Reference documentation for deal.II version GIT 6da2e5d553 2022-07-01 18:55:02+00:00
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Public Types | Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Types | Protected Member Functions | Protected Attributes | Private Member Functions | Private Attributes | List of all members
DataOutRotation< dim, spacedim > Class Template Reference

#include <deal.II/numerics/data_out_rotation.h>

Inheritance diagram for DataOutRotation< dim, spacedim >:
[legend]

Public Types

using cell_iterator = typename DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::cell_iterator
 
enum  DataVectorType
 

Public Member Functions

virtual void build_patches (const unsigned int n_patches_per_circle, const unsigned int n_subdivisions=0)
 
virtual cell_iterator first_cell ()
 
virtual cell_iterator next_cell (const cell_iterator &cell)
 
void attach_dof_handler (const DoFHandler< dim, spacedim > &)
 
void attach_triangulation (const Triangulation< dim, spacedim > &)
 
void add_data_vector (const VectorType &data, const std::vector< std::string > &names, const DataVectorType type=type_automatic, const std::vector< DataComponentInterpretation::DataComponentInterpretation > &data_component_interpretation={})
 
void add_data_vector (const VectorType &data, const std::string &name, const DataVectorType type=type_automatic, const std::vector< DataComponentInterpretation::DataComponentInterpretation > &data_component_interpretation={})
 
void add_data_vector (const DoFHandler< dim, spacedim > &dof_handler, const VectorType &data, const std::vector< std::string > &names, const std::vector< DataComponentInterpretation::DataComponentInterpretation > &data_component_interpretation={})
 
void add_data_vector (const DoFHandler< dim, spacedim > &dof_handler, const VectorType &data, const std::string &name, const std::vector< DataComponentInterpretation::DataComponentInterpretation > &data_component_interpretation={})
 
void add_data_vector (const VectorType &data, const DataPostprocessor< spacedim > &data_postprocessor)
 
void add_data_vector (const DoFHandler< dim, spacedim > &dof_handler, const VectorType &data, const DataPostprocessor< spacedim > &data_postprocessor)
 
void add_mg_data_vector (const DoFHandler< dim, spacedim > &dof_handler, const MGLevelObject< VectorType > &data, const std::vector< std::string > &names, const std::vector< DataComponentInterpretation::DataComponentInterpretation > &data_component_interpretation=std::vector< DataComponentInterpretation::DataComponentInterpretation >())
 
void add_mg_data_vector (const DoFHandler< dim, spacedim > &dof_handler, const MGLevelObject< VectorType > &data, const std::string &name)
 
void clear_data_vectors ()
 
void clear_input_data_references ()
 
void merge_patches (const DataOut_DoFData< dim2, patch_dim, spacedim2, patch_spacedim > &source, const Point< patch_spacedim > &shift=Point< patch_spacedim >())
 
virtual void clear ()
 
std::size_t memory_consumption () const
 
virtual const std::vector< Patch > & get_patches () const override
 
void write_dx (std::ostream &out) const
 
void write_eps (std::ostream &out) const
 
void write_gmv (std::ostream &out) const
 
void write_gnuplot (std::ostream &out) const
 
void write_povray (std::ostream &out) const
 
void write_tecplot (std::ostream &out) const
 
void write_ucd (std::ostream &out) const
 
void write_vtk (std::ostream &out) const
 
void write_vtu (std::ostream &out) const
 
void write_vtu_in_parallel (const std::string &filename, const MPI_Comm &comm) const
 
void write_pvtu_record (std::ostream &out, const std::vector< std::string > &piece_names) const
 
std::string write_vtu_with_pvtu_record (const std::string &directory, const std::string &filename_without_extension, const unsigned int counter, const MPI_Comm &mpi_communicator, const unsigned int n_digits_for_counter=numbers::invalid_unsigned_int, const unsigned int n_groups=0) const
 
void write_svg (std::ostream &out) const
 
void write_deal_II_intermediate (std::ostream &out) const
 
XDMFEntry create_xdmf_entry (const DataOutBase::DataOutFilter &data_filter, const std::string &h5_filename, const double cur_time, const MPI_Comm &comm) const
 
XDMFEntry create_xdmf_entry (const DataOutBase::DataOutFilter &data_filter, const std::string &h5_mesh_filename, const std::string &h5_solution_filename, const double cur_time, const MPI_Comm &comm) const
 
void write_xdmf_file (const std::vector< XDMFEntry > &entries, const std::string &filename, const MPI_Comm &comm) const
 
void write_hdf5_parallel (const DataOutBase::DataOutFilter &data_filter, const std::string &filename, const MPI_Comm &comm) const
 
void write_hdf5_parallel (const DataOutBase::DataOutFilter &data_filter, const bool write_mesh_file, const std::string &mesh_filename, const std::string &solution_filename, const MPI_Comm &comm) const
 
void write_filtered_data (DataOutBase::DataOutFilter &filtered_data) const
 
void write (std::ostream &out, const DataOutBase::OutputFormat output_format=DataOutBase::default_format) const
 
void set_default_format (const DataOutBase::OutputFormat default_format)
 
template<typename FlagType >
void set_flags (const FlagType &flags)
 
std::string default_suffix (const DataOutBase::OutputFormat output_format=DataOutBase::default_format) const
 
void parse_parameters (ParameterHandler &prm)
 

Static Public Member Functions

static ::ExceptionBaseExcRadialVariableHasNegativeValues (double arg1)
 
static void declare_parameters (ParameterHandler &prm)
 

Static Public Attributes

static constexpr int patch_dim = dim + 1
 
static constexpr int patch_spacedim = spacedim + 1
 

Protected Types

using Patch = ::DataOutBase::Patch< patch_dim, patch_spacedim >
 

Protected Member Functions

virtual std::vector< std::string > get_dataset_names () const override
 
virtual std::vector< std::tuple< unsigned int, unsigned int, std::string, DataComponentInterpretation::DataComponentInterpretation > > get_nonscalar_data_ranges () const override
 
std::vector< std::shared_ptr<::hp::FECollection< dim, spacedim > > > get_fes () const
 
void validate_dataset_names () const
 

Protected Attributes

SmartPointer< const Triangulation< dim, spacedim > > triangulation
 
SmartPointer< const DoFHandler< dim, spacedim > > dofs
 
std::vector< std::shared_ptr< internal::DataOutImplementation::DataEntryBase< dim, spacedim > > > dof_data
 
std::vector< std::shared_ptr< internal::DataOutImplementation::DataEntryBase< dim, spacedim > > > cell_data
 
std::vector< Patchpatches
 
unsigned int default_subdivisions
 

Private Member Functions

void build_one_patch (const cell_iterator *cell, internal::DataOutRotationImplementation::ParallelData< dim, spacedim > &data, std::vector< DataOutBase::Patch< patch_dim, patch_spacedim >> &my_patches)
 
void add_data_vector_internal (const DoFHandler< dim, spacedim > *dof_handler, const VectorType &data, const std::vector< std::string > &names, const DataVectorType type, const std::vector< DataComponentInterpretation::DataComponentInterpretation > &data_component_interpretation, const bool deduce_output_names)
 

Private Attributes

DataOutBase::OutputFormat default_fmt
 
DataOutBase::DXFlags dx_flags
 
DataOutBase::UcdFlags ucd_flags
 
DataOutBase::GnuplotFlags gnuplot_flags
 
DataOutBase::PovrayFlags povray_flags
 
DataOutBase::EpsFlags eps_flags
 
DataOutBase::GmvFlags gmv_flags
 
DataOutBase::TecplotFlags tecplot_flags
 
DataOutBase::VtkFlags vtk_flags
 
DataOutBase::SvgFlags svg_flags
 
DataOutBase::Deal_II_IntermediateFlags deal_II_intermediate_flags
 

Detailed Description

template<int dim, int spacedim = dim>
class DataOutRotation< dim, spacedim >

This class generates output in the full domain of computations that were done using rotational symmetry of domain and solution. In particular, if a computation of a three dimensional problem with rotational symmetry around the z-axis (i.e. in the r-z-plane) was done, then this class can be used to generate the output in the original x-y-z space. In order to do so, it generates from each cell in the computational mesh a cell in the space with dimension one greater than that of the DoFHandler object. The resulting output will then consist of hexahedra forming an object that has rotational symmetry around the z-axis. As most graphical programs can not represent ring-like structures, the angular (rotation) variable is discretized into a finite number of intervals as well; the number of these intervals must be given to the build_patches function. It is noted, however, that while this function generates nice pictures of the whole domain, it often produces very large output files.

Interface

The interface of this class is copied from the DataOut class. Furthermore, they share the common parent class DataOut_DoFData(). See the reference of these two classes for a discussion of the interface and how to extend it by deriving further classes from this class.

Details for 1d computations

The one coordinate in the triangulation used by the DoFHandler object passed to this class is taken as the radial variable, and the output will then be either a circle or a ring domain. It is in the user's responsibility to assure that the radial coordinate only attains non- negative values.

Details for 2d computations

We consider the computation (represented by the DoFHandler object that is attached to this class) to have happened in the r-z-plane, where r is the radial variable and z denotes the axis of revolution around which the solution is symmetric. The output is in x-y-z space, where the radial dependence is transformed to the x-y plane. At present, it is not possible to exchange the meaning of the first and second variable of the plane in which the simulation was made, i.e. generate output from a simulation where the first variable denoted the symmetry axis, and the second denoted the radial variable. You have to take that into account when first programming your application.

It is in the responsibility of the user to make sure that the radial variable attains only non-negative values.

Definition at line 115 of file data_out_rotation.h.

Member Typedef Documentation

◆ cell_iterator

template<int dim, int spacedim = dim>
using DataOutRotation< dim, spacedim >::cell_iterator = typename DataOut_DoFData<dim, patch_dim, spacedim, patch_spacedim>:: cell_iterator

Typedef to the iterator type of the dof handler class under consideration.

Definition at line 131 of file data_out_rotation.h.

◆ Patch

using DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::Patch = ::DataOutBase::Patch<patch_dim, patch_spacedim>
protectedinherited

Abbreviate the somewhat lengthy name for the Patch class.

Definition at line 951 of file data_out_dof_data.h.

Member Enumeration Documentation

◆ DataVectorType

Type describing what the vector given to add_data_vector() is: a vector that has one entry per degree of freedom in a DoFHandler object (such as solution vectors), or one entry per cell in the triangulation underlying the DoFHandler object (such as error per cell data). The value type_automatic tells add_data_vector() to find out itself (see the documentation of add_data_vector() for the method used).

Definition at line 615 of file data_out_dof_data.h.

Member Function Documentation

◆ build_patches()

template<int dim, int spacedim>
void DataOutRotation< dim, spacedim >::build_patches ( const unsigned int  n_patches_per_circle,
const unsigned int  n_subdivisions = 0 
)
virtual

This is the central function of this class since it builds the list of patches to be written by the low-level functions of the base class. A patch is, in essence, some intermediate representation of the data on each cell of a triangulation and DoFHandler object that can then be used to write files in some format that is readable by visualization programs.

You can find an overview of the use of this function in the general documentation of this class. An example is also provided in the documentation of this class's base class DataOut_DoFData.

Parameters
n_patches_per_circleDenotes into how many intervals the angular (rotation) variable is to be subdivided.
n_subdivisionsSee DataOut::build_patches() for an extensive description of this parameter.

Definition at line 458 of file data_out_rotation.cc.

◆ first_cell()

template<int dim, int spacedim>
DataOutRotation< dim, spacedim >::cell_iterator DataOutRotation< dim, spacedim >::first_cell
virtual

Return the first cell which we want output for. The default implementation returns the first active cell, but you might want to return other cells in a derived class.

Definition at line 558 of file data_out_rotation.cc.

◆ next_cell()

template<int dim, int spacedim>
DataOutRotation< dim, spacedim >::cell_iterator DataOutRotation< dim, spacedim >::next_cell ( const cell_iterator cell)
virtual

Return the next cell after cell which we want output for. If there are no more cells, dofs->end() shall be returned.

The default implementation returns the next active cell, but you might want to return other cells in a derived class. Note that the default implementation assumes that the given cell is active, which is guaranteed as long as first_cell is also used from the default implementation. Overloading only one of the two functions might not be a good idea.

Definition at line 566 of file data_out_rotation.cc.

◆ build_one_patch()

template<int dim, int spacedim>
void DataOutRotation< dim, spacedim >::build_one_patch ( const cell_iterator cell,
internal::DataOutRotationImplementation::ParallelData< dim, spacedim > &  data,
std::vector< DataOutBase::Patch< patch_dim, patch_spacedim >> &  my_patches 
)
private

Build all of the patches that correspond to the cell given in the first argument. Use the second argument as scratch space for parallel invocation in WorkStream, and put the results into the last argument.

Definition at line 109 of file data_out_rotation.cc.

◆ attach_dof_handler()

void DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::attach_dof_handler ( const DoFHandler< dim, spacedim > &  )
inherited

Designate a dof handler to be used to extract geometry data and the mapping between nodes and node values. This call is not necessary if all added data vectors are supplemented with a DoFHandler argument.

This call is optional: If you add data vectors with specified DoFHandler object, then that contains all information needed to generate the output.

◆ attach_triangulation()

void DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::attach_triangulation ( const Triangulation< dim, spacedim > &  )
inherited

Designate a triangulation to be used to extract geometry data and the mapping between nodes and node values.

This call is optional: If you add data vectors with specified DoFHandler object, then that contains all information needed to generate the output. This call is useful when you only output cell vectors and no DoFHandler at all, in which case it provides the geometry.

◆ add_data_vector() [1/6]

void DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::add_data_vector ( const VectorType &  data,
const std::vector< std::string > &  names,
const DataVectorType  type = type_automatic,
const std::vector< DataComponentInterpretation::DataComponentInterpretation > &  data_component_interpretation = {} 
)
inherited

Add a data vector together with its name.

A pointer to the vector is stored, so you have to make sure the vector exists at that address at least as long as you call the write_* functions.

It is assumed that the vector has the same number of components as there are degrees of freedom in the dof handler, in which case it is assumed to be a vector storing nodal data; or the size may be the number of active cells on the present grid, in which case it is assumed to be a cell data vector. As the number of degrees of freedom and of cells is usually not equal, the function can determine itself which type of vector it is given. However, there are corner cases where this automatic determination does not work. One example is if you compute with piecewise constant elements and have a scalar solution, then there are as many cells as there are degrees of freedom (though they may be numbered differently). Another possibility is if you have a 1d mesh embedded in 2d space and the mesh consists of a closed curve of cells; in this case, there are as many nodes as there are cells, and when using a Q1 element you will have as many degrees of freedom as there are cells. In these cases, you can change the last argument of the function from its default value type_automatic to either type_dof_data or type_cell_data, depending on what the vector represents. Apart from such corner cases, you can leave the argument at its default value and let the function determine the type of the vector itself.

If it is a vector holding DoF data, the names given shall be one for each component of the underlying finite element. If it is a finite element composed of only one subelement, then there is another function following which takes a single name instead of a vector of names.

The data_component_interpretation argument contains information about how the individual components of output files that consist of more than one data set are to be interpreted.

For example, if one has a finite element for the Stokes equations in 2d, representing components (u,v,p), one would like to indicate that the first two, u and v, represent a logical vector so that later on when we generate graphical output we can hand them off to a visualization program that will automatically know to render them as a vector field, rather than as two separate and independent scalar fields.

The default value of this argument (i.e. an empty vector) corresponds is equivalent to a vector of values DataComponentInterpretation::component_is_scalar, indicating that all output components are independent scalar fields. However, if the given data vector represents logical vectors, you may pass a vector that contains values DataComponentInterpretation::component_is_part_of_vector. In the example above, one would pass in a vector with components (DataComponentInterpretation::component_is_part_of_vector, DataComponentInterpretation::component_is_part_of_vector, DataComponentInterpretation::component_is_scalar) for (u,v,p).

The names of a data vector shall only contain characters which are letters, underscore and a few other ones. Refer to the ExcInvalidCharacter exception declared in this class to see which characters are valid and which are not.

Note
The actual type for the vector argument may be any vector type from which FEValues can extract values on a cell using the FEValuesBase::get_function_values() function.

Definition at line 731 of file data_out_dof_data.h.

◆ add_data_vector() [2/6]

void DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::add_data_vector ( const VectorType &  data,
const std::string &  name,
const DataVectorType  type = type_automatic,
const std::vector< DataComponentInterpretation::DataComponentInterpretation > &  data_component_interpretation = {} 
)
inherited

This function is an abbreviation to the above one (see there for a discussion of the various arguments), intended for use with finite elements that are not composed of subelements. In this case, only one name per data vector needs to be given, which is what this function takes. It simply relays its arguments after a conversion of the name to a vector of strings, to the other add_data_vector() function above.

If data is a vector with multiple components this function will generate distinct names for all components by appending an underscore and the number of each component to name

The actual type for the template argument may be any vector type from which FEValues can extract values on a cell using the FEValuesBase::get_function_values() function.

Definition at line 756 of file data_out_dof_data.h.

◆ add_data_vector() [3/6]

void DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::add_data_vector ( const DoFHandler< dim, spacedim > &  dof_handler,
const VectorType &  data,
const std::vector< std::string > &  names,
const std::vector< DataComponentInterpretation::DataComponentInterpretation > &  data_component_interpretation = {} 
)
inherited

This function is an extension of the above one (see there for a discussion of the arguments except the first one) and allows to set a vector with its own DoFHandler object. This DoFHandler needs to be compatible with the other DoFHandler objects assigned with calls to add_data_vector or attach_dof_handler, in the sense that all of the DoFHandler objects need to be based on the same triangulation. This function allows you to export data from multiple DoFHandler objects that describe different solution components. An example of using this function is given in step-61.

Since this function takes a DoFHandler object and hence naturally represents dof data, the data vector type argument present in the other methods above is not necessary.

Definition at line 780 of file data_out_dof_data.h.

◆ add_data_vector() [4/6]

void DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::add_data_vector ( const DoFHandler< dim, spacedim > &  dof_handler,
const VectorType &  data,
const std::string &  name,
const std::vector< DataComponentInterpretation::DataComponentInterpretation > &  data_component_interpretation = {} 
)
inherited

This function is an abbreviation of the function above with only a scalar dof_handler given and a single data name.

Definition at line 794 of file data_out_dof_data.h.

◆ add_data_vector() [5/6]

void DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::add_data_vector ( const VectorType &  data,
const DataPostprocessor< spacedim > &  data_postprocessor 
)
inherited

This function is an alternative to the above ones, allowing the output of derived quantities instead of the given data. This conversion has to be done in a class derived from DataPostprocessor. This function is used in step-29. Other uses are shown in step-32 and step-33.

The names for these derived quantities are provided by the data_postprocessor argument. Likewise, the data_component_interpretation argument of the other add_data_vector() functions is provided by the data_postprocessor argument. As only data of type type_dof_data can be transformed, this type is also known implicitly and does not have to be given.

Note
The actual type for the vector argument may be any vector type from which FEValues can extract values on a cell using the FEValuesBase::get_function_values() function.
The DataPostprocessor object (i.e., in reality the object of your derived class) has to live until the DataOut object is destroyed as the latter keeps a pointer to the former and will complain if the object pointed to is destroyed while the latter still has a pointer to it. If both the data postprocessor and DataOut objects are local variables of a function (as they are, for example, in step-29), then you can avoid this error by declaring the data postprocessor variable before the DataOut variable as objects are destroyed in reverse order of declaration.

Definition at line 829 of file data_out_dof_data.h.

◆ add_data_vector() [6/6]

void DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::add_data_vector ( const DoFHandler< dim, spacedim > &  dof_handler,
const VectorType &  data,
const DataPostprocessor< spacedim > &  data_postprocessor 
)
inherited

Same function as above, but with a DoFHandler object that does not need to coincide with the DoFHandler initially set. Note that the postprocessor can only read data from the given DoFHandler and solution vector, not other solution vectors or DoFHandlers.

◆ add_mg_data_vector() [1/2]

void DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::add_mg_data_vector ( const DoFHandler< dim, spacedim > &  dof_handler,
const MGLevelObject< VectorType > &  data,
const std::vector< std::string > &  names,
const std::vector< DataComponentInterpretation::DataComponentInterpretation > &  data_component_interpretation = std::vector< DataComponentInterpretation::DataComponentInterpretation>() 
)
inherited

Add a multilevel data vector.

This function adds the vector-valued multilevel vector data in the form of a vector on each level that belongs to the DoFHandler dof_handler to the graphical output. This function is typically used in conjunction with a call to set_cell_selection() that selects cells on a specific level and not the active cells (the default).

A vector data can be obtained in several ways, for example by using Multigrid::solution or Multigrid::defect during or after a multigrid cycle or by interpolating a solution via MGTransferMatrixFree::interpolate_to_mg().

The handling of names and data_component_interpretation is identical to the add_data_vector() function.

◆ add_mg_data_vector() [2/2]

void DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::add_mg_data_vector ( const DoFHandler< dim, spacedim > &  dof_handler,
const MGLevelObject< VectorType > &  data,
const std::string &  name 
)
inherited

Scalar version of the function above.

◆ clear_data_vectors()

void DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::clear_data_vectors ( )
inherited

Release the pointers to the data vectors. This allows output of a new set of vectors without supplying the DoF handler again. Therefore, the DataOut object can be used in an algebraic context. Note that besides the data vectors also the patches already computed are deleted.

◆ clear_input_data_references()

void DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::clear_input_data_references ( )
inherited

Release pointers to all input data elements, i.e. pointers to to the DoF handler object. This function may be useful when you have called the build_patches function of derived class, since then the patches are built and the input data is no more needed, nor is there a need to reference it. You can then output the patches detached from the main thread and need not make sure anymore that the DoF handler object must not be deleted before the output thread is finished.

◆ merge_patches()

void DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::merge_patches ( const DataOut_DoFData< dim2, patch_dim, spacedim2, patch_spacedim > &  source,
const Point< patch_spacedim > &  shift = Point<patch_spacedim>() 
)
inherited

This function can be used to merge the patches that were created using the build_patches function of the object given as argument into the list of patches created by this object. This is sometimes handy if one has, for example, a domain decomposition algorithm where each block is represented by a DoFHandler of its own, but one wants to output the solution on all the blocks at the same time.

For this to work, the given argument and this object need to have the same number of output vectors, and they need to use the same number of subdivisions per patch. The output will probably look rather funny if patches in both objects overlap in space.

If you call build_patches() for this object after merging in patches, the previous state is overwritten, and the merged-in patches are lost.

The second parameter allows to shift each node of the patches in the object passed in in the first parameter by a certain amount. This is sometimes useful to generate "exploded" views of a collection of blocks.

This function will fail if either this or the other object did not yet set up any patches.

Definition at line 927 of file data_out_dof_data.h.

◆ clear()

virtual void DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::clear ( )
virtualinherited

Release the pointers to the data vectors and the DoF handler. You have to set all data entries again using the add_data_vector() function. The pointer to the dof handler is cleared as well, along with all other data. In effect, this function resets everything to a virgin state.

◆ memory_consumption()

std::size_t DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::memory_consumption ( ) const
inherited

Determine an estimate for the memory consumption (in bytes) of this object.

◆ get_patches()

virtual const std::vector<Patch>& DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::get_patches ( ) const
overridevirtualinherited

Function by which the base class's functions get to know what patches they shall write to a file.

Implements DataOutInterface< dim, spacedim >.

◆ get_dataset_names()

virtual std::vector<std::string> DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::get_dataset_names ( ) const
overrideprotectedvirtualinherited

Virtual function through which the names of data sets are obtained by the output functions of the base class.

Implements DataOutInterface< dim, spacedim >.

◆ get_nonscalar_data_ranges()

virtual std::vector< std::tuple<unsigned int, unsigned int, std::string, DataComponentInterpretation::DataComponentInterpretation> > DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::get_nonscalar_data_ranges ( ) const
overrideprotectedvirtualinherited

Overload of the respective DataOutInterface::get_nonscalar_data_ranges() function. See there for a more extensive documentation.

Reimplemented from DataOutInterface< dim, spacedim >.

◆ get_fes()

std::vector<std::shared_ptr<::hp::FECollection<dim, spacedim> > > DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::get_fes ( ) const
protectedinherited

Extracts the finite elements stored in the dof_data object, including a dummy object of FE_DGQ<dim>(0) in case only the triangulation is used.

◆ add_data_vector_internal()

void DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::add_data_vector_internal ( const DoFHandler< dim, spacedim > *  dof_handler,
const VectorType &  data,
const std::vector< std::string > &  names,
const DataVectorType  type,
const std::vector< DataComponentInterpretation::DataComponentInterpretation > &  data_component_interpretation,
const bool  deduce_output_names 
)
privateinherited

Common function called by the four public add_data_vector methods.

Member Data Documentation

◆ patch_dim

template<int dim, int spacedim = dim>
constexpr int DataOutRotation< dim, spacedim >::patch_dim = dim + 1
staticconstexpr

Dimension parameters for the patches.

Definition at line 124 of file data_out_rotation.h.

◆ patch_spacedim

template<int dim, int spacedim = dim>
constexpr int DataOutRotation< dim, spacedim >::patch_spacedim = spacedim + 1
staticconstexpr

Definition at line 125 of file data_out_rotation.h.

◆ triangulation

SmartPointer<const Triangulation<dim, spacedim> > DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::triangulation
protectedinherited

Pointer to the triangulation object.

Definition at line 956 of file data_out_dof_data.h.

◆ dofs

SmartPointer<const DoFHandler<dim, spacedim> > DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::dofs
protectedinherited

Pointer to the optional handler object.

Definition at line 961 of file data_out_dof_data.h.

◆ dof_data

std::vector<std::shared_ptr< internal::DataOutImplementation::DataEntryBase<dim, spacedim> > > DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::dof_data
protectedinherited

List of data elements with vectors of values for each degree of freedom.

Definition at line 968 of file data_out_dof_data.h.

◆ cell_data

std::vector<std::shared_ptr< internal::DataOutImplementation::DataEntryBase<dim, spacedim> > > DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::cell_data
protectedinherited

List of data elements with vectors of values for each cell.

Definition at line 975 of file data_out_dof_data.h.

◆ patches

std::vector<Patch> DataOut_DoFData< dim, patch_dim, spacedim, patch_spacedim >::patches
protectedinherited

This is a list of patches that is created each time build_patches() is called. These patches are used in the output routines of the base classes.

Definition at line 982 of file data_out_dof_data.h.


The documentation for this class was generated from the following files: