Reference documentation for deal.II version 9.6.0
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
internal::SymmetricTensorAccessors::double_contraction_result< rank1, rank2, dim, Number, OtherNumber > Struct Template Reference

#include <deal.II/base/symmetric_tensor.h>

Public Types

using value_type = typename ProductType<Number, OtherNumber>::type
 
using type
 

Detailed Description

template<int rank1, int rank2, int dim, typename Number, typename OtherNumber = Number>
struct internal::SymmetricTensorAccessors::double_contraction_result< rank1, rank2, dim, Number, OtherNumber >

Typedef template magic denoting the result of a double contraction between two tensors or ranks rank1 and rank2. In general, this is a tensor of rank rank1+rank2-4, but if this is zero it is a single scalar Number. For this case, we have a specialization.

Definition at line 323 of file symmetric_tensor.h.

Member Typedef Documentation

◆ value_type

template<int rank1, int rank2, int dim, typename Number , typename OtherNumber = Number>
using internal::SymmetricTensorAccessors::double_contraction_result< rank1, rank2, dim, Number, OtherNumber >::value_type = typename ProductType<Number, OtherNumber>::type

Definition at line 325 of file symmetric_tensor.h.

◆ type

template<int rank1, int rank2, int dim, typename Number , typename OtherNumber = Number>
using internal::SymmetricTensorAccessors::double_contraction_result< rank1, rank2, dim, Number, OtherNumber >::type
Initial value:
::SymmetricTensor<rank1 + rank2 - 4, dim, value_type>

Definition at line 326 of file symmetric_tensor.h.


The documentation for this struct was generated from the following file: