Reference documentation for deal.II version 9.6.0
|
Functions | |
Push forward operations | |
template<int dim, typename Number > | |
Tensor< 1, dim, Number > | push_forward (const Tensor< 1, dim, Number > &V, const Tensor< 2, dim, Number > &F) |
template<int dim, typename Number > | |
Tensor< 2, dim, Number > | push_forward (const Tensor< 2, dim, Number > &T, const Tensor< 2, dim, Number > &F) |
template<int dim, typename Number > | |
SymmetricTensor< 2, dim, Number > | push_forward (const SymmetricTensor< 2, dim, Number > &T, const Tensor< 2, dim, Number > &F) |
template<int dim, typename Number > | |
Tensor< 4, dim, Number > | push_forward (const Tensor< 4, dim, Number > &H, const Tensor< 2, dim, Number > &F) |
template<int dim, typename Number > | |
SymmetricTensor< 4, dim, Number > | push_forward (const SymmetricTensor< 4, dim, Number > &H, const Tensor< 2, dim, Number > &F) |
Pull back operations | |
template<int dim, typename Number > | |
Tensor< 1, dim, Number > | pull_back (const Tensor< 1, dim, Number > &v, const Tensor< 2, dim, Number > &F) |
template<int dim, typename Number > | |
Tensor< 2, dim, Number > | pull_back (const Tensor< 2, dim, Number > &t, const Tensor< 2, dim, Number > &F) |
template<int dim, typename Number > | |
SymmetricTensor< 2, dim, Number > | pull_back (const SymmetricTensor< 2, dim, Number > &t, const Tensor< 2, dim, Number > &F) |
template<int dim, typename Number > | |
Tensor< 4, dim, Number > | pull_back (const Tensor< 4, dim, Number > &h, const Tensor< 2, dim, Number > &F) |
template<int dim, typename Number > | |
SymmetricTensor< 4, dim, Number > | pull_back (const SymmetricTensor< 4, dim, Number > &h, const Tensor< 2, dim, Number > &F) |
Transformation of tensors that are defined in terms of a set of covariant basis vectors. Rank-1 and rank-2 covariant tensors \(\left(\bullet\right)^{\flat} = \mathbf{T}\) (and its spatial counterpart \(\mathbf{t}\)) typically satisfy the relation
\[ \int_{\partial V_{0}} \left[ \nabla_{0} \times \mathbf{T} \right] \cdot \mathbf{N} \; dA = \oint_{\partial A_{0}} \mathbf{T} \cdot \mathbf{L} \; dL = \oint_{\partial A_{t}} \mathbf{t} \cdot \mathbf{l} \; dl = \int_{\partial V_{t}} \left[ \nabla \times \mathbf{t} \right] \cdot \mathbf{n} \; da \]
where the control surfaces \(\partial V_{0}\) and \(\partial V_{t}\) with outwards facing normals \(\mathbf{N}\) and \(\mathbf{n}\) are bounded by the curves \(\partial A_{0}\) and \(\partial A_{t}\) that are, respectively, associated with the line directors \(\mathbf{L}\) and \(\mathbf{l}\).
Tensor< 1, dim, Number > Physics::Transformations::Covariant::push_forward | ( | const Tensor< 1, dim, Number > & | V, |
const Tensor< 2, dim, Number > & | F ) |
Return the result of the push forward transformation on a covariant vector, i.e.
\[ \chi\left(\bullet\right)^{\flat} \dealcoloneq \mathbf{F}^{-T} \cdot \left(\bullet\right)^{\flat} \]
[in] | V | The (referential) vector to be operated on |
[in] | F | The deformation gradient tensor \(\mathbf{F} \left( \mathbf{X} \right)\) |
Tensor< 2, dim, Number > Physics::Transformations::Covariant::push_forward | ( | const Tensor< 2, dim, Number > & | T, |
const Tensor< 2, dim, Number > & | F ) |
Return the result of the push forward transformation on a rank-2 covariant tensor, i.e.
\[ \chi\left(\bullet\right)^{\flat} \dealcoloneq \mathbf{F}^{-T} \cdot \left(\bullet\right)^{\flat} \cdot \mathbf{F}^{-1} \]
[in] | T | The (referential) rank-2 tensor to be operated on |
[in] | F | The deformation gradient tensor \(\mathbf{F} \left( \mathbf{X} \right)\) |
SymmetricTensor< 2, dim, Number > Physics::Transformations::Covariant::push_forward | ( | const SymmetricTensor< 2, dim, Number > & | T, |
const Tensor< 2, dim, Number > & | F ) |
Return the result of the push forward transformation on a rank-2 covariant symmetric tensor, i.e.
\[ \chi\left(\bullet\right)^{\flat} \dealcoloneq \mathbf{F}^{-T} \cdot \left(\bullet\right)^{\flat} \cdot \mathbf{F}^{-1} \]
[in] | T | The (referential) rank-2 symmetric tensor to be operated on |
[in] | F | The deformation gradient tensor \(\mathbf{F} \left( \mathbf{X} \right)\) |
Tensor< 4, dim, Number > Physics::Transformations::Covariant::push_forward | ( | const Tensor< 4, dim, Number > & | H, |
const Tensor< 2, dim, Number > & | F ) |
Return the result of the push forward transformation on a rank-4 covariant tensor, i.e. (in index notation):
\[ \left[ \chi\left(\bullet\right)^{\flat} \right]_{ijkl} \dealcoloneq F^{-T}_{iI} F^{-T}_{jJ} \left(\bullet\right)^{\flat}_{IJKL} F^{-T}_{kK} F^{-T}_{lL} \]
[in] | H | The (referential) rank-4 tensor to be operated on |
[in] | F | The deformation gradient tensor \(\mathbf{F} \left( \mathbf{X} \right)\) |
SymmetricTensor< 4, dim, Number > Physics::Transformations::Covariant::push_forward | ( | const SymmetricTensor< 4, dim, Number > & | H, |
const Tensor< 2, dim, Number > & | F ) |
Return the result of the push forward transformation on a rank-4 covariant symmetric tensor, i.e. (in index notation):
\[ \left[ \chi\left(\bullet\right)^{\flat} \right]_{ijkl} \dealcoloneq F^{-T}_{iI} F^{-T}_{jJ} \left(\bullet\right)^{\flat}_{IJKL} F^{-T}_{kK} F^{-T}_{lL} \]
[in] | H | The (referential) rank-4 symmetric tensor to be operated on |
[in] | F | The deformation gradient tensor \(\mathbf{F} \left( \mathbf{X} \right)\) |
Tensor< 1, dim, Number > Physics::Transformations::Covariant::pull_back | ( | const Tensor< 1, dim, Number > & | v, |
const Tensor< 2, dim, Number > & | F ) |
Return the result of the pull back transformation on a covariant vector, i.e.
\[ \chi^{-1}\left(\bullet\right)^{\flat} \dealcoloneq \mathbf{F}^{T} \cdot \left(\bullet\right)^{\flat} \]
[in] | v | The (spatial) vector to be operated on |
[in] | F | The deformation gradient tensor \(\mathbf{F} \left( \mathbf{X} \right)\) |
Tensor< 2, dim, Number > Physics::Transformations::Covariant::pull_back | ( | const Tensor< 2, dim, Number > & | t, |
const Tensor< 2, dim, Number > & | F ) |
Return the result of the pull back transformation on a rank-2 covariant tensor, i.e.
\[ \chi^{-1}\left(\bullet\right)^{\flat} \dealcoloneq \mathbf{F}^{T} \cdot \left(\bullet\right)^{\flat} \cdot \mathbf{F} \]
[in] | t | The (spatial) tensor to be operated on |
[in] | F | The deformation gradient tensor \(\mathbf{F} \left( \mathbf{X} \right)\) |
SymmetricTensor< 2, dim, Number > Physics::Transformations::Covariant::pull_back | ( | const SymmetricTensor< 2, dim, Number > & | t, |
const Tensor< 2, dim, Number > & | F ) |
Return the result of the pull back transformation on a rank-2 covariant symmetric tensor, i.e.
\[ \chi^{-1}\left(\bullet\right)^{\flat} \dealcoloneq \mathbf{F}^{T} \cdot \left(\bullet\right)^{\flat} \cdot \mathbf{F} \]
[in] | t | The (spatial) symmetric tensor to be operated on |
[in] | F | The deformation gradient tensor \(\mathbf{F} \left( \mathbf{X} \right)\) |
Tensor< 4, dim, Number > Physics::Transformations::Covariant::pull_back | ( | const Tensor< 4, dim, Number > & | h, |
const Tensor< 2, dim, Number > & | F ) |
Return the result of the pull back transformation on a rank-4 contravariant tensor, i.e. (in index notation):
\[ \left[ \chi^{-1}\left(\bullet\right)^{\flat} \right]_{IJKL} \dealcoloneq F^{T}_{Ii} F^{T}_{Jj} \left(\bullet\right)^{\flat}_{ijkl} F^{T}_{Kk} F^{T}_{Ll} \]
[in] | h | The (spatial) tensor to be operated on |
[in] | F | The deformation gradient tensor \(\mathbf{F} \left( \mathbf{X} \right)\) |
SymmetricTensor< 4, dim, Number > Physics::Transformations::Covariant::pull_back | ( | const SymmetricTensor< 4, dim, Number > & | h, |
const Tensor< 2, dim, Number > & | F ) |
Return the result of the pull back transformation on a rank-4 contravariant symmetric tensor, i.e. (in index notation):
\[ \left[ \chi^{-1}\left(\bullet\right)^{\flat} \right]_{IJKL} \dealcoloneq F^{T}_{Ii} F^{T}_{Jj} \left(\bullet\right)^{\flat}_{ijkl} F^{T}_{Kk} F^{T}_{Ll} \]
[in] | h | The (spatial) symmetric tensor to be operated on |
[in] | F | The deformation gradient tensor \(\mathbf{F} \left( \mathbf{X} \right)\) |