Reference documentation for deal.II version 9.0.0
Public Types | Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | List of all members
FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number > Class Template Reference

#include <deal.II/matrix_free/fe_evaluation.h>

Inheritance diagram for FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >:
[legend]

Public Types

typedef FEEvaluationAccess< dim, n_components_, Number, true > BaseClass
 
typedef Number number_type
 
typedef BaseClass::value_type value_type
 
typedef BaseClass::gradient_type gradient_type
 

Public Member Functions

 FEFaceEvaluation (const MatrixFree< dim, Number > &matrix_free, const bool is_interior_face=true, const unsigned int dof_no=0, const unsigned int quad_no=0, const unsigned int first_selected_component=0)
 
 ~FEFaceEvaluation ()
 
void reinit (const unsigned int face_batch_number)
 
void reinit (const unsigned int cell_batch_number, const unsigned int face_number)
 
void evaluate (const bool evaluate_values, const bool evaluate_gradients)
 
void evaluate (const VectorizedArray< Number > *values_array, const bool evaluate_values, const bool evaluate_gradients)
 
template<typename VectorType >
void gather_evaluate (const VectorType &input_vector, const bool evaluate_values, const bool evaluate_gradients)
 
void integrate (const bool integrate_values, const bool integrate_gradients)
 
void integrate (const bool integrate_values, const bool integrate_gradients, VectorizedArray< Number > *values_array)
 
template<typename VectorType >
void integrate_scatter (const bool integrate_values, const bool integrate_gradients, VectorType &output_vector)
 
Point< dim, VectorizedArray< Number > > quadrature_point (const unsigned int q_point) const
 
- Public Member Functions inherited from FEEvaluationBase< dim, n_components_, Number, is_face >
 ~FEEvaluationBase ()
 
unsigned int get_cell_data_number () const
 
unsigned int get_mapping_data_index_offset () const
 
internal::MatrixFreeFunctions::GeometryType get_cell_type () const
 
const internal::MatrixFreeFunctions::ShapeInfo< VectorizedArray< Number > > & get_shape_info () const
 
template<typename VectorType >
void read_dof_values (const VectorType &src, const unsigned int first_index=0)
 
template<typename VectorType >
void read_dof_values_plain (const VectorType &src, const unsigned int first_index=0)
 
template<typename VectorType >
void distribute_local_to_global (VectorType &dst, const unsigned int first_index=0) const
 
template<typename VectorType >
void set_dof_values (VectorType &dst, const unsigned int first_index=0) const
 
value_type get_dof_value (const unsigned int dof) const
 
void submit_dof_value (const value_type val_in, const unsigned int dof)
 
value_type get_value (const unsigned int q_point) const
 
void submit_value (const value_type val_in, const unsigned int q_point)
 
gradient_type get_gradient (const unsigned int q_point) const
 
value_type get_normal_derivative (const unsigned int q_point) const
 
void submit_gradient (const gradient_type grad_in, const unsigned int q_point)
 
void submit_normal_derivative (const value_type grad_in, const unsigned int q_point)
 
Tensor< 1, n_components_, Tensor< 2, dim, VectorizedArray< Number > > > get_hessian (const unsigned int q_point) const
 
gradient_type get_hessian_diagonal (const unsigned int q_point) const
 
value_type get_laplacian (const unsigned int q_point) const
 
VectorizedArray< Number > get_divergence (const unsigned int q_point) const
 
SymmetricTensor< 2, dim, VectorizedArray< Number > > get_symmetric_gradient (const unsigned int q_point) const
 
Tensor< 1,(dim==2?1:dim), VectorizedArray< Number > > get_curl (const unsigned int q_point) const
 
void submit_divergence (const VectorizedArray< Number > div_in, const unsigned int q_point)
 
void submit_symmetric_gradient (const SymmetricTensor< 2, dim, VectorizedArray< Number > > grad_in, const unsigned int q_point)
 
void submit_curl (const Tensor< 1, dim==2?1:dim, VectorizedArray< Number > > curl_in, const unsigned int q_point)
 
value_type integrate_value () const
 
VectorizedArray< Number > JxW (const unsigned int q_index) const
 
void fill_JxW_values (AlignedVector< VectorizedArray< Number > > &JxW_values) const
 
Tensor< 2, dim, VectorizedArray< Number > > inverse_jacobian (const unsigned int q_index) const
 
Tensor< 1, dim, VectorizedArray< Number > > get_normal_vector (const unsigned int q_point) const
 
VectorizedArray< Number > read_cell_data (const AlignedVector< VectorizedArray< Number > > &array) const
 
const VectorizedArray< Number > * begin_dof_values () const
 
VectorizedArray< Number > * begin_dof_values ()
 
const VectorizedArray< Number > * begin_values () const
 
VectorizedArray< Number > * begin_values ()
 
const VectorizedArray< Number > * begin_gradients () const
 
VectorizedArray< Number > * begin_gradients ()
 
const VectorizedArray< Number > * begin_hessians () const
 
VectorizedArray< Number > * begin_hessians ()
 
const std::vector< unsigned int > & get_internal_dof_numbering () const
 
ArrayView< VectorizedArray< Number > > get_scratch_data () const
 

Public Attributes

const unsigned int dofs_per_component
 
const unsigned int dofs_per_cell
 
const unsigned int n_q_points
 

Static Public Attributes

static constexpr unsigned int dimension = dim
 
static constexpr unsigned int n_components = n_components_
 
static constexpr unsigned int static_n_q_points = Utilities::pow(n_q_points_1d, dim-1)
 
static constexpr unsigned int static_n_q_points_cell = Utilities::pow(n_q_points_1d, dim)
 
static constexpr unsigned int static_dofs_per_component = Utilities::pow(fe_degree + 1, dim)
 
static constexpr unsigned int tensor_dofs_per_cell = static_dofs_per_component *n_components
 
static constexpr unsigned int static_dofs_per_cell = static_dofs_per_component *n_components
 

Protected Member Functions

void adjust_for_face_orientation (const bool integrate, const bool values, const bool gradients)
 
- Protected Member Functions inherited from FEEvaluationAccess< dim, n_components_, Number, true >
 FEEvaluationAccess (const MatrixFree< dim, Number > &matrix_free, const unsigned int dof_no, const unsigned int first_selected_component, const unsigned int quad_no, const unsigned int fe_degree, const unsigned int n_q_points, const bool is_interior_face=true)
 
 FEEvaluationAccess (const Mapping< dim > &mapping, const FiniteElement< dim > &fe, const Quadrature< 1 > &quadrature, const UpdateFlags update_flags, const unsigned int first_selected_component, const FEEvaluationBase< dim, n_components_other, Number, is_face > *other)
 
 FEEvaluationAccess (const FEEvaluationAccess &other)
 
FEEvaluationAccessoperator= (const FEEvaluationAccess &other)
 
- Protected Member Functions inherited from FEEvaluationBase< dim, n_components_, Number, is_face >
 FEEvaluationBase (const MatrixFree< dim, Number > &matrix_free, const unsigned int dof_no, const unsigned int first_selected_component, const unsigned int quad_no, const unsigned int fe_degree, const unsigned int n_q_points, const bool is_interior_face)
 
template<int n_components_other>
 FEEvaluationBase (const Mapping< dim > &mapping, const FiniteElement< dim > &fe, const Quadrature< 1 > &quadrature, const UpdateFlags update_flags, const unsigned int first_selected_component, const FEEvaluationBase< dim, n_components_other, Number > *other)
 
 FEEvaluationBase (const FEEvaluationBase &other)
 
FEEvaluationBaseoperator= (const FEEvaluationBase &other)
 
template<typename VectorType , typename VectorOperation >
void read_write_operation (const VectorOperation &operation, VectorType *vectors[], const bool apply_constraints=true) const
 
template<typename VectorType , typename VectorOperation >
void read_write_operation_contiguous (const VectorOperation &operation, VectorType *vectors[]) const
 
template<typename VectorType , typename VectorOperation >
void read_write_operation_global (const VectorOperation &operation, VectorType *vectors[]) const
 

Additional Inherited Members

- Protected Attributes inherited from FEEvaluationBase< dim, n_components_, Number, is_face >
AlignedVector< VectorizedArray< Number > > * scratch_data_array
 
VectorizedArray< Number > * scratch_data
 
VectorizedArray< Number > * values_dofs [n_components]
 
VectorizedArray< Number > * values_quad [n_components]
 
VectorizedArray< Number > * gradients_quad [n_components][dim]
 
VectorizedArray< Number > * hessians_quad [n_components][(dim *(dim+1))/2]
 
const unsigned int quad_no
 
const unsigned int n_fe_components
 
const unsigned int active_fe_index
 
const unsigned int active_quad_index
 
const unsigned int n_quadrature_points
 
const MatrixFree< dim, Number > * matrix_info
 
const internal::MatrixFreeFunctions::DoFInfodof_info
 
const internal::MatrixFreeFunctions::MappingInfoStorage<(is_face?dim-1:dim), dim, Number > * mapping_data
 
const internal::MatrixFreeFunctions::ShapeInfo< VectorizedArray< Number > > * data
 
const Tensor< 2, dim, VectorizedArray< Number > > * jacobian
 
const VectorizedArray< Number > * J_value
 
const Tensor< 1, dim, VectorizedArray< Number > > * normal_vectors
 
const Tensor< 1, dim, VectorizedArray< Number > > * normal_x_jacobian
 
const Number * quadrature_weights
 
unsigned int cell
 
bool is_interior_face
 
internal::MatrixFreeFunctions::DoFInfo::DoFAccessIndex dof_access_index
 
unsigned int face_no
 
unsigned int face_orientation
 
unsigned int subface_index
 
internal::MatrixFreeFunctions::GeometryType cell_type
 
bool dof_values_initialized
 
bool values_quad_initialized
 
bool gradients_quad_initialized
 
bool hessians_quad_initialized
 
bool values_quad_submitted
 
bool gradients_quad_submitted
 
std::shared_ptr< internal::MatrixFreeFunctions::MappingDataOnTheFly< dim, Number > > mapped_geometry
 
const unsigned int first_selected_component
 
std::vector< types::global_dof_indexlocal_dof_indices
 

Detailed Description

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
class FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >

The class that provides all functions necessary to evaluate functions at quadrature points and face integrations. The design of the class is similar to FEEvaluation and most of the interfaces are shared with that class, in particular most access functions that come from the common base classes FEEvaluationAccess and FEEvaluatioBase. Furthermore, the relation of this class to FEEvaluation is similar to the relation between FEValues and FEFaceValues.

Template Parameters
dimDimension in which this class is to be used
fe_degreeDegree of the tensor product finite element with fe_degree+1 degrees of freedom per coordinate direction. If set to -1, the degree of the underlying element will be used, which acts as a run time constant rather than a compile time constant that slows down the execution.
n_q_points_1dNumber of points in the quadrature formula in 1D, usually chosen as fe_degree+1
n_componentsNumber of vector components when solving a system of PDEs. If the same operation is applied to several components of a PDE (e.g. a vector Laplace equation), they can be applied simultaneously with one call (and often more efficiently)
NumberNumber format, usually double or float
Author
Katharina Kormann and Martin Kronbichler, 2018

Definition at line 2434 of file fe_evaluation.h.

Member Typedef Documentation

◆ BaseClass

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
typedef FEEvaluationAccess<dim,n_components_,Number,true> FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::BaseClass

A typedef to the base class.

Definition at line 2440 of file fe_evaluation.h.

◆ number_type

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
typedef Number FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::number_type

A underlying number type specified as template argument.

Definition at line 2445 of file fe_evaluation.h.

◆ value_type

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
typedef BaseClass::value_type FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::value_type

The type of function values, e.g. VectorizedArray<Number> for n_components=1 or Tensor<1,dim,VectorizedArray<Number> > for n_components=dim.

Definition at line 2452 of file fe_evaluation.h.

◆ gradient_type

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
typedef BaseClass::gradient_type FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::gradient_type

The type of gradients, e.g. Tensor<1,dim,VectorizedArray<Number>> for n_components=1 or Tensor<2,dim,VectorizedArray<Number> > for n_components=dim.

Definition at line 2459 of file fe_evaluation.h.

Constructor & Destructor Documentation

◆ FEFaceEvaluation()

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::FEFaceEvaluation ( const MatrixFree< dim, Number > &  matrix_free,
const bool  is_interior_face = true,
const unsigned int  dof_no = 0,
const unsigned int  quad_no = 0,
const unsigned int  first_selected_component = 0 
)

Constructor. Takes all data stored in MatrixFree. If applied to problems with more than one finite element or more than one quadrature formula selected during construction of matrix_free, the appropriate component can be selected by the optional arguments.

Parameters
matrix_freeData object that contains all data
is_interior_faceThis selects which of the two cells of an internal face the current evaluator will be based upon. The interior face is the main face along which the normal vectors are oriented. The exterior face coming from the other side provides the same normal vector as the interior side, so if the outer normal vector to that side is desired, it must be multiplied by -1.
dof_noIf matrix_free was set up with multiple DoFHandler objects, this parameter selects to which DoFHandler/ConstraintMatrix pair the given evaluator should be attached to.
quad_noIf matrix_free was set up with multiple Quadrature objects, this parameter selects the appropriate number of the quadrature formula.
first_selected_componentIf the dof_handler selected by dof_no uses an FESystem consisting of more than one base element, this parameter selects the number of the base element in FESystem. Note that this does not directly relate to the component of the respective element due to the possibility for a multiplicity in the element.

◆ ~FEFaceEvaluation()

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::~FEFaceEvaluation ( )

Destructor.

Member Function Documentation

◆ reinit() [1/2]

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
void FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::reinit ( const unsigned int  face_batch_number)

Initializes the operation pointer to the current face. This method is the default choice for face integration as the data stored in MappingInfo is stored according to this numbering. Unlike the reinit functions taking a cell iterator as argument below and the FEValues::reinit() methods, where the information related to a particular cell is generated in the reinit call, this function is very cheap since all data is pre-computed in matrix_free, and only a few indices and pointers have to be set appropriately.

◆ reinit() [2/2]

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
void FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::reinit ( const unsigned int  cell_batch_number,
const unsigned int  face_number 
)

As opposed to the reinit() method from the base class, this reinit() method initializes for a given number of cells and a face number. This method is less efficient than the other reinit() method taking a numbering of the faces because it needs to copy the data associated with the faces to the cells in this call.

◆ evaluate() [1/2]

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
void FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::evaluate ( const bool  evaluate_values,
const bool  evaluate_gradients 
)

Evaluates the function values, the gradients, and the Laplacians of the FE function given at the DoF values stored in the internal data field dof_values (that is usually filled by the read_dof_values() method) at the quadrature points on the unit cell. The function arguments specify which parts shall actually be computed. Needs to be called before the functions get_value(), get_gradient() or get_normal_derivative() give useful information (unless these values have been set manually by accessing the internal data pointers).

◆ evaluate() [2/2]

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
void FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::evaluate ( const VectorizedArray< Number > *  values_array,
const bool  evaluate_values,
const bool  evaluate_gradients 
)

Evaluates the function values, the gradients, and the Laplacians of the FE function given at the DoF values in the input array values_array at the quadrature points on the unit cell. If multiple components are involved in the current FEEvaluation object, the sorting in values_array is such that all degrees of freedom for the first component come first, then all degrees of freedom for the second, and so on. The function arguments specify which parts shall actually be computed. Needs to be called before the functions get_value(), get_gradient(), or get_normal_derivative() give useful information (unless these values have been set manually).

◆ gather_evaluate()

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
template<typename VectorType >
void FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::gather_evaluate ( const VectorType &  input_vector,
const bool  evaluate_values,
const bool  evaluate_gradients 
)

Reads from the input vector and evaluates the function values, the gradients, and the Laplacians of the FE function at the quadrature points on the unit cell. The function arguments specify which parts shall actually be computed. Needs to be called before the functions get_value(), get_gradient(), or get_normal_derivative() give useful information.

This call is equivalent to calling read_dof_values() followed by evaluate(), but might internally use some additional optimizations.

◆ integrate() [1/2]

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
void FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::integrate ( const bool  integrate_values,
const bool  integrate_gradients 
)

This function takes the values and/or gradients that are stored on quadrature points, tests them by all the basis functions/gradients on the cell and performs the cell integration. The two function arguments integrate_val and integrate_grad are used to enable/disable some of values or gradients. The result is written into the internal data field dof_values (that is usually written into the result vector by the distribute_local_to_global() or set_dof_values() methods).

◆ integrate() [2/2]

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
void FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::integrate ( const bool  integrate_values,
const bool  integrate_gradients,
VectorizedArray< Number > *  values_array 
)

This function takes the values and/or gradients that are stored on quadrature points, tests them by all the basis functions/gradients on the cell and performs the cell integration. The two function arguments integrate_val and integrate_grad are used to enable/disable some of values or gradients. As opposed to the other integrate() method, this call stores the result of the testing in the given array values_array.

◆ integrate_scatter()

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
template<typename VectorType >
void FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::integrate_scatter ( const bool  integrate_values,
const bool  integrate_gradients,
VectorType &  output_vector 
)

This function takes the values and/or gradients that are stored on quadrature points, tests them by all the basis functions/gradients on the cell and performs the cell integration. The two function arguments integrate_val and integrate_grad are used to enable/disable some of values or gradients.

This call is equivalent to calling integrate() followed by distribute_local_to_global(), but might internally use some additional optimizations.

◆ quadrature_point()

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
Point<dim,VectorizedArray<Number> > FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::quadrature_point ( const unsigned int  q_point) const

Returns the q-th quadrature point on the face in real coordinates stored in MappingInfo.

◆ adjust_for_face_orientation()

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
void FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::adjust_for_face_orientation ( const bool  integrate,
const bool  values,
const bool  gradients 
)
protected

For faces not oriented in the standard way, this method applies re-indexing on quadrature points. Called at the end of evaluate() and at the beginning of integrate().

Member Data Documentation

◆ dimension

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
constexpr unsigned int FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::dimension = dim
static

The dimension given as template argument.

Definition at line 2464 of file fe_evaluation.h.

◆ n_components

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
constexpr unsigned int FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::n_components = n_components_
static

The number of solution components of the evaluator given as template argument.

Definition at line 2470 of file fe_evaluation.h.

◆ static_n_q_points

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
constexpr unsigned int FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::static_n_q_points = Utilities::pow(n_q_points_1d, dim-1)
static

The static number of quadrature points determined from the given template argument n_q_points_1d taken to the power of dim-1. Note that the actual number of quadrature points, n_q_points, can be different if fe_degree=-1 is given and run-time loop lengths are used rather than compile time ones.

Definition at line 2478 of file fe_evaluation.h.

◆ static_n_q_points_cell

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
constexpr unsigned int FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::static_n_q_points_cell = Utilities::pow(n_q_points_1d, dim)
static

The static number of quadrature points on a cell with the same quadrature formula. Note that this value is only present for simpler comparison with the cell quadrature, as the actual number of points is given to a face by the static_n_q_points variable.

Definition at line 2486 of file fe_evaluation.h.

◆ static_dofs_per_component

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
constexpr unsigned int FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::static_dofs_per_component = Utilities::pow(fe_degree + 1, dim)
static

The static number of degrees of freedom of a scalar component determined from the given template argument fe_degree. Note that the actual number of degrees of freedom dofs_per_component can be different if fe_degree=-1 is given.

Definition at line 2494 of file fe_evaluation.h.

◆ tensor_dofs_per_cell

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
constexpr unsigned int FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::tensor_dofs_per_cell = static_dofs_per_component *n_components
static

The static number of degrees of freedom of all components determined from the given template argument fe_degree. Note that the actual number of degrees of freedom dofs_per_cell can be different if fe_degree=-1 is given.

Definition at line 2502 of file fe_evaluation.h.

◆ static_dofs_per_cell

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
constexpr unsigned int FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::static_dofs_per_cell = static_dofs_per_component *n_components
static

The static number of degrees of freedom of all components determined from the given template argument fe_degree. Note that the actual number of degrees of freedom dofs_per_cell can be different if fe_degree=-1 is given.

Definition at line 2510 of file fe_evaluation.h.

◆ dofs_per_component

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
const unsigned int FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::dofs_per_component

The number of degrees of freedom of a single component on the cell for the underlying evaluation object. Usually close to static_dofs_per_component, but the number depends on the actual element selected and is thus not static.

Definition at line 2672 of file fe_evaluation.h.

◆ dofs_per_cell

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
const unsigned int FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::dofs_per_cell

The number of degrees of freedom on the cell accumulated over all components in the current evaluation object. Usually close to static_dofs_per_cell = static_dofs_per_component*n_components, but the number depends on the actual element selected and is thus not static.

Definition at line 2680 of file fe_evaluation.h.

◆ n_q_points

template<int dim, int fe_degree, int n_q_points_1d = fe_degree+1, int n_components_ = 1, typename Number = double>
const unsigned int FEFaceEvaluation< dim, fe_degree, n_q_points_1d, n_components_, Number >::n_q_points

The number of quadrature points in use. If the number of quadrature points in 1d is given as a template, this number is simply the dim-1-th power of that value. If the element degree is set to -1 (dynamic selection of element degree), the static value of quadrature points is inaccurate and this value must be used instead.

Definition at line 2689 of file fe_evaluation.h.


The documentation for this class was generated from the following file: