Reference documentation for deal.II version 9.0.0
Public Types | Static Public Member Functions | Static Private Attributes | List of all members
LinearAlgebra::distributed::BlockVector< Number > Class Template Reference

#include <deal.II/lac/la_parallel_block_vector.h>

Inheritance diagram for LinearAlgebra::distributed::BlockVector< Number >:
[legend]

Public Types

typedef BlockVectorBase< Vector< Number > > BaseClass
 
typedef BaseClass::BlockType BlockType
 
typedef BaseClass::value_type value_type
 
- Public Types inherited from BlockVectorBase< Vector< Number > >
typedef Vector< Number > BlockType
 
typedef BlockType::real_type real_type
 

Public Member Functions

1: Basic operations
 BlockVector (const size_type num_blocks=0, const size_type block_size=0)
 
 BlockVector (const BlockVector< Number > &V)
 
template<typename OtherNumber >
 BlockVector (const BlockVector< OtherNumber > &v)
 
 BlockVector (const std::vector< size_type > &block_sizes)
 
 BlockVector (const std::vector< IndexSet > &local_ranges, const std::vector< IndexSet > &ghost_indices, const MPI_Comm communicator)
 
 BlockVector (const std::vector< IndexSet > &local_ranges, const MPI_Comm communicator)
 
virtual BlockVectoroperator= (const value_type s) override
 
BlockVectoroperator= (const BlockVector &V)
 
template<class Number2 >
BlockVectoroperator= (const BlockVector< Number2 > &V)
 
BlockVectoroperator= (const Vector< Number > &V)
 
BlockVector< Number > & operator= (const PETScWrappers::MPI::BlockVector &petsc_vec)
 
BlockVector< Number > & operator= (const TrilinosWrappers::MPI::BlockVector &trilinos_vec)
 
void reinit (const size_type num_blocks, const size_type block_size=0, const bool omit_zeroing_entries=false)
 
void reinit (const std::vector< size_type > &N, const bool omit_zeroing_entries=false)
 
template<typename Number2 >
void reinit (const BlockVector< Number2 > &V, const bool omit_zeroing_entries=false)
 
virtual void compress (::VectorOperation::values operation) override
 
void update_ghost_values () const
 
void zero_out_ghosts () const
 
bool has_ghost_elements () const
 
template<typename OtherNumber >
void add (const std::vector< size_type > &indices, const ::Vector< OtherNumber > &values)
 
void sadd (const Number s, const BlockVector< Number > &V)
 
void equ (const Number a, const BlockVector< Number > &u, const Number b, const BlockVector< Number > &v)
 
void sadd (const Number s, const Number a, const BlockVector< Number > &V, const Number b, const BlockVector< Number > &W)
 
virtual bool all_zero () const override
 
virtual Number mean_value () const override
 
real_type lp_norm (const real_type p) const
 
void swap (BlockVector< Number > &v)
 
2: Implementation of VectorSpaceVector
virtual void reinit (const VectorSpaceVector< Number > &V, const bool omit_zeroing_entries=false) override
 
virtual BlockVector< Number > & operator*= (const Number factor) override
 
virtual BlockVector< Number > & operator/= (const Number factor) override
 
virtual BlockVector< Number > & operator+= (const VectorSpaceVector< Number > &V) override
 
virtual BlockVector< Number > & operator-= (const VectorSpaceVector< Number > &V) override
 
virtual void import (const LinearAlgebra::ReadWriteVector< Number > &V, VectorOperation::values operation, std::shared_ptr< const CommunicationPatternBase > communication_pattern=std::shared_ptr< const CommunicationPatternBase >()) override
 
virtual Number operator* (const VectorSpaceVector< Number > &V) const override
 
template<typename FullMatrixType >
void multivector_inner_product (FullMatrixType &matrix, const BlockVector< Number > &V, const bool symmetric=false) const
 
template<typename FullMatrixType >
Number multivector_inner_product_with_metric (const FullMatrixType &matrix, const BlockVector< Number > &V, const bool symmetric=false) const
 
template<typename FullMatrixType >
void mmult (BlockVector< Number > &V, const FullMatrixType &matrix, const Number s=Number(0.), const Number b=Number(1.)) const
 
virtual void add (const Number a) override
 
virtual void add (const Number a, const VectorSpaceVector< Number > &V) override
 
virtual void add (const Number a, const VectorSpaceVector< Number > &V, const Number b, const VectorSpaceVector< Number > &W) override
 
virtual void add (const std::vector< size_type > &indices, const std::vector< Number > &values)
 
virtual void sadd (const Number s, const Number a, const VectorSpaceVector< Number > &V) override
 
virtual void scale (const VectorSpaceVector< Number > &scaling_factors) override
 
virtual void equ (const Number a, const VectorSpaceVector< Number > &V) override
 
virtual real_type l1_norm () const override
 
virtual real_type l2_norm () const override
 
real_type norm_sqr () const
 
virtual real_type linfty_norm () const override
 
virtual Number add_and_dot (const Number a, const VectorSpaceVector< Number > &V, const VectorSpaceVector< Number > &W) override
 
virtual size_type size () const override
 
virtual ::IndexSet locally_owned_elements () const override
 
virtual void print (std::ostream &out, const unsigned int precision=3, const bool scientific=true, const bool across=true) const override
 
virtual std::size_t memory_consumption () const override
 
- Public Member Functions inherited from BlockVectorBase< Vector< Number > >
 BlockVectorBase ()=default
 
 BlockVectorBase (const BlockVectorBase &)=default
 
 BlockVectorBase (BlockVectorBase &&) noexcept=default
 
void collect_sizes ()
 
void compress (::VectorOperation::values operation)
 
BlockTypeblock (const unsigned int i)
 
const BlockTypeblock (const unsigned int i) const
 
const BlockIndicesget_block_indices () const
 
unsigned int n_blocks () const
 
std::size_t size () const
 
IndexSet locally_owned_elements () const
 
iterator begin ()
 
const_iterator begin () const
 
iterator end ()
 
const_iterator end () const
 
value_type operator() (const size_type i) const
 
reference operator() (const size_type i)
 
value_type operator[] (const size_type i) const
 
reference operator[] (const size_type i)
 
void extract_subvector_to (const std::vector< size_type > &indices, std::vector< OtherNumber > &values) const
 
void extract_subvector_to (ForwardIterator indices_begin, const ForwardIterator indices_end, OutputIterator values_begin) const
 
BlockVectorBaseoperator= (const value_type s)
 
BlockVectorBaseoperator= (const BlockVectorBase &V)
 
BlockVectorBaseoperator= (BlockVectorBase &&)=default
 
BlockVectorBaseoperator= (const BlockVectorBase< VectorType2 > &V)
 
BlockVectorBaseoperator= (const Vector< Number > &v)
 
bool operator== (const BlockVectorBase< VectorType2 > &v) const
 
value_type operator* (const BlockVectorBase &V) const
 
real_type norm_sqr () const
 
value_type mean_value () const
 
real_type l1_norm () const
 
real_type l2_norm () const
 
real_type linfty_norm () const
 
value_type add_and_dot (const value_type a, const BlockVectorBase &V, const BlockVectorBase &W)
 
bool in_local_range (const size_type global_index) const
 
bool all_zero () const
 
bool is_non_negative () const
 
BlockVectorBaseoperator+= (const BlockVectorBase &V)
 
BlockVectorBaseoperator-= (const BlockVectorBase &V)
 
void add (const std::vector< size_type > &indices, const std::vector< Number > &values)
 
void add (const std::vector< size_type > &indices, const Vector< Number > &values)
 
void add (const size_type n_elements, const size_type *indices, const Number *values)
 
void add (const value_type s)
 
void add (const value_type a, const BlockVectorBase &V)
 
void add (const value_type a, const BlockVectorBase &V, const value_type b, const BlockVectorBase &W)
 
void sadd (const value_type s, const BlockVectorBase &V)
 
void sadd (const value_type s, const value_type a, const BlockVectorBase &V)
 
void sadd (const value_type s, const value_type a, const BlockVectorBase &V, const value_type b, const BlockVectorBase &W)
 
void sadd (const value_type s, const value_type a, const BlockVectorBase &V, const value_type b, const BlockVectorBase &W, const value_type c, const BlockVectorBase &X)
 
BlockVectorBaseoperator*= (const value_type factor)
 
BlockVectorBaseoperator/= (const value_type factor)
 
void scale (const BlockVector2 &v)
 
void equ (const value_type a, const BlockVector2 &V)
 
void equ (const value_type a, const BlockVectorBase &V, const value_type b, const BlockVectorBase &W)
 
void update_ghost_values () const
 
std::size_t memory_consumption () const
 
- Public Member Functions inherited from Subscriptor
 Subscriptor ()
 
 Subscriptor (const Subscriptor &)
 
 Subscriptor (Subscriptor &&) noexcept
 
virtual ~Subscriptor ()
 
Subscriptoroperator= (const Subscriptor &)
 
Subscriptoroperator= (Subscriptor &&) noexcept
 
void subscribe (const char *identifier=nullptr) const
 
void unsubscribe (const char *identifier=nullptr) const
 
unsigned int n_subscriptions () const
 
void list_subscribers () const
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 
- Public Member Functions inherited from LinearAlgebra::VectorSpaceVector< Number >
virtual VectorSpaceVector< Number > & operator= (const Number s)=0
 
virtual void compress (VectorOperation::values)
 
virtual ~VectorSpaceVector ()=default
 

Static Public Member Functions

static ::ExceptionBaseExcVectorTypeNotCompatible ()
 
static ::ExceptionBaseExcIteratorRangeDoesNotMatchVectorSize ()
 
- Static Public Member Functions inherited from Subscriptor
static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 

Static Private Attributes

static constexpr unsigned int communication_block_size = 20
 

Additional Inherited Members

- Protected Attributes inherited from BlockVectorBase< Vector< Number > >
std::vector< Vector< Number > > components
 
BlockIndices block_indices
 

Detailed Description

template<typename Number>
class LinearAlgebra::distributed::BlockVector< Number >

An implementation of block vectors based on distributed deal.II vectors. While the base class provides for most of the interface, this class handles the actual allocation of vectors and provides functions that are specific to the underlying vector type.

Note
Instantiations for this template are provided for <float> and <double>; others can be generated in application programs (see the section on Template instantiations in the manual).
See also
Block (linear algebra)
Author
Katharina Kormann, Martin Kronbichler, 2011

Definition at line 81 of file la_parallel_block_vector.h.

Member Typedef Documentation

◆ BaseClass

template<typename Number>
typedef BlockVectorBase<Vector<Number> > LinearAlgebra::distributed::BlockVector< Number >::BaseClass

Typedef the base class for simpler access to its own typedefs.

Definition at line 101 of file la_parallel_block_vector.h.

◆ BlockType

template<typename Number>
typedef BaseClass::BlockType LinearAlgebra::distributed::BlockVector< Number >::BlockType

Typedef the type of the underlying vector.

Definition at line 106 of file la_parallel_block_vector.h.

◆ value_type

template<typename Number>
typedef BaseClass::value_type LinearAlgebra::distributed::BlockVector< Number >::value_type

Import the typedefs from the base class.

Definition at line 111 of file la_parallel_block_vector.h.

Constructor & Destructor Documentation

◆ BlockVector() [1/6]

template<typename Number>
LinearAlgebra::distributed::BlockVector< Number >::BlockVector ( const size_type  num_blocks = 0,
const size_type  block_size = 0 
)
explicit

Constructor. There are three ways to use this constructor. First, without any arguments, it generates an object with no blocks. Given one argument, it initializes num_blocks blocks, but these blocks have size zero. The third variant finally initializes all blocks to the same size block_size.

Confer the other constructor further down if you intend to use blocks of different sizes.

◆ BlockVector() [2/6]

template<typename Number>
LinearAlgebra::distributed::BlockVector< Number >::BlockVector ( const BlockVector< Number > &  V)

Copy-Constructor. Dimension set to that of V, all components are copied from V

◆ BlockVector() [3/6]

template<typename Number>
template<typename OtherNumber >
LinearAlgebra::distributed::BlockVector< Number >::BlockVector ( const BlockVector< OtherNumber > &  v)
explicit

Copy constructor taking a BlockVector of another data type. This will fail if there is no conversion path from OtherNumber to Number. Note that you may lose accuracy when copying to a BlockVector with data elements with less accuracy.

Older versions of gcc did not honor the explicit keyword on template constructors. In such cases, it is easy to accidentally write code that can be very inefficient, since the compiler starts performing hidden conversions. To avoid this, this function is disabled if we have detected a broken compiler during configuration.

◆ BlockVector() [4/6]

template<typename Number>
LinearAlgebra::distributed::BlockVector< Number >::BlockVector ( const std::vector< size_type > &  block_sizes)

Constructor. Set the number of blocks to block_sizes.size() and initialize each block with block_sizes[i] zero elements.

◆ BlockVector() [5/6]

template<typename Number>
LinearAlgebra::distributed::BlockVector< Number >::BlockVector ( const std::vector< IndexSet > &  local_ranges,
const std::vector< IndexSet > &  ghost_indices,
const MPI_Comm  communicator 
)

Construct a block vector with an IndexSet for the local range and ghost entries for each block.

◆ BlockVector() [6/6]

template<typename Number>
LinearAlgebra::distributed::BlockVector< Number >::BlockVector ( const std::vector< IndexSet > &  local_ranges,
const MPI_Comm  communicator 
)

Same as above but the ghost indices are assumed to be empty.

Member Function Documentation

◆ operator=() [1/6]

template<typename Number>
virtual BlockVector& LinearAlgebra::distributed::BlockVector< Number >::operator= ( const value_type  s)
overridevirtual

Copy operator: fill all components of the vector with the given scalar value.

◆ operator=() [2/6]

template<typename Number>
BlockVector& LinearAlgebra::distributed::BlockVector< Number >::operator= ( const BlockVector< Number > &  V)

Copy operator for arguments of the same type. Resize the present vector if necessary.

◆ operator=() [3/6]

template<typename Number>
template<class Number2 >
BlockVector& LinearAlgebra::distributed::BlockVector< Number >::operator= ( const BlockVector< Number2 > &  V)

Copy operator for template arguments of different types. Resize the present vector if necessary.

◆ operator=() [4/6]

template<typename Number>
BlockVector& LinearAlgebra::distributed::BlockVector< Number >::operator= ( const Vector< Number > &  V)

Copy a regular vector into a block vector.

◆ operator=() [5/6]

template<typename Number>
BlockVector<Number>& LinearAlgebra::distributed::BlockVector< Number >::operator= ( const PETScWrappers::MPI::BlockVector< Number > &  petsc_vec)

Copy the content of a PETSc vector into the calling vector. This function assumes that the vectors layouts have already been initialized to match.

This operator is only available if deal.II was configured with PETSc.

◆ operator=() [6/6]

template<typename Number>
BlockVector<Number>& LinearAlgebra::distributed::BlockVector< Number >::operator= ( const TrilinosWrappers::MPI::BlockVector< Number > &  trilinos_vec)

Copy the content of a Trilinos vector into the calling vector. This function assumes that the vectors layouts have already been initialized to match.

This operator is only available if deal.II was configured with Trilinos.

◆ reinit() [1/4]

template<typename Number>
void LinearAlgebra::distributed::BlockVector< Number >::reinit ( const size_type  num_blocks,
const size_type  block_size = 0,
const bool  omit_zeroing_entries = false 
)

Reinitialize the BlockVector to contain num_blocks blocks of size block_size each.

If the second argument is left at its default value, then the block vector allocates the specified number of blocks but leaves them at zero size. You then need to later reinitialize the individual blocks, and call collect_sizes() to update the block system's knowledge of its individual block's sizes.

If omit_zeroing_entries==false, the vector is filled with zeros.

◆ reinit() [2/4]

template<typename Number>
void LinearAlgebra::distributed::BlockVector< Number >::reinit ( const std::vector< size_type > &  N,
const bool  omit_zeroing_entries = false 
)

Reinitialize the BlockVector such that it contains block_sizes.size() blocks. Each block is reinitialized to dimension block_sizes[i].

If the number of blocks is the same as before this function was called, all vectors remain the same and reinit() is called for each vector.

If omit_zeroing_entries==false, the vector is filled with zeros.

Note that you must call this (or the other reinit() functions) function, rather than calling the reinit() functions of an individual block, to allow the block vector to update its caches of vector sizes. If you call reinit() on one of the blocks, then subsequent actions on this object may yield unpredictable results since they may be routed to the wrong block.

◆ reinit() [3/4]

template<typename Number>
template<typename Number2 >
void LinearAlgebra::distributed::BlockVector< Number >::reinit ( const BlockVector< Number2 > &  V,
const bool  omit_zeroing_entries = false 
)

Change the dimension to that of the vector V. The same applies as for the other reinit() function.

The elements of V are not copied, i.e. this function is the same as calling reinit (V.size(), omit_zeroing_entries).

Note that you must call this (or the other reinit() functions) function, rather than calling the reinit() functions of an individual block, to allow the block vector to update its caches of vector sizes. If you call reinit() of one of the blocks, then subsequent actions of this object may yield unpredictable results since they may be routed to the wrong block.

◆ compress()

template<typename Number>
virtual void LinearAlgebra::distributed::BlockVector< Number >::compress ( ::VectorOperation::values  operation)
overridevirtual

This function copies the data that has accumulated in the data buffer for ghost indices to the owning processor. For the meaning of the argument operation, see the entry on Compressing distributed vectors and matrices in the glossary.

There are two variants for this function. If called with argument VectorOperation::add adds all the data accumulated in ghost elements to the respective elements on the owning processor and clears the ghost array afterwards. If called with argument VectorOperation::insert, a set operation is performed. Since setting elements in a vector with ghost elements is ambiguous (as one can set both the element on the ghost site as well as the owning site), this operation makes the assumption that all data is set correctly on the owning processor. Upon call of compress(VectorOperation::insert), all ghost entries are therefore simply zeroed out (using zero_ghost_values()). In debug mode, a check is performed that makes sure that the data set is actually consistent between processors, i.e., whenever a non-zero ghost element is found, it is compared to the value on the owning processor and an exception is thrown if these elements do not agree.

◆ update_ghost_values()

template<typename Number>
void LinearAlgebra::distributed::BlockVector< Number >::update_ghost_values ( ) const

Fills the data field for ghost indices with the values stored in the respective positions of the owning processor. This function is needed before reading from ghosts. The function is const even though ghost data is changed. This is needed to allow functions with a const vector to perform the data exchange without creating temporaries.

◆ zero_out_ghosts()

template<typename Number>
void LinearAlgebra::distributed::BlockVector< Number >::zero_out_ghosts ( ) const

This method zeros the entries on ghost dofs, but does not touch locally owned DoFs.

After calling this method, read access to ghost elements of the vector is forbidden and an exception is thrown. Only write access to ghost elements is allowed in this state.

◆ has_ghost_elements()

template<typename Number>
bool LinearAlgebra::distributed::BlockVector< Number >::has_ghost_elements ( ) const

Return if this Vector contains ghost elements.

◆ add() [1/5]

template<typename Number>
template<typename OtherNumber >
void LinearAlgebra::distributed::BlockVector< Number >::add ( const std::vector< size_type > &  indices,
const ::Vector< OtherNumber > &  values 
)

This is a collective add operation that adds a whole set of values stored in values to the vector components specified by indices.

◆ sadd() [1/3]

template<typename Number>
void LinearAlgebra::distributed::BlockVector< Number >::sadd ( const Number  s,
const BlockVector< Number > &  V 
)

Scaling and simple vector addition, i.e. *this = s*(*this)+V.

◆ equ() [1/2]

template<typename Number>
void LinearAlgebra::distributed::BlockVector< Number >::equ ( const Number  a,
const BlockVector< Number > &  u,
const Number  b,
const BlockVector< Number > &  v 
)

Assignment *this = a*u + b*v.

This function is deprecated.

◆ sadd() [2/3]

template<typename Number>
void LinearAlgebra::distributed::BlockVector< Number >::sadd ( const Number  s,
const Number  a,
const BlockVector< Number > &  V,
const Number  b,
const BlockVector< Number > &  W 
)

Scaling and multiple addition.

This function is deprecated.

◆ all_zero()

template<typename Number>
virtual bool LinearAlgebra::distributed::BlockVector< Number >::all_zero ( ) const
overridevirtual

Return whether the vector contains only elements with value zero. This function is mainly for internal consistency checks and should seldom be used when not in debug mode since it uses quite some time.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ mean_value()

template<typename Number>
virtual Number LinearAlgebra::distributed::BlockVector< Number >::mean_value ( ) const
overridevirtual

Compute the mean value of all the entries in the vector.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ lp_norm()

template<typename Number>
real_type LinearAlgebra::distributed::BlockVector< Number >::lp_norm ( const real_type  p) const

\(l_p\)-norm of the vector. The pth root of the sum of the pth powers of the absolute values of the elements.

◆ swap()

template<typename Number>
void LinearAlgebra::distributed::BlockVector< Number >::swap ( BlockVector< Number > &  v)

Swap the contents of this vector and the other vector v. One could do this operation with a temporary variable and copying over the data elements, but this function is significantly more efficient since it only swaps the pointers to the data of the two vectors and therefore does not need to allocate temporary storage and move data around.

Limitation: right now this function only works if both vectors have the same number of blocks. If needed, the numbers of blocks should be exchanged, too.

This function is analogous to the swap() function of all C++ standard containers. Also, there is a global function swap(u,v) that simply calls u.swap(v), again in analogy to standard functions.

◆ reinit() [4/4]

template<typename Number>
virtual void LinearAlgebra::distributed::BlockVector< Number >::reinit ( const VectorSpaceVector< Number > &  V,
const bool  omit_zeroing_entries = false 
)
overridevirtual

Change the dimension to that of the vector V. The elements of V are not copied.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ operator*=()

template<typename Number>
virtual BlockVector<Number>& LinearAlgebra::distributed::BlockVector< Number >::operator*= ( const Number  factor)
overridevirtual

Multiply the entire vector by a fixed factor.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ operator/=()

template<typename Number>
virtual BlockVector<Number>& LinearAlgebra::distributed::BlockVector< Number >::operator/= ( const Number  factor)
overridevirtual

Divide the entire vector by a fixed factor.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ operator+=()

template<typename Number>
virtual BlockVector<Number>& LinearAlgebra::distributed::BlockVector< Number >::operator+= ( const VectorSpaceVector< Number > &  V)
overridevirtual

Add the vector V to the present one.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ operator-=()

template<typename Number>
virtual BlockVector<Number>& LinearAlgebra::distributed::BlockVector< Number >::operator-= ( const VectorSpaceVector< Number > &  V)
overridevirtual

Subtract the vector V from the present one.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ import()

template<typename Number>
virtual void LinearAlgebra::distributed::BlockVector< Number >::import ( const LinearAlgebra::ReadWriteVector< Number > &  V,
VectorOperation::values  operation,
std::shared_ptr< const CommunicationPatternBase communication_pattern = std::shared_ptr< const CommunicationPatternBase >() 
)
overridevirtual

Import all the elements present in the vector's IndexSet from the input vector V. VectorOperation::values operation is used to decide if the elements in V should be added to the current vector or replace the current elements. The last parameter can be used if the same communication pattern is used multiple times. This can be used to improve performance.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ operator*()

template<typename Number>
virtual Number LinearAlgebra::distributed::BlockVector< Number >::operator* ( const VectorSpaceVector< Number > &  V) const
overridevirtual

Return the scalar product of two vectors.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ multivector_inner_product()

template<typename Number>
template<typename FullMatrixType >
void LinearAlgebra::distributed::BlockVector< Number >::multivector_inner_product ( FullMatrixType &  matrix,
const BlockVector< Number > &  V,
const bool  symmetric = false 
) const

Calculate the scalar product between each block of this vector and V and store the result in a full matrix matrix. This function computes the result by forming \(A_{ij}=U_i \cdot V_j\) where \(U_i\) and \(V_j\) indicate the \(i\)th block (not element!) of \(U\) and the \(j\)th block of \(V\), respectively. If symmetric is true, it is assumed that inner product results in a square symmetric matrix and almost half of the scalar products can be avoided.

Obviously, this function can only be used if all blocks of both vectors are of the same size.

Note
Internally, a single global reduction will be called to accumulate scalar product between locally owned degrees of freedom.

◆ multivector_inner_product_with_metric()

template<typename Number>
template<typename FullMatrixType >
Number LinearAlgebra::distributed::BlockVector< Number >::multivector_inner_product_with_metric ( const FullMatrixType &  matrix,
const BlockVector< Number > &  V,
const bool  symmetric = false 
) const

Calculate the scalar product between each block of this vector and V using a metric tensor matrix. This function computes the result of \( \sum_{ij} A^{ij} U_i \cdot V_j\) where \(U_i\) and \(V_j\) indicate the \(i\)th block (not element) of \(U\) and the \(j\)th block of \(V\), respectively. If symmetric is true, it is assumed that \(U_i \cdot V_j\) and \(A^{ij}\) are symmetric matrices and almost half of the scalar products can be avoided.

Obviously, this function can only be used if all blocks of both vectors are of the same size.

Note
Internally, a single global reduction will be called to accumulate the scalar product between locally owned degrees of freedom.

◆ mmult()

template<typename Number>
template<typename FullMatrixType >
void LinearAlgebra::distributed::BlockVector< Number >::mmult ( BlockVector< Number > &  V,
const FullMatrixType &  matrix,
const Number  s = Number(0.),
const Number  b = Number(1.) 
) const

Set each block of this vector as follows: \(V^i = s V^i + b \sum_{j} U_j A^{ji}\) where \(V^i\) and \(U_j\) indicate the \(i\)th block (not element) of \(V\) and the \(j\)th block of \(U\), respectively.

Obviously, this function can only be used if all blocks of both vectors are of the same size.

◆ add() [2/5]

template<typename Number>
virtual void LinearAlgebra::distributed::BlockVector< Number >::add ( const Number  a)
overridevirtual

Add a to all components. Note that a is a scalar not a vector.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ add() [3/5]

template<typename Number>
virtual void LinearAlgebra::distributed::BlockVector< Number >::add ( const Number  a,
const VectorSpaceVector< Number > &  V 
)
overridevirtual

Simple addition of a multiple of a vector, i.e. *this += a*V.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ add() [4/5]

template<typename Number>
virtual void LinearAlgebra::distributed::BlockVector< Number >::add ( const Number  a,
const VectorSpaceVector< Number > &  V,
const Number  b,
const VectorSpaceVector< Number > &  W 
)
overridevirtual

Multiple addition of scaled vectors, i.e. *this += a*V+b*W.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ add() [5/5]

template<typename Number>
virtual void LinearAlgebra::distributed::BlockVector< Number >::add ( const std::vector< size_type > &  indices,
const std::vector< Number > &  values 
)
virtual

A collective add operation: This function adds a whole set of values stored in values to the vector components specified by indices.

◆ sadd() [3/3]

template<typename Number>
virtual void LinearAlgebra::distributed::BlockVector< Number >::sadd ( const Number  s,
const Number  a,
const VectorSpaceVector< Number > &  V 
)
overridevirtual

Scaling and simple addition of a multiple of a vector, i.e. *this = s*(*this)+a*V.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ scale()

template<typename Number>
virtual void LinearAlgebra::distributed::BlockVector< Number >::scale ( const VectorSpaceVector< Number > &  scaling_factors)
overridevirtual

Scale each element of this vector by the corresponding element in the argument. This function is mostly meant to simulate multiplication (and immediate re-assignment) by a diagonal scaling matrix.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ equ() [2/2]

template<typename Number>
virtual void LinearAlgebra::distributed::BlockVector< Number >::equ ( const Number  a,
const VectorSpaceVector< Number > &  V 
)
overridevirtual

Assignment *this = a*V.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ l1_norm()

template<typename Number>
virtual real_type LinearAlgebra::distributed::BlockVector< Number >::l1_norm ( ) const
overridevirtual

Return the l1 norm of the vector (i.e., the sum of the absolute values of all entries among all processors).

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ l2_norm()

template<typename Number>
virtual real_type LinearAlgebra::distributed::BlockVector< Number >::l2_norm ( ) const
overridevirtual

Return the \(l_2\) norm of the vector (i.e., the square root of the sum of the square of all entries among all processors).

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ norm_sqr()

template<typename Number>
real_type LinearAlgebra::distributed::BlockVector< Number >::norm_sqr ( ) const

Return the square of the \(l_2\) norm of the vector.

◆ linfty_norm()

template<typename Number>
virtual real_type LinearAlgebra::distributed::BlockVector< Number >::linfty_norm ( ) const
overridevirtual

Return the maximum norm of the vector (i.e., the maximum absolute value among all entries and among all processors).

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ add_and_dot()

template<typename Number>
virtual Number LinearAlgebra::distributed::BlockVector< Number >::add_and_dot ( const Number  a,
const VectorSpaceVector< Number > &  V,
const VectorSpaceVector< Number > &  W 
)
overridevirtual

Perform a combined operation of a vector addition and a subsequent inner product, returning the value of the inner product. In other words, the result of this function is the same as if the user called

this->add(a, V);
return_value = *this * W;

The reason this function exists is that this operation involves less memory transfer than calling the two functions separately. This method only needs to load three vectors, this, V, W, whereas calling separate methods means to load the calling vector this twice. Since most vector operations are memory transfer limited, this reduces the time by 25% (or 50% if W equals this).

For complex-valued vectors, the scalar product in the second step is implemented as \(\left<v,w\right>=\sum_i v_i \bar{w_i}\).

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ size()

template<typename Number>
virtual size_type LinearAlgebra::distributed::BlockVector< Number >::size ( ) const
overridevirtual

Return the global size of the vector, equal to the sum of the number of locally owned indices among all processors.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ locally_owned_elements()

template<typename Number>
virtual ::IndexSet LinearAlgebra::distributed::BlockVector< Number >::locally_owned_elements ( ) const
overridevirtual

Return an index set that describes which elements of this vector are owned by the current processor. As a consequence, the index sets returned on different processors if this is a distributed vector will form disjoint sets that add up to the complete index set. Obviously, if a vector is created on only one processor, then the result would satisfy

vec.locally_owned_elements() == complete_index_set(vec.size())

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ print()

template<typename Number>
virtual void LinearAlgebra::distributed::BlockVector< Number >::print ( std::ostream &  out,
const unsigned int  precision = 3,
const bool  scientific = true,
const bool  across = true 
) const
overridevirtual

Print the vector to the output stream out.

Implements LinearAlgebra::VectorSpaceVector< Number >.

◆ memory_consumption()

template<typename Number>
virtual std::size_t LinearAlgebra::distributed::BlockVector< Number >::memory_consumption ( ) const
overridevirtual

Return the memory consumption of this class in bytes.

Implements LinearAlgebra::VectorSpaceVector< Number >.

Member Data Documentation

◆ communication_block_size

template<typename Number>
constexpr unsigned int LinearAlgebra::distributed::BlockVector< Number >::communication_block_size = 20
staticprivate

The chunks size to split communication in update_ghost_values() and compress() calls.

Most common MPI implementations will get slow when too many messages/requests are outstanding. Even when messages are small, say 1 kB only, we should collect enough data with communication_block_size to cover typical infiniband latencies which are around a few microseconds. Sending 20 kB at a throughput of 5 GB/s takes 4 microseconds, so we should arrive at the bandwidth dominated regime then which is good enough.

Definition at line 95 of file la_parallel_block_vector.h.


The documentation for this class was generated from the following file: