|
| ImplicitRungeKutta ()=default |
|
| ImplicitRungeKutta (const runge_kutta_method method, const unsigned int max_it=100, const double tolerance=1e-6) |
|
void | initialize (const runge_kutta_method method) override |
|
double | evolve_one_time_step (const std::function< VectorType(const double, const VectorType &)> &f, const std::function< VectorType(const double, const double, const VectorType &)> &id_minus_tau_J_inverse, double t, double delta_t, VectorType &y) override |
|
void | set_newton_solver_parameters (const unsigned int max_it, const double tolerance) |
|
const Status & | get_status () const override |
|
double | evolve_one_time_step (std::vector< std::function< VectorType(const double, const VectorType &)> > &F, std::vector< std::function< VectorType(const double, const double, const VectorType &)> > &J_inverse, double t, double delta_t, VectorType &y) override |
|
|
void | compute_stages (const std::function< VectorType(const double, const VectorType &)> &f, const std::function< VectorType(const double, const double, const VectorType &)> &id_minus_tau_J_inverse, double t, double delta_t, VectorType &y, std::vector< VectorType > &f_stages) |
|
void | newton_solve (const std::function< void(const VectorType &, VectorType &)> &get_residual, const std::function< VectorType(const VectorType &)> &id_minus_tau_J_inverse, VectorType &y) |
|
void | compute_residual (const std::function< VectorType(const double, const VectorType &)> &f, double t, double delta_t, const VectorType &new_y, const VectorType &y, VectorType &tendency, VectorType &residual) const |
|
template<typename VectorType>
class TimeStepping::ImplicitRungeKutta< VectorType >
This class is derived from RungeKutta and implement the implicit methods. This class works only for Diagonal Implicit Runge-Kutta (DIRK) methods.
Definition at line 529 of file time_stepping.h.
template<typename VectorType >
double TimeStepping::ImplicitRungeKutta< VectorType >::evolve_one_time_step |
( |
const std::function< VectorType(const double, const VectorType &)> & | f, |
|
|
const std::function< VectorType(const double, const double, const VectorType &)> & | id_minus_tau_J_inverse, |
|
|
double | t, |
|
|
double | delta_t, |
|
|
VectorType & | y ) |
|
overridevirtual |
This function is used to advance from time t
to t+ delta_t
. f
is the function \( f(t,y) \) that should be integrated, the input parameters are the time t and the vector y and the output is value of f at this point. id_minus_tau_J_inverse
is a function that computes \(
(I-\tau J)^{-1}\) where \( I \) is the identity matrix, \( \tau \) is given, and \( J \) is the Jacobian \( \frac{\partial f}{\partial y} \). The input parameters this function receives are the time, \( \tau \), and a vector. The output is the value of function at this point. evolve_one_time_step returns the time at the end of the time step.
Implements TimeStepping::RungeKutta< VectorType >.
template<typename VectorType >
double TimeStepping::RungeKutta< VectorType >::evolve_one_time_step |
( |
std::vector< std::function< VectorType(const double, const VectorType &)> > & | F, |
|
|
std::vector< std::function< VectorType(const double, const double, const VectorType &)> > & | J_inverse, |
|
|
double | t, |
|
|
double | delta_t, |
|
|
VectorType & | y ) |
|
overridevirtualinherited |
This function is used to advance from time t
to t+ delta_t
. F
is a vector of functions \( f(t,y) \) that should be integrated, the input parameters are the time t and the vector y and the output is value of f at this point. J_inverse
is a vector functions that compute the inverse of the Jacobians associated to the implicit problems. The input parameters are the time, \( \tau \), and a vector. The output is the value of function at this point. This function returns the time at the end of the time step. When using Runge-Kutta methods, F
and J_inverse
can only contain one element.
Implements TimeStepping::TimeStepping< VectorType >.