deal.II version GIT relicensing-2287-g6548a49e0a 2024-12-20 18:30:00+00:00
|
#include <deal.II/base/data_out_base.h>
Public Member Functions | |
void | read (std::istream &in) |
void | read_whole_parallel_file (std::istream &in) |
void | merge (const DataOutReader< dim, spacedim > &other) |
void | write_dx (std::ostream &out) const |
void | write_eps (std::ostream &out) const |
void | write_gmv (std::ostream &out) const |
void | write_gnuplot (std::ostream &out) const |
void | write_povray (std::ostream &out) const |
void | write_tecplot (std::ostream &out) const |
void | write_ucd (std::ostream &out) const |
void | write_vtk (std::ostream &out) const |
void | write_vtu (std::ostream &out) const |
void | write_vtu_in_parallel (const std::string &filename, const MPI_Comm comm) const |
void | write_pvtu_record (std::ostream &out, const std::vector< std::string > &piece_names) const |
std::string | write_vtu_with_pvtu_record (const std::string &directory, const std::string &filename_without_extension, const unsigned int counter, const MPI_Comm mpi_communicator, const unsigned int n_digits_for_counter=numbers::invalid_unsigned_int, const unsigned int n_groups=0) const |
void | write_svg (std::ostream &out) const |
void | write_deal_II_intermediate (std::ostream &out) const |
void | write_deal_II_intermediate_in_parallel (const std::string &filename, const MPI_Comm comm, const DataOutBase::CompressionLevel compression) const |
XDMFEntry | create_xdmf_entry (const DataOutBase::DataOutFilter &data_filter, const std::string &h5_filename, const double cur_time, const MPI_Comm comm) const |
XDMFEntry | create_xdmf_entry (const DataOutBase::DataOutFilter &data_filter, const std::string &h5_mesh_filename, const std::string &h5_solution_filename, const double cur_time, const MPI_Comm comm) const |
void | write_xdmf_file (const std::vector< XDMFEntry > &entries, const std::string &filename, const MPI_Comm comm) const |
void | write_hdf5_parallel (const DataOutBase::DataOutFilter &data_filter, const std::string &filename, const MPI_Comm comm) const |
void | write_hdf5_parallel (const DataOutBase::DataOutFilter &data_filter, const bool write_mesh_file, const std::string &mesh_filename, const std::string &solution_filename, const MPI_Comm comm) const |
void | write_filtered_data (DataOutBase::DataOutFilter &filtered_data) const |
void | write (std::ostream &out, const DataOutBase::OutputFormat output_format=DataOutBase::default_format) const |
void | set_default_format (const DataOutBase::OutputFormat default_format) |
template<typename FlagType > | |
void | set_flags (const FlagType &flags) |
std::string | default_suffix (const DataOutBase::OutputFormat output_format=DataOutBase::default_format) const |
void | parse_parameters (ParameterHandler &prm) |
std::size_t | memory_consumption () const |
Static Public Member Functions | |
static ::ExceptionBase & | ExcIncompatibleDatasetNames () |
static ::ExceptionBase & | ExcIncompatiblePatchLists () |
static ::ExceptionBase & | ExcIncompatibleDimensions (int arg1, int arg2, int arg3, int arg4) |
static void | declare_parameters (ParameterHandler &prm) |
Protected Member Functions | |
virtual const std::vector<::DataOutBase::Patch< dim, spacedim > > & | get_patches () const override |
virtual std::vector< std::string > | get_dataset_names () const override |
virtual std::vector< std::tuple< unsigned int, unsigned int, std::string, DataComponentInterpretation::DataComponentInterpretation > > | get_nonscalar_data_ranges () const override |
void | validate_dataset_names () const |
Protected Attributes | |
unsigned int | default_subdivisions |
Private Attributes | |
std::vector<::DataOutBase::Patch< dim, spacedim > > | patches |
std::vector< std::string > | dataset_names |
std::vector< std::tuple< unsigned int, unsigned int, std::string, DataComponentInterpretation::DataComponentInterpretation > > | nonscalar_data_ranges |
DataOutBase::OutputFormat | default_fmt |
DataOutBase::DXFlags | dx_flags |
DataOutBase::UcdFlags | ucd_flags |
DataOutBase::GnuplotFlags | gnuplot_flags |
DataOutBase::PovrayFlags | povray_flags |
DataOutBase::EpsFlags | eps_flags |
DataOutBase::GmvFlags | gmv_flags |
DataOutBase::Hdf5Flags | hdf5_flags |
DataOutBase::TecplotFlags | tecplot_flags |
DataOutBase::VtkFlags | vtk_flags |
DataOutBase::SvgFlags | svg_flags |
DataOutBase::Deal_II_IntermediateFlags | deal_II_intermediate_flags |
A class that is used to read data written in deal.II intermediate format back in, so that it can be written out in any of the other supported graphics formats. This class has two main purposes:
The first use of this class is so that application programs can defer the decision of which graphics format to use until after the program has been run. The data is written in intermediate format into a file, and later on it can then be converted into any graphics format you wish. This may be useful, for example, if you want to convert it to gnuplot format to get a quick glimpse and later on want to convert it to OpenDX format as well to get a high quality version of the data. The present class allows to read this intermediate format back into the program, and allows it to be written in any other supported format using the relevant functions of the base class.
The second use is mostly useful in parallel programs: rather than having one central process generate the graphical output for the entire program, one can let each process generate the graphical data for the cells it owns, and write it into a separate file in intermediate format. Later on, all these intermediate files can then be read back in and merged together, a process that is fast compared to generating the data in the first place. The use of the intermediate format is mostly because it allows separate files to be merged, while this is almost impossible once the data has been written out in any of the supported established graphics formats.
This second use scenario is explained in some detail in the step-18 example program.
In order to read data back into this object, you have to know the template parameters for the space dimension which were used when writing the data. If this knowledge is available at compile time, then this is no problem. However, if it is not (such as in a simple format converter), then it needs to be figured out at run time, even though the compiler already needs it at compile time. A way around using the DataOutBase::determine_intermediate_format_dimensions() function.
Note that the intermediate format is what its name suggests: a direct representation of internal data. It isn't standardized and will change whenever we change our internal representation. You can only expect to process files written in this format using the same version of deal.II that was used for writing.
Definition at line 3224 of file data_out_base.h.
void DataOutReader< dim, spacedim >::read | ( | std::istream & | in | ) |
Read a sequence of patches as written previously by DataOutBase::write_deal_II_intermediate
and store them in the present object. This overwrites any previous content.
Definition at line 9115 of file data_out_base.cc.
void DataOutReader< dim, spacedim >::read_whole_parallel_file | ( | std::istream & | in | ) |
Read all data previously written using DataOutBase::write_deal_II_intermediate_in_parallel() from all MPI ranks into this data structure.
Definition at line 9226 of file data_out_base.cc.
void DataOutReader< dim, spacedim >::merge | ( | const DataOutReader< dim, spacedim > & | other | ) |
This function can be used to merge the patches read by the other object into the patches that this present object stores. This is sometimes handy if one has, for example, a domain decomposition algorithm where each block is represented by a DoFHandler of its own, but one wants to output the solution on all the blocks at the same time. Alternatively, it may also be used for parallel programs, where each process only generates output for its share of the cells, even if all processes can see all cells.
For this to work, the input files for the present object and the given argument need to have the same number of output vectors, and they need to use the same number of subdivisions per patch. The output will probably look rather funny if patches in both objects overlap in space.
If you call read() for this object after merging in patches, the previous state is overwritten, and the merged-in patches are lost.
This function will fail if either this or the other object did not yet set up any patches.
Definition at line 9294 of file data_out_base.cc.
|
overrideprotectedvirtual |
This is the function through which this class propagates preprocessed data in the form of Patch structures (declared in the base class DataOutBase) to the actual output function.
It returns the patches as read the last time a stream was given to the read() function.
Implements DataOutInterface< dim, spacedim >.
Definition at line 9356 of file data_out_base.cc.
|
overrideprotectedvirtual |
Abstract virtual function through which the names of data sets are obtained by the output functions of the base class.
Return the names of the variables as read the last time we read a file.
Implements DataOutInterface< dim, spacedim >.
Definition at line 9365 of file data_out_base.cc.
|
overrideprotectedvirtual |
This functions returns information about how the individual components of output files that consist of more than one data set are to be interpreted.
It returns a list of index pairs and corresponding name indicating which components of the output are to be considered vector-valued rather than just a collection of scalar data. The index pairs are inclusive; for example, if we have a Stokes problem in 2d with components (u,v,p), then the corresponding vector data range should be (0,1), and the returned list would consist of only a single element with a tuple such as (0,1,"velocity").
Since some of the derived classes do not know about vector data, this function has a default implementation that simply returns an empty string, meaning that all data is to be considered a collection of scalar fields.
Reimplemented from DataOutInterface< dim, spacedim >.
Definition at line 9378 of file data_out_base.cc.
|
inherited |
Obtain data through get_patches() and write it to out
in OpenDX format. See DataOutBase::write_dx.
Definition at line 7596 of file data_out_base.cc.
|
inherited |
Obtain data through get_patches() and write it to out
in EPS format. See DataOutBase::write_eps.
Definition at line 7648 of file data_out_base.cc.
|
inherited |
Obtain data through get_patches() and write it to out
in GMV format. See DataOutBase::write_gmv.
Definition at line 7661 of file data_out_base.cc.
|
inherited |
Obtain data through get_patches() and write it to out
in GNUPLOT format. See DataOutBase::write_gnuplot.
Definition at line 7622 of file data_out_base.cc.
|
inherited |
Obtain data through get_patches() and write it to out
in POVRAY format. See DataOutBase::write_povray.
Definition at line 7635 of file data_out_base.cc.
|
inherited |
Obtain data through get_patches() and write it to out
in Tecplot format. See DataOutBase::write_tecplot.
Definition at line 7674 of file data_out_base.cc.
|
inherited |
Obtain data through get_patches() and write it to out
in UCD format for AVS. See DataOutBase::write_ucd.
Definition at line 7609 of file data_out_base.cc.
|
inherited |
Obtain data through get_patches() and write it to out
in Vtk format. See DataOutBase::write_vtk.
Definition at line 7687 of file data_out_base.cc.
|
inherited |
Obtain data through get_patches() and write it to out
in Vtu (VTK's XML) format. See DataOutBase::write_vtu.
Some visualization programs, such as ParaView, can read several separate VTU files to parallelize visualization. In that case, you need a .pvtu
file that describes which VTU files form a group. The DataOutInterface::write_pvtu_record() function can generate such a centralized record. Likewise, DataOutInterface::write_visit_record() does the same for older versions of VisIt (although VisIt can also read pvtu
records since version 2.5.1). Finally, DataOutInterface::write_pvd_record() can be used to group together the files that jointly make up a time dependent simulation.
Definition at line 7698 of file data_out_base.cc.
|
inherited |
Collective MPI call to write the solution from all participating nodes (those in the given communicator) to a single compressed .vtu file on a shared file system. The communicator can be a sub communicator of the one used by the computation. This routine uses MPI I/O to achieve high performance on parallel filesystems. In order to use this function, you need to be using a file system that supports parallel MPI I/O, and you will get error messages about failed MPI calls if you do not. Also see DataOutInterface::write_vtu().
Definition at line 7721 of file data_out_base.cc.
|
inherited |
Some visualization programs, such as ParaView and VisIt, can read several separate VTU files that all form part of the same simulation, in order to parallelize visualization. In that case, you need a .pvtu
file that describes which VTU files (written, for example, through the DataOutInterface::write_vtu() function) form a group. The current function can generate such a centralized record.
The central record file generated by this function contains a list of (scalar or vector) fields that describes which fields can actually be found in the individual files that comprise the set of parallel VTU files along with the names of these files. This function gets the names and types of fields through the get_dataset_names() and get_nonscalar_data_ranges() functions of this class. The second argument to this function specifies the names of the files that form the parallel set.
pvtu
files that each describe one time step of a time dependent simulation, see the DataOutBase::write_pvd_record() function.pvtu
records. However, it can read visit records as written by the write_visit_record() function. Definition at line 7845 of file data_out_base.cc.
|
inherited |
This function writes several .vtu files and a .pvtu record in parallel and constructs the filenames automatically. It is a combination of DataOutInterface::write_vtu() or DataOutInterface::write_vtu_in_parallel(), and DataOutInterface::write_pvtu_record().
For example, running write_vtu_with_pvtu_record("output/", "solution", 3, comm, 4, 2)
on 10 processes generates the files
where the .0.vtu
file contains the output of the first half of the processes grouped together, and the .1.vtu
the data from the remaining half.
A specified directory
and a filename_without_extension
form the first part of the filename. The filename is then extended with a counter
labeling the current timestep/iteration/etc., the processor ID, and finally the .vtu/.pvtu ending. Since the number of timesteps to be written depends on the application, the number of digits to be reserved in the filename can be specified as parameter n_digits_for_counter
, and the number is not padded with leading zeros if this parameter is left at its default value numbers::invalid_unsigned_int. If more than one file identifier is needed (e.g. time step number and iteration counter of solver), the last identifier is used as counter
, while all other identifiers have to be added to filename_without_extension
when calling this function.
In a parallel setting, several files are typically written per time step. The number of files written in parallel depends on the number of MPI processes (see parameter mpi_communicator
), and a specified number of n_groups
with default value 0. The background is that VTU file output supports grouping files from several CPUs into a given number of files using MPI I/O when writing on a parallel filesystem. The default value of n_groups
is 0, meaning that every MPI rank will write one file. A value of 1 will generate one big file containing the solution over the whole domain, while a larger value will create n_groups
files (but not more than there are MPI ranks). For all values other than n_groups==0
, this function calls write_vtu_in_parallel(); for this function to work you need to be using a file system that supports parallel MPI I/O, and you will get error messages about failed MPI calls if you do not.
Note that only one processor needs to generate the .pvtu file, where processor zero is chosen to take over this job.
The return value is the filename of the centralized file for the pvtu record.
directory
and filename_without_extension
, i.e., the user has to make sure that directory
contains a trailing character, e.g. "/", that separates the directory from the filename.Definition at line 7860 of file data_out_base.cc.
|
inherited |
Obtain data through get_patches() and write it to out
in SVG format. See DataOutBase::write_svg.
Definition at line 7709 of file data_out_base.cc.
|
inherited |
Obtain data through get_patches() and write it to out
in deal.II intermediate format. See DataOutBase::write_deal_II_intermediate.
Note that the intermediate format is what its name suggests: a direct representation of internal data. It isn't standardized and will change whenever we change our internal representation. You can only expect to process files written in this format using the same version of deal.II that was used for writing.
Definition at line 7941 of file data_out_base.cc.
|
inherited |
Obtain data through get_patches() and write it using MPI I/O in parallel to the file filename
in the parallel deal.II intermediate format. See DataOutBase::write_deal_II_intermediate_in_parallel().
Definition at line 7955 of file data_out_base.cc.
|
inherited |
Create an XDMFEntry based on the data in the data_filter. This assumes the mesh and solution data were written to a single file. See write_xdmf_file() for an example of usage.
Definition at line 7974 of file data_out_base.cc.
|
inherited |
Create an XDMFEntry based on the data in the data_filter. This assumes the mesh and solution data were written to separate files. See write_xdmf_file() for an example of usage.
Definition at line 7988 of file data_out_base.cc.
|
inherited |
Write an XDMF file based on the provided vector of XDMFEntry objects. Below is an example of how to use this function with HDF5 and the DataOutFilter:
Definition at line 8127 of file data_out_base.cc.
|
inherited |
Write the data in data_filter
to a single HDF5 file containing both the mesh and solution values. Below is an example of how to use this function with the DataOutFilter:
Definition at line 8662 of file data_out_base.cc.
|
inherited |
Write the data in data_filter to HDF5 file(s). If write_mesh_file is false, the mesh data will not be written and the solution file will contain only the solution values. If write_mesh_file is true and the filenames are the same, the resulting file will contain both mesh data and solution values.
Definition at line 8675 of file data_out_base.cc.
|
inherited |
DataOutFilter is an intermediate data format that reduces the amount of data that will be written to files. The object filled by this function can then later be used again to write data in a concrete file format; see, for example, DataOutBase::write_hdf5_parallel().
Definition at line 8172 of file data_out_base.cc.
|
inherited |
Write data and grid to out
according to the given data format. This function simply calls the appropriate write_*
function. If no output format is requested, the default_format
is written.
An error occurs if no format is provided and the default format is default_format
.
Definition at line 8793 of file data_out_base.cc.
|
inherited |
Set the default format. The value set here is used anytime, output for format default_format
is requested.
Definition at line 8859 of file data_out_base.cc.
|
inherited |
Set the flags to be used for output. This method expects flags
to be a member of one of the child classes of OutputFlagsBase
.
Definition at line 8869 of file data_out_base.cc.
|
inherited |
A function that returns the same string as the respective function in the base class does; the only exception being that if the parameter is omitted, then the value for the present default format is returned, i.e. the correct suffix for the format that was set through set_default_format() or parse_parameters() before calling this function.
Definition at line 8902 of file data_out_base.cc.
|
staticinherited |
Declare parameters for all output formats by declaring subsections within the parameter file for each output format and call the respective declare_parameters
functions of the flag classes for each output format.
Some of the declared subsections may not contain entries, if the respective format does not export any flags.
Note that the top-level parameters denoting the number of subdivisions per patch and the output format are not declared, since they are only passed to virtual functions and are not stored inside objects of this type. You have to declare them yourself.
Definition at line 8915 of file data_out_base.cc.
|
inherited |
Read the parameters declared in declare_parameters() and set the flags for the output formats accordingly.
The flags thus obtained overwrite all previous contents of the flag objects as default-constructed or set by the set_flags() function.
Definition at line 8972 of file data_out_base.cc.
|
inherited |
Return an estimate for the memory consumption, in bytes, of this object. This is not exact (but will usually be close) because calculating the memory usage of trees (e.g., std::map
) is difficult.
Definition at line 9023 of file data_out_base.cc.
|
protectedinherited |
Validate that the names of the datasets returned by get_dataset_names() and get_nonscalar_data_ranges() are valid. This currently consists of checking that names are not used more than once. If an invalid state is encountered, an Assert() will be triggered in debug mode.
Definition at line 9059 of file data_out_base.cc.
|
private |
Arrays holding the set of patches as well as the names of output variables, all of which we read from an input stream.
Definition at line 3343 of file data_out_base.h.
|
private |
Definition at line 3344 of file data_out_base.h.
|
private |
Information about whether certain components of the output field are to be considered vectors.
Definition at line 3355 of file data_out_base.h.
|
protectedinherited |
The default number of subdivisions for patches. This is filled by parse_parameters() and should be obeyed by build_patches() in derived classes.
Definition at line 3099 of file data_out_base.h.
|
privateinherited |
Standard output format. Use this format, if output format default_format is requested. It can be changed by the set_format
function or in a parameter file.
Definition at line 3107 of file data_out_base.h.
|
privateinherited |
Flags to be used upon output of OpenDX data. Can be changed by using the set_flags
function.
Definition at line 3113 of file data_out_base.h.
|
privateinherited |
Flags to be used upon output of UCD data. Can be changed by using the set_flags
function.
Definition at line 3119 of file data_out_base.h.
|
privateinherited |
Flags to be used upon output of GNUPLOT data. Can be changed by using the set_flags
function.
Definition at line 3125 of file data_out_base.h.
|
privateinherited |
Flags to be used upon output of POVRAY data. Can be changed by using the set_flags
function.
Definition at line 3131 of file data_out_base.h.
|
privateinherited |
Flags to be used upon output of EPS data in one space dimension. Can be changed by using the set_flags
function.
Definition at line 3137 of file data_out_base.h.
|
privateinherited |
Flags to be used upon output of gmv data in one space dimension. Can be changed by using the set_flags
function.
Definition at line 3143 of file data_out_base.h.
|
privateinherited |
Flags to be used upon output of hdf5 data in one space dimension. Can be changed by using the set_flags
function.
Definition at line 3149 of file data_out_base.h.
|
privateinherited |
Flags to be used upon output of Tecplot data in one space dimension. Can be changed by using the set_flags
function.
Definition at line 3155 of file data_out_base.h.
|
privateinherited |
Flags to be used upon output of vtk data in one space dimension. Can be changed by using the set_flags
function.
Definition at line 3161 of file data_out_base.h.
|
privateinherited |
Flags to be used upon output of svg data in one space dimension. Can be changed by using the set_flags
function.
Definition at line 3167 of file data_out_base.h.
|
privateinherited |
Flags to be used upon output of deal.II intermediate data in one space dimension. Can be changed by using the set_flags
function.
Definition at line 3173 of file data_out_base.h.