Reference documentation for deal.II version 9.3.3
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Public Types | Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Protected Attributes | Private Attributes | List of all members
Functions::InterpolatedTensorProductGridData< dim > Class Template Reference

#include <deal.II/base/function_lib.h>

Inheritance diagram for Functions::InterpolatedTensorProductGridData< dim >:
[legend]

Public Types

using time_type = typename FunctionTime< typename numbers::NumberTraits< RangeNumberType >::real_type >::time_type
 

Public Member Functions

 InterpolatedTensorProductGridData (const std::array< std::vector< double >, dim > &coordinate_values, const Table< dim, double > &data_values)
 
 InterpolatedTensorProductGridData (std::array< std::vector< double >, dim > &&coordinate_values, Table< dim, double > &&data_values)
 
virtual double value (const Point< dim > &p, const unsigned int component=0) const override
 
virtual Tensor< 1, dim > gradient (const Point< dim > &p, const unsigned int component=0) const override
 
virtual std::size_t memory_consumption () const override
 
const Table< dim, double > & get_data () const
 
virtual void vector_value (const Point< dim > &p, Vector< RangeNumberType > &values) const
 
virtual void value_list (const std::vector< Point< dim > > &points, std::vector< RangeNumberType > &values, const unsigned int component=0) const
 
virtual void vector_value_list (const std::vector< Point< dim > > &points, std::vector< Vector< RangeNumberType > > &values) const
 
virtual void vector_values (const std::vector< Point< dim > > &points, std::vector< std::vector< RangeNumberType > > &values) const
 
virtual void vector_gradient (const Point< dim > &p, std::vector< Tensor< 1, dim, RangeNumberType > > &gradients) const
 
virtual void gradient_list (const std::vector< Point< dim > > &points, std::vector< Tensor< 1, dim, RangeNumberType > > &gradients, const unsigned int component=0) const
 
virtual void vector_gradients (const std::vector< Point< dim > > &points, std::vector< std::vector< Tensor< 1, dim, RangeNumberType > > > &gradients) const
 
virtual void vector_gradient_list (const std::vector< Point< dim > > &points, std::vector< std::vector< Tensor< 1, dim, RangeNumberType > > > &gradients) const
 
virtual RangeNumberType laplacian (const Point< dim > &p, const unsigned int component=0) const
 
virtual void vector_laplacian (const Point< dim > &p, Vector< RangeNumberType > &values) const
 
virtual void laplacian_list (const std::vector< Point< dim > > &points, std::vector< RangeNumberType > &values, const unsigned int component=0) const
 
virtual void vector_laplacian_list (const std::vector< Point< dim > > &points, std::vector< Vector< RangeNumberType > > &values) const
 
virtual SymmetricTensor< 2, dim, RangeNumberType > hessian (const Point< dim > &p, const unsigned int component=0) const
 
virtual void vector_hessian (const Point< dim > &p, std::vector< SymmetricTensor< 2, dim, RangeNumberType > > &values) const
 
virtual void hessian_list (const std::vector< Point< dim > > &points, std::vector< SymmetricTensor< 2, dim, RangeNumberType > > &values, const unsigned int component=0) const
 
virtual void vector_hessian_list (const std::vector< Point< dim > > &points, std::vector< std::vector< SymmetricTensor< 2, dim, RangeNumberType > > > &values) const
 
numbers::NumberTraits< double >::real_type get_time () const
 
virtual void set_time (const numbers::NumberTraits< double >::real_type new_time)
 
virtual void advance_time (const numbers::NumberTraits< double >::real_type delta_t)
 

Public Attributes

const unsigned int n_components
 

Static Public Attributes

static const unsigned int dimension = dim
 

Protected Member Functions

TableIndices< dim > table_index_of_point (const Point< dim > &p) const
 

Protected Attributes

const std::array< std::vector< double >, dim > coordinate_values
 
const Table< dim, double > data_values
 

Private Attributes

numbers::NumberTraits< double >::real_type time
 

Subscriptor functionality

Classes derived from Subscriptor provide a facility to subscribe to this object. This is mostly used by the SmartPointer class.

void subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
void unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
unsigned int n_subscriptions () const
 
template<typename StreamType >
void list_subscribers (StreamType &stream) const
 
void list_subscribers () const
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 
std::atomic< unsigned intcounter
 
std::map< std::string, unsigned intcounter_map
 
std::vector< std::atomic< bool > * > validity_pointers
 
const std::type_info * object_info
 
using map_value_type = decltype(counter_map)::value_type
 
using map_iterator = decltype(counter_map)::iterator
 
static std::mutex mutex
 
static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 
void check_no_subscribers () const noexcept
 

Detailed Description

template<int dim>
class Functions::InterpolatedTensorProductGridData< dim >

A scalar function that computes its values by (bi-, tri-)linear interpolation from a set of point data that are arranged on a possibly non-uniform tensor product mesh. In other words, considering the three- dimensional case, let there be points \(x_0,\ldots, x_{K-1}\), \(y_0,\ldots,y_{L-1}\), \(z_1,\ldots,z_{M-1}\), and data \(d_{klm}\) defined at point \((x_k,y_l,z_m)^T\), then evaluating the function at a point \(\mathbf x=(x,y,z)\) will find the box so that \(x_k\le x\le x_{k+1}, y_l\le y\le y_{l+1}, z_m\le z\le z_{m+1}\), and do a trilinear interpolation of the data on this cell. Similar operations are done in lower dimensions.

This class is most often used for either evaluating coefficients or right hand sides that are provided experimentally at a number of points inside the domain, or for comparing outputs of a solution on a finite element mesh against previously obtained data defined on a grid.

Note
If the points \(x_i\) are actually equally spaced on an interval \([x_0,x_1]\) and the same is true for the other data points in higher dimensions, you should use the InterpolatedUniformGridData class instead.

If a point is requested outside the box defined by the end points of the coordinate arrays, then the function is assumed to simply extend by constant values beyond the last data point in each coordinate direction. (The class does not throw an error if a point lies outside the box since it frequently happens that a point lies just outside the box by an amount on the order of numerical roundoff.)

Note
The use of the related class InterpolatedUniformGridData is discussed in step-53.

Dealing with large data sets

This class is often used to interpolate data provided by fairly large data tables that are expensive to read from disk, and that take a large amount of memory when replicated on every process of parallel (MPI) programs.

The Table class can help with amortizing this cost by using shared memory to store the data only as often as necessary – see the documentation of the TableBase class. Once one has obtained such a Table object that uses shared memory to store the data only as often as is necessary, one has to avoid that the current class copies the table into its own member variable. Rather, it is necessary to use the move constructor of this class to take over ownership of the table and its shared memory space. This can be achieved using the following extension of the code snippet shown in the documentation of the TableBase class:

const unsigned int N=..., M=...; // table sizes, assumed known
Table<2,double> data_table;
const unsigned int root_rank = 0;
if (Utilities::MPI::this_mpi_process(mpi_communicator) == root_rank)
{
data_table.resize (N,M);
std::ifstream input_file ("data_file.dat");
...; // read the data from the file
}
// Now distribute to all processes
data_table.replicate_across_communicator (mpi_communicator, root_rank);
// Set up the x- and y-coordinates of the points stored in the
// data table
std::array<std::vector<double>, dim> coordinate_values;
...; // do what needs to be done
// And finally set up the interpolation object. The calls
// to std::move() make sure that the tables are moved into
// the memory space of the InterpolateTensorProductGridData
// object:
interpolation_function (std::move(coordinate_values),
std::move(data_table));
const std::array< std::vector< double >, dim > coordinate_values
static const char N
unsigned int this_mpi_process(const MPI_Comm &mpi_communicator)
Definition: mpi.cc:128

Definition at line 1453 of file function_lib.h.

Member Typedef Documentation

◆ time_type

template<int dim, typename RangeNumberType = double>
using Function< dim, RangeNumberType >::time_type = typename FunctionTime< typename numbers::NumberTraits<RangeNumberType>::real_type>::time_type
inherited

The scalar-valued real type used for representing time.

Definition at line 169 of file function.h.

Constructor & Destructor Documentation

◆ InterpolatedTensorProductGridData() [1/2]

template<int dim>
Functions::InterpolatedTensorProductGridData< dim >::InterpolatedTensorProductGridData ( const std::array< std::vector< double >, dim > &  coordinate_values,
const Table< dim, double > &  data_values 
)

Constructor to initialize this class instance with the data given in data_values.

Parameters
coordinate_valuesAn array of dim arrays. Each of the inner arrays contains the coordinate values \(x_0,\ldots, x_{K-1}\) and similarly for the other coordinate directions. These arrays need not have the same size. Obviously, we need dim such arrays for a dim- dimensional function object. The coordinate values within this array are assumed to be strictly ascending to allow for efficient lookup.
data_valuesA dim-dimensional table of data at each of the mesh points defined by the coordinate arrays above. The data passed in is copied into internal data structures. Note that the Table class has a number of conversion constructors that allow converting other data types into a table where you specify this argument.

Definition at line 2492 of file function_lib.cc.

◆ InterpolatedTensorProductGridData() [2/2]

template<int dim>
Functions::InterpolatedTensorProductGridData< dim >::InterpolatedTensorProductGridData ( std::array< std::vector< double >, dim > &&  coordinate_values,
Table< dim, double > &&  data_values 
)

Like the previous constructor, but take the arguments as rvalue references and move, instead of copy the data. This is often useful in cases where the data stored in these tables is large and the information used to initialize the current object is no longer needed separately. In other words, there is no need to keep the original object from which this object could copy its information, but it might as well take over ("move") the data.

Definition at line 2519 of file function_lib.cc.

Member Function Documentation

◆ value()

template<int dim>
double Functions::InterpolatedTensorProductGridData< dim >::value ( const Point< dim > &  p,
const unsigned int  component = 0 
) const
overridevirtual

Compute the value of the function set by bilinear interpolation of the given data set.

Parameters
pThe point at which the function is to be evaluated.
componentThe vector component. Since this function is scalar, only zero is a valid argument here.
Returns
The interpolated value at this point. If the point lies outside the set of coordinates, the function is extended by a constant.

Reimplemented from Function< dim, RangeNumberType >.

Definition at line 2606 of file function_lib.cc.

◆ gradient()

template<int dim>
Tensor< 1, dim > Functions::InterpolatedTensorProductGridData< dim >::gradient ( const Point< dim > &  p,
const unsigned int  component = 0 
) const
overridevirtual

Compute the gradient of the function defined by bilinear interpolation of the given data set.

Parameters
pThe point at which the function gradient is to be evaluated.
componentThe vector component. Since this function is scalar, only zero is a valid argument here.
Returns
The value of the gradient of the interpolated function at this point. If the point lies outside the set of coordinates, the function is extended by a constant and so its gradient is extended by 0.

Reimplemented from Function< dim, RangeNumberType >.

Definition at line 2637 of file function_lib.cc.

◆ memory_consumption()

template<int dim>
std::size_t Functions::InterpolatedTensorProductGridData< dim >::memory_consumption
overridevirtual

Return an estimate for the memory consumption, in bytes, of this object.

Reimplemented from Function< dim, RangeNumberType >.

Definition at line 2584 of file function_lib.cc.

◆ get_data()

template<int dim>
const Table< dim, double > & Functions::InterpolatedTensorProductGridData< dim >::get_data

Return a reference to the internally stored data.

Definition at line 2597 of file function_lib.cc.

◆ table_index_of_point()

template<int dim>
TableIndices< dim > Functions::InterpolatedTensorProductGridData< dim >::table_index_of_point ( const Point< dim > &  p) const
protected

Find the index in the table of the rectangle containing an input point

Definition at line 2547 of file function_lib.cc.

◆ vector_value()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_value ( const Point< dim > &  p,
Vector< RangeNumberType > &  values 
) const
virtualinherited

Return all components of a vector-valued function at a given point.

values shall have the right size beforehand, i.e. n_components.

The default implementation will call value() for each component.

Reimplemented in Functions::ConstantFunction< dim, double >, and Functions::FEFieldFunction< dim, DoFHandlerType, VectorType >.

◆ value_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::value_list ( const std::vector< Point< dim > > &  points,
std::vector< RangeNumberType > &  values,
const unsigned int  component = 0 
) const
virtualinherited

Set values to the point values of the specified component of the function at the points. It is assumed that values already has the right size, i.e. the same size as the points array.

By default, this function repeatedly calls value() for each point separately, to fill the output array.

Reimplemented in Functions::ConstantFunction< dim, double >, and Functions::FEFieldFunction< dim, DoFHandlerType, VectorType >.

◆ vector_value_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_value_list ( const std::vector< Point< dim > > &  points,
std::vector< Vector< RangeNumberType > > &  values 
) const
virtualinherited

Set values to the point values of the function at the points. It is assumed that values already has the right size, i.e. the same size as the points array, and that all elements be vectors with the same number of components as this function has.

By default, this function repeatedly calls vector_value() for each point separately, to fill the output array.

Reimplemented in Functions::ConstantFunction< dim, double >, and Functions::FEFieldFunction< dim, DoFHandlerType, VectorType >.

◆ vector_values()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_values ( const std::vector< Point< dim > > &  points,
std::vector< std::vector< RangeNumberType > > &  values 
) const
virtualinherited

For each component of the function, fill a vector of values, one for each point.

The default implementation of this function in Function calls value_list() for each component. In order to improve performance, this can be reimplemented in derived classes to speed up performance.

◆ vector_gradient()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_gradient ( const Point< dim > &  p,
std::vector< Tensor< 1, dim, RangeNumberType > > &  gradients 
) const
virtualinherited

Return the gradient of all components of the function at the given point.

Reimplemented in Functions::ConstantFunction< dim, double >, and Functions::FEFieldFunction< dim, DoFHandlerType, VectorType >.

◆ gradient_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::gradient_list ( const std::vector< Point< dim > > &  points,
std::vector< Tensor< 1, dim, RangeNumberType > > &  gradients,
const unsigned int  component = 0 
) const
virtualinherited

Set gradients to the gradients of the specified component of the function at the points. It is assumed that gradients already has the right size, i.e. the same size as the points array.

Reimplemented in Functions::FEFieldFunction< dim, DoFHandlerType, VectorType >, and Functions::ConstantFunction< dim, double >.

◆ vector_gradients()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_gradients ( const std::vector< Point< dim > > &  points,
std::vector< std::vector< Tensor< 1, dim, RangeNumberType > > > &  gradients 
) const
virtualinherited

For each component of the function, fill a vector of gradient values, one for each point.

The default implementation of this function in Function calls value_list() for each component. In order to improve performance, this can be reimplemented in derived classes to speed up performance.

◆ vector_gradient_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_gradient_list ( const std::vector< Point< dim > > &  points,
std::vector< std::vector< Tensor< 1, dim, RangeNumberType > > > &  gradients 
) const
virtualinherited

Set gradients to the gradients of the function at the points, for all components. It is assumed that gradients already has the right size, i.e. the same size as the points array.

The outer loop over gradients is over the points in the list, the inner loop over the different components of the function.

Reimplemented in Functions::FEFieldFunction< dim, DoFHandlerType, VectorType >, and Functions::ConstantFunction< dim, double >.

◆ laplacian()

template<int dim, typename RangeNumberType = double>
virtual RangeNumberType Function< dim, RangeNumberType >::laplacian ( const Point< dim > &  p,
const unsigned int  component = 0 
) const
virtualinherited

◆ vector_laplacian()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_laplacian ( const Point< dim > &  p,
Vector< RangeNumberType > &  values 
) const
virtualinherited

Compute the Laplacian of all components at point p and store them in values.

Reimplemented in Functions::FEFieldFunction< dim, DoFHandlerType, VectorType >.

◆ laplacian_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::laplacian_list ( const std::vector< Point< dim > > &  points,
std::vector< RangeNumberType > &  values,
const unsigned int  component = 0 
) const
virtualinherited

Compute the Laplacian of one component at a set of points.

Reimplemented in Functions::FEFieldFunction< dim, DoFHandlerType, VectorType >.

◆ vector_laplacian_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_laplacian_list ( const std::vector< Point< dim > > &  points,
std::vector< Vector< RangeNumberType > > &  values 
) const
virtualinherited

Compute the Laplacians of all components at a set of points.

Reimplemented in Functions::FEFieldFunction< dim, DoFHandlerType, VectorType >.

◆ hessian()

template<int dim, typename RangeNumberType = double>
virtual SymmetricTensor< 2, dim, RangeNumberType > Function< dim, RangeNumberType >::hessian ( const Point< dim > &  p,
const unsigned int  component = 0 
) const
virtualinherited

◆ vector_hessian()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_hessian ( const Point< dim > &  p,
std::vector< SymmetricTensor< 2, dim, RangeNumberType > > &  values 
) const
virtualinherited

Compute the Hessian of all components at point p and store them in values.

◆ hessian_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::hessian_list ( const std::vector< Point< dim > > &  points,
std::vector< SymmetricTensor< 2, dim, RangeNumberType > > &  values,
const unsigned int  component = 0 
) const
virtualinherited

Compute the Hessian of one component at a set of points.

◆ vector_hessian_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_hessian_list ( const std::vector< Point< dim > > &  points,
std::vector< std::vector< SymmetricTensor< 2, dim, RangeNumberType > > > &  values 
) const
virtualinherited

Compute the Hessians of all components at a set of points.

◆ get_time()

numbers::NumberTraits< double >::real_type FunctionTime< numbers::NumberTraits< double >::real_type >::get_time ( ) const
inherited

Return the value of the time variable.

◆ set_time()

virtual void FunctionTime< numbers::NumberTraits< double >::real_type >::set_time ( const numbers::NumberTraits< double >::real_type  new_time)
virtualinherited

Set the time to new_time, overwriting the old value.

◆ advance_time()

virtual void FunctionTime< numbers::NumberTraits< double >::real_type >::advance_time ( const numbers::NumberTraits< double >::real_type  delta_t)
virtualinherited

Advance the time by the given time step delta_t.

Member Data Documentation

◆ coordinate_values

template<int dim>
const std::array<std::vector<double>, dim> Functions::InterpolatedTensorProductGridData< dim >::coordinate_values
protected

The set of coordinate values in each of the coordinate directions.

Definition at line 1540 of file function_lib.h.

◆ data_values

template<int dim>
const Table<dim, double> Functions::InterpolatedTensorProductGridData< dim >::data_values
protected

The data that is to be interpolated.

Definition at line 1545 of file function_lib.h.

◆ dimension

template<int dim, typename RangeNumberType = double>
const unsigned int Function< dim, RangeNumberType >::dimension = dim
staticinherited

Export the value of the template parameter as a static member constant. Sometimes useful for some expression template programming.

Definition at line 159 of file function.h.

◆ n_components

template<int dim, typename RangeNumberType = double>
const unsigned int Function< dim, RangeNumberType >::n_components
inherited

Number of vector components.

Definition at line 164 of file function.h.

◆ time

numbers::NumberTraits< double >::real_type FunctionTime< numbers::NumberTraits< double >::real_type >::time
privateinherited

Store the present time.

Definition at line 113 of file function_time.h.


The documentation for this class was generated from the following files: