Reference documentation for deal.II version 9.6.0
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
FEValuesViews::SymmetricTensor< 2, dim, spacedim >::ShapeFunctionData Struct Reference

#include <deal.II/fe/fe_values_views.h>

Public Attributes

bool is_nonzero_shape_function_component [value_type::n_independent_components]
 
unsigned int row_index [value_type::n_independent_components]
 
int single_nonzero_component
 
unsigned int single_nonzero_component_index
 

Detailed Description

template<int dim, int spacedim>
struct FEValuesViews::SymmetricTensor< 2, dim, spacedim >::ShapeFunctionData

A structure where for each shape function we pre-compute a bunch of data that will make later accesses much cheaper.

Definition at line 1361 of file fe_values_views.h.

Member Data Documentation

◆ is_nonzero_shape_function_component

template<int dim, int spacedim>
bool FEValuesViews::SymmetricTensor< 2, dim, spacedim >::ShapeFunctionData::is_nonzero_shape_function_component[value_type::n_independent_components]

For each pair (shape function,component within vector), store whether the selected vector component may be nonzero. For primitive shape functions we know for sure whether a certain scalar component of a given shape function is nonzero, whereas for non-primitive shape functions this may not be entirely clear (e.g. for RT elements it depends on the shape of a cell).

Definition at line 1371 of file fe_values_views.h.

◆ row_index

template<int dim, int spacedim>
unsigned int FEValuesViews::SymmetricTensor< 2, dim, spacedim >::ShapeFunctionData::row_index[value_type::n_independent_components]

For each pair (shape function, component within vector), store the row index within the shape_values, shape_gradients, and shape_hessians tables (the column index is the quadrature point index). If the shape function is primitive, then we can get this information from the shape_function_to_row_table of the FEValues object; otherwise, we have to work a bit harder to compute this information.

Definition at line 1383 of file fe_values_views.h.

◆ single_nonzero_component

template<int dim, int spacedim>
int FEValuesViews::SymmetricTensor< 2, dim, spacedim >::ShapeFunctionData::single_nonzero_component

For each shape function say the following: if only a single entry in is_nonzero_shape_function_component for this shape function is nonzero, then store the corresponding value of row_index and single_nonzero_component_index represents the index between 0 and (dim^2 + dim)/2 for which it is attained. If multiple components are nonzero, then store -1. If no components are nonzero then store -2.

Definition at line 1393 of file fe_values_views.h.

◆ single_nonzero_component_index

template<int dim, int spacedim>
unsigned int FEValuesViews::SymmetricTensor< 2, dim, spacedim >::ShapeFunctionData::single_nonzero_component_index

Index of the single_nonzero_component .

Definition at line 1398 of file fe_values_views.h.


The documentation for this struct was generated from the following file: