporting ball of a cut-off function. It also stores the number of the non-zero component, if the function is vector-valued.
This class can also be used for approximated Dirac delta functions. These are special cut-off functions whose integral is always equal to one, independently of the radius of the supporting ball.
Definition at line 925 of file function_lib.h.
|
inherited |
The scalar-valued real type used for representing time.
Definition at line 169 of file function.h.
Functions::CutOffFunctionBase< dim >::CutOffFunctionBase | ( | const double | radius = 1. , |
const Point< dim > | center = Point<dim>() , |
||
const unsigned int | n_components = 1 , |
||
const unsigned int | select = CutOffFunctionBase<dim>::no_component , |
||
const bool | integrate_to_one = false , |
||
const double | unitary_integral_value = 1.0 |
||
) |
Constructor.
[in] | radius | Radius of the ball |
[in] | center | Center of the ball |
[in] | n_components | Number of components of this function object |
[in] | select | If this is different from CutOffFunctionBase<dim>::no_component, then the function will be non-zero for this component only |
[in] | integrate_to_one | Rescale the value of the function whenever a new radius is set, to guarantee that the integral is equal to one |
[in] | unitary_integral_value | Value of the integral when the radius is equal to 1.0. Derived classes will need to supply this value, to guarantee that the rescaling is performed correctly. |
Definition at line 30 of file function_lib_cutoff.cc.
|
virtualdefault |
Virtual destructor.
|
virtual |
Set the center of the ball to the point p
.
Reimplemented in Functions::CutOffFunctionTensorProduct< dim >.
Definition at line 54 of file function_lib_cutoff.cc.
|
virtual |
Set the radius of the ball to r
Reimplemented in Functions::CutOffFunctionTensorProduct< dim >.
Definition at line 72 of file function_lib_cutoff.cc.
const Point< dim > & Functions::CutOffFunctionBase< dim >::get_center |
Return the center stored in this object.
Definition at line 63 of file function_lib_cutoff.cc.
double Functions::CutOffFunctionBase< dim >::get_radius |
Return the radius stored in this object.
Definition at line 87 of file function_lib_cutoff.cc.
bool Functions::CutOffFunctionBase< dim >::integrates_to_one |
Return a boolean indicating whether this function integrates to one.
Definition at line 96 of file function_lib_cutoff.cc.
|
virtualinherited |
Return the value of the function at the given point. Unless there is only one component (i.e. the function is scalar), you should state the component you want to have evaluated; it defaults to zero, i.e. the first component.
Reimplemented in Functions::CosineGradFunction< dim >, Functions::ConstantFunction< dim, RangeNumberType >, Functions::ConstantFunction< dim, double >, Functions::IdentityFunction< dim, RangeNumberType >, ScalarFunctionFromFunctionObject< dim, RangeNumberType >, VectorFunctionFromScalarFunctionObject< dim, RangeNumberType >, FunctionFromFunctionObjects< dim, RangeNumberType >, VectorFunctionFromTensorFunction< dim, RangeNumberType >, FunctionDerivative< dim >, Functions::SquareFunction< dim >, Functions::Q1WedgeFunction< dim >, Functions::PillowFunction< dim >, Functions::CosineFunction< dim >, Functions::ExpFunction< dim >, Functions::SlitSingularityFunction< dim >, Functions::JumpFunction< dim >, Functions::FourierCosineFunction< dim >, Functions::FourierSineFunction< dim >, Functions::FourierSineSum< dim >, Functions::FourierCosineSum< dim >, Functions::CutOffFunctionTensorProduct< dim >, Functions::CutOffFunctionLinfty< dim >, Functions::CutOffFunctionW1< dim >, Functions::CutOffFunctionC1< dim >, Functions::CutOffFunctionCinfty< dim >, Functions::Monomial< dim, Number >, Functions::InterpolatedTensorProductGridData< dim >, Functions::InterpolatedUniformGridData< dim >, Functions::Polynomial< dim >, FunctionParser< dim >, Functions::IncrementalFunction< dim, RangeNumberType >, Functions::ParsedFunction< dim >, Functions::SymbolicFunction< dim, RangeNumberType >, Functions::FEFieldFunction< dim, DoFHandlerType, VectorType >, Functions::CoordinateRestriction< dim >, Functions::CSpline< dim >, Functions::LevelSet::Sphere< dim >, Functions::LevelSet::Plane< dim >, Functions::Spherical< dim >, Functions::FlowFunction< dim >, Functions::FlowFunction< 2 >, and Functions::Bessel1< dim >.
|
virtualinherited |
Return all components of a vector-valued function at a given point.
values
shall have the right size beforehand, i.e. n_components.
The default implementation will call value() for each component.
Reimplemented in Functions::ConstantFunction< dim, double >, and Functions::FEFieldFunction< dim, DoFHandlerType, VectorType >.
|
virtualinherited |
Set values
to the point values of the specified component of the function at the points
. It is assumed that values
already has the right size, i.e. the same size as the points
array.
By default, this function repeatedly calls value() for each point separately, to fill the output array.
Reimplemented in Functions::ConstantFunction< dim, double >, and Functions::FEFieldFunction< dim, DoFHandlerType, VectorType >.
|
virtualinherited |
Set values
to the point values of the function at the points
. It is assumed that values
already has the right size, i.e. the same size as the points
array, and that all elements be vectors with the same number of components as this function has.
By default, this function repeatedly calls vector_value() for each point separately, to fill the output array.
Reimplemented in Functions::ConstantFunction< dim, double >, and Functions::FEFieldFunction< dim, DoFHandlerType, VectorType >.
|
virtualinherited |
For each component of the function, fill a vector of values, one for each point.
The default implementation of this function in Function calls value_list() for each component. In order to improve performance, this can be reimplemented in derived classes to speed up performance.
|
virtualinherited |
Return the gradient of the specified component of the function at the given point.
Reimplemented in Functions::LevelSet::Plane< dim >, Functions::CosineGradFunction< dim >, AutoDerivativeFunction< dim >, Functions::ConstantFunction< dim, RangeNumberType >, Functions::ConstantFunction< dim, double >, Functions::IdentityFunction< dim, RangeNumberType >, FunctionFromFunctionObjects< dim, RangeNumberType >, Functions::Bessel1< dim >, Functions::CSpline< dim >, Functions::SquareFunction< dim >, Functions::Q1WedgeFunction< dim >, Functions::PillowFunction< dim >, Functions::CosineFunction< dim >, Functions::ExpFunction< dim >, Functions::SlitSingularityFunction< dim >, Functions::JumpFunction< dim >, Functions::FourierCosineFunction< dim >, Functions::FourierSineFunction< dim >, Functions::FourierSineSum< dim >, Functions::FourierCosineSum< dim >, Functions::CutOffFunctionTensorProduct< dim >, Functions::CutOffFunctionC1< dim >, Functions::CutOffFunctionCinfty< dim >, Functions::Monomial< dim, Number >, Functions::InterpolatedTensorProductGridData< dim >, Functions::InterpolatedUniformGridData< dim >, Functions::Polynomial< dim >, Functions::Spherical< dim >, Functions::SymbolicFunction< dim, RangeNumberType >, Functions::FEFieldFunction< dim, DoFHandlerType, VectorType >, Functions::CoordinateRestriction< dim >, and Functions::LevelSet::Sphere< dim >.
|
virtualinherited |
Return the gradient of all components of the function at the given point.
Reimplemented in Functions::ConstantFunction< dim, double >, and Functions::FEFieldFunction< dim, DoFHandlerType, VectorType >.
|
virtualinherited |
Set gradients
to the gradients of the specified component of the function at the points
. It is assumed that gradients
already has the right size, i.e. the same size as the points
array.
Reimplemented in Functions::FEFieldFunction< dim, DoFHandlerType, VectorType >, and Functions::ConstantFunction< dim, double >.
|
virtualinherited |
For each component of the function, fill a vector of gradient values, one for each point.
The default implementation of this function in Function calls value_list() for each component. In order to improve performance, this can be reimplemented in derived classes to speed up performance.
|
virtualinherited |
Set gradients
to the gradients of the function at the points
, for all components. It is assumed that gradients
already has the right size, i.e. the same size as the points
array.
The outer loop over gradients
is over the points in the list, the inner loop over the different components of the function.
Reimplemented in Functions::FEFieldFunction< dim, DoFHandlerType, VectorType >, and Functions::ConstantFunction< dim, double >.
|
virtualinherited |
Compute the Laplacian of a given component at point p
.
Reimplemented in Functions::CosineGradFunction< dim >, Functions::IdentityFunction< dim, RangeNumberType >, Functions::CSpline< dim >, Functions::SquareFunction< dim >, Functions::Q1WedgeFunction< dim >, Functions::PillowFunction< dim >, Functions::CosineFunction< dim >, Functions::ExpFunction< dim >, Functions::SlitSingularityFunction< dim >, Functions::JumpFunction< dim >, Functions::FourierCosineFunction< dim >, Functions::FourierSineFunction< dim >, Functions::FourierSineSum< dim >, Functions::FourierCosineSum< dim >, Functions::SymbolicFunction< dim, RangeNumberType >, Functions::FEFieldFunction< dim, DoFHandlerType, VectorType >, Functions::ConstantFunction< dim, RangeNumberType >, and Functions::ConstantFunction< dim, double >.
|
virtualinherited |
Compute the Laplacian of all components at point p
and store them in values
.
Reimplemented in Functions::FEFieldFunction< dim, DoFHandlerType, VectorType >.
|
virtualinherited |
Compute the Laplacian of one component at a set of points.
Reimplemented in Functions::FEFieldFunction< dim, DoFHandlerType, VectorType >.
|
virtualinherited |
Compute the Laplacians of all components at a set of points.
Reimplemented in Functions::FEFieldFunction< dim, DoFHandlerType, VectorType >.
|
virtualinherited |
Compute the Hessian of a given component at point p
, that is the gradient of the gradient of the function.
Reimplemented in Functions::LevelSet::Plane< dim >, Functions::IdentityFunction< dim, RangeNumberType >, Functions::CSpline< dim >, Functions::CosineFunction< dim >, Functions::Spherical< dim >, Functions::SymbolicFunction< dim, RangeNumberType >, Functions::CoordinateRestriction< dim >, Functions::ConstantFunction< dim, RangeNumberType >, Functions::ConstantFunction< dim, double >, and Functions::LevelSet::Sphere< dim >.
|
virtualinherited |
Compute the Hessian of all components at point p
and store them in values
.
|
virtualinherited |
Compute the Hessian of one component at a set of points.
|
virtualinherited |
Compute the Hessians of all components at a set of points.
|
virtualinherited |
Return an estimate for the memory consumption, in bytes, of this object.
This function is virtual and can be overloaded by derived classes.
Reimplemented in Functions::FlowFunction< dim >, Functions::FlowFunction< 2 >, Functions::ConstantFunction< dim, RangeNumberType >, Functions::ConstantFunction< dim, double >, ComponentSelectFunction< dim, RangeNumberType >, Functions::CSpline< dim >, FunctionDerivative< dim >, Functions::JumpFunction< dim >, Functions::InterpolatedTensorProductGridData< dim >, Functions::InterpolatedUniformGridData< dim >, Functions::Polynomial< dim >, and Functions::Spherical< dim >.
|
inherited |
Return the value of the time variable.
|
virtualinherited |
Set the time to new_time
, overwriting the old value.
|
virtualinherited |
Advance the time by the given time step delta_t
.
|
static |
Value used in the constructor of this and derived classes to denote that no component is selected.
Definition at line 932 of file function_lib.h.
|
protected |
Center of the integration ball.
Definition at line 996 of file function_lib.h.
|
protected |
Radius of the ball.
Definition at line 1001 of file function_lib.h.
|
protected |
Component selected. If no_component
, the function is the same in all components.
Definition at line 1007 of file function_lib.h.
|
protected |
Flag that controls whether we rescale the value when the radius changes.
Definition at line 1012 of file function_lib.h.
|
protected |
The reference integral value. Derived classes should specify what their integral is when radius
= 1.0.
Definition at line 1018 of file function_lib.h.
|
protected |
Current rescaling to apply the cut-off function.
Definition at line 1023 of file function_lib.h.
|
staticinherited |
Export the value of the template parameter as a static member constant. Sometimes useful for some expression template programming.
Definition at line 159 of file function.h.
|
inherited |
Number of vector components.
Definition at line 164 of file function.h.
|
privateinherited |
Store the present time.
Definition at line 113 of file function_time.h.