Lethe-DEM: A DEM Software Using Particle Class of deal.II

https://arxiv.org/abs/2106.09576
Multiphysics coupling

High-order schemes

Robust non-linear and linear solvers

Dynamic mesh adaptation

Discrete Element Method

https://github.com/lethe-cfd
Granular material is ubiquitous in nature and the second most used material in global industry after water. Approximately half of the products and three quarters of the raw material in the chemical industry is in the form of granular materials.

Modeling approaches:
- Continuum models (Eulerian)
- Discrete models (Lagrangian)
Discrete Element Method (DEM)

Lagrangian model for granular flows
Contact force derives from overlaps between particles (pair-wise contact)
DEM is very accurate, but with a cost of high computational cost
Computational cost: $O(n_p) < O(n_p \cdot \log n_p) < O(n_p^2)$
DEM Main Steps

Initialization
- Initialize the simulation
- Read input parameters

Broad Search
- In broad search, list of all particle-particle and particle-wall contact candidates are obtained

Fine Search
- The fine search finds the candidate contact pairs in a smaller domain

Contact Force
- Calculation of the contact force according to fine search contact list output

Integration
- Integration of particles’ velocities and positions using to the contact force

Mapping
- Mapping the particles in the cells

Broad search

Fine search
Lethe-DEM & deal.II

Several features of deal.II are leveraged in Lethe-DEM. Lethe-DEM uses deal.II’s particle_handler. Sort_particles_into_subdomains_and_cells is used for mapping of particles. Update_ghost is used to update the information of ghost particles.

Local and ghost particles:
- Local-local and local-ghost collisions
Silo Simulations

Flat-bottomed silo

Wedge-shaped silo
Rotating Drum Simulations
Scalability

Strong scaling is defined as how the solution time varies with the number of processors for a fixed total problem size.

Weak scaling is defined as how the solution time varies with the number of processors for a fixed problem size per processor.

All the simulations are performed on ComputeCanada clusters on nodes with 32 cores (2 x Intel E5-2683 v4 Broadwell @ 2.1Ghz)
Strong Scaling (Silo)

As the particles move inside the simulation domain, the computational load changes on the processes. Consequently, we need to balance the computational load.

- $f_{LB} = 1$ Hz.
- For lower core counts, the strong scaling is quasi optimal.
- Load-balancing decreases the computational time by around 30%.
Strong Scaling (Drum)

- $t_{LB} = 1.5$ s.
- Silo simulations are performed on 1 to 6 compute nodes, each with 32 cores.
- The deviation from the ideal speed-up increases with the number of cores.
- Using load-balancing decreases the computational time by around 35%.
- The simulation time per iteration decreases from 0.099 s to 0.025 s for this simulation on 1 to 6 nodes with load-balancing.
Weak Scaling

- The simulation times increase slightly with the number of processes at all the n_p/n_c values.
- For $n_p/n_c = 20k$ on more than 6 nodes the simulation time does not further increase, which represents near ideal weak scalability.
Thanks!

Shahab Golshan, Bruno Blais
Shahab.Golshan@polymtl.ca
Bruno.Blais@polymtl.ca