Reference documentation for deal.II version 9.1.1
|
#include <deal.II/base/polynomial.h>
Public Member Functions | |
Monomial (const unsigned int n, const double coefficient=1.) | |
Public Member Functions inherited from Polynomials::Polynomial< number > | |
Polynomial (const std::vector< number > &coefficients) | |
Polynomial (const unsigned int n) | |
Polynomial (const std::vector< Point< 1 >> &lagrange_support_points, const unsigned int evaluation_point) | |
Polynomial () | |
number | value (const number x) const |
void | value (const number x, std::vector< number > &values) const |
void | value (const number x, const unsigned int n_derivatives, number *values) const |
unsigned int | degree () const |
void | scale (const number factor) |
template<typename number2 > | |
void | shift (const number2 offset) |
Polynomial< number > | derivative () const |
Polynomial< number > | primitive () const |
Polynomial< number > & | operator*= (const double s) |
Polynomial< number > & | operator*= (const Polynomial< number > &p) |
Polynomial< number > & | operator+= (const Polynomial< number > &p) |
Polynomial< number > & | operator-= (const Polynomial< number > &p) |
bool | operator== (const Polynomial< number > &p) const |
void | print (std::ostream &out) const |
template<class Archive > | |
void | serialize (Archive &ar, const unsigned int version) |
Public Member Functions inherited from Subscriptor | |
Subscriptor () | |
Subscriptor (const Subscriptor &) | |
Subscriptor (Subscriptor &&) noexcept | |
virtual | ~Subscriptor () |
Subscriptor & | operator= (const Subscriptor &) |
Subscriptor & | operator= (Subscriptor &&) noexcept |
void | subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const |
void | unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const |
unsigned int | n_subscriptions () const |
template<typename StreamType > | |
void | list_subscribers (StreamType &stream) const |
void | list_subscribers () const |
template<class Archive > | |
void | serialize (Archive &ar, const unsigned int version) |
Static Public Member Functions | |
static std::vector< Polynomial< number > > | generate_complete_basis (const unsigned int degree) |
Static Public Member Functions inherited from Subscriptor | |
static ::ExceptionBase & | ExcInUse (int arg1, std::string arg2, std::string arg3) |
static ::ExceptionBase & | ExcNoSubscriber (std::string arg1, std::string arg2) |
Static Private Member Functions | |
static std::vector< number > | make_vector (unsigned int n, const double coefficient) |
Additional Inherited Members | |
Protected Member Functions inherited from Polynomials::Polynomial< number > | |
void | transform_into_standard_form () |
Static Protected Member Functions inherited from Polynomials::Polynomial< number > | |
static void | scale (std::vector< number > &coefficients, const number factor) |
template<typename number2 > | |
static void | shift (std::vector< number > &coefficients, const number2 shift) |
static void | multiply (std::vector< number > &coefficients, const number factor) |
Protected Attributes inherited from Polynomials::Polynomial< number > | |
std::vector< number > | coefficients |
bool | in_lagrange_product_form |
std::vector< number > | lagrange_support_points |
number | lagrange_weight |
Class generates Polynomial objects representing a monomial of degree n, that is, the function \(x^n\).
Definition at line 293 of file polynomial.h.
Polynomials::Monomial< number >::Monomial | ( | const unsigned int | n, |
const double | coefficient = 1. |
||
) |
Constructor, taking the degree of the monomial and an optional coefficient as arguments.
Definition at line 678 of file polynomial.cc.
|
static |
Return a vector of Monomial objects of degree zero through degree
, which then spans the full space of polynomials up to the given degree. This function may be used to initialize the TensorProductPolynomials and PolynomialSpace classes.
Definition at line 686 of file polynomial.cc.
|
staticprivate |
Needed by constructor.
Definition at line 668 of file polynomial.cc.