Loading [MathJax]/extensions/TeX/newcommand.js
 Reference documentation for deal.II version 9.6.0
\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}} \newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=} \newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]} \newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages Concepts
QGaussChebyshev< dim > Class Template Reference

#include <deal.II/base/quadrature_lib.h>

Inheritance diagram for QGaussChebyshev< dim >:

Public Member Functions

 QGaussChebyshev (const unsigned int n)
 Generate a formula with n quadrature points.
 
 QGaussChebyshev (const unsigned int n)
 

Detailed Description

template<int dim>
class QGaussChebyshev< dim >

Gauss-Chebyshev quadrature rules integrate the weighted product \int_{-1}^1 f(x) w(x) dx with weight given by: w(x) = 1/\sqrt{1-x^2}. The nodes and weights are known analytically, and are exact for monomials up to the order 2n-1, where n is the number of quadrature points. Here we rescale the quadrature formula so that it is defined on the interval [0,1] instead of [-1,1]. So the quadrature formulas integrate exactly the integral \int_0^1 f(x) w(x) dx with the weight: w(x) = 1/\sqrt{x(1-x)}. For details see: M. Abramowitz & I.A. Stegun: Handbook of Mathematical Functions, par. 25.4.38

Definition at line 558 of file quadrature_lib.h.

Constructor & Destructor Documentation

◆ QGaussChebyshev() [1/2]

template<int dim>
QGaussChebyshev< dim >::QGaussChebyshev ( const unsigned int n)

Generate a formula with n quadrature points.

Definition at line 1262 of file quadrature_lib.cc.

◆ QGaussChebyshev() [2/2]

QGaussChebyshev< 1 >::QGaussChebyshev ( const unsigned int n)

Definition at line 1246 of file quadrature_lib.cc.


The documentation for this class was generated from the following files: