Reference documentation for deal.II version 9.6.0
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
NonMatching::AdditionalQGeneratorData Struct Reference

#include <deal.II/non_matching/quadrature_generator.h>

Public Member Functions

 AdditionalQGeneratorData (const unsigned int max_box_splits=4, const double lower_bound_implicit_function=1e-11, const double min_distance_between_roots=1e-12, const double limit_to_be_definite=1e-11, const double root_finder_tolerance=1e-12, const unsigned int max_root_finder_splits=2, bool split_in_half=true)
 

Public Attributes

unsigned int max_box_splits
 
double lower_bound_implicit_function
 
double min_distance_between_roots
 
double limit_to_be_definite
 
double root_finder_tolerance
 
unsigned int max_root_finder_splits
 
bool split_in_half
 

Detailed Description

Struct storing settings for the QuadratureGenerator class.

Definition at line 59 of file quadrature_generator.h.

Constructor & Destructor Documentation

◆ AdditionalQGeneratorData()

NonMatching::AdditionalQGeneratorData::AdditionalQGeneratorData ( const unsigned int max_box_splits = 4,
const double lower_bound_implicit_function = 1e-11,
const double min_distance_between_roots = 1e-12,
const double limit_to_be_definite = 1e-11,
const double root_finder_tolerance = 1e-12,
const unsigned int max_root_finder_splits = 2,
bool split_in_half = true )

Constructor.

Definition at line 1788 of file quadrature_generator.cc.

Member Data Documentation

◆ max_box_splits

unsigned int NonMatching::AdditionalQGeneratorData::max_box_splits

The number of times we are allowed to split the incoming box and recurse on each child.

Definition at line 76 of file quadrature_generator.h.

◆ lower_bound_implicit_function

double NonMatching::AdditionalQGeneratorData::lower_bound_implicit_function

For a level set function, \(\psi\), the implicit function theorem states that it is possible to write one of the coordinates \(x_i\) as a function of the others if

\(|\frac{\partial \psi}{\partial x_i}| > 0\).

In practice, the bound we have for the expression in the left-hand side may be near but not equal to zero due to roundoff errors.

This constant is a safety margin, \(C\), that states that the implicit function theorem can be used when

\(|\frac{\partial \psi}{\partial x_i}| > C\)

Thus this constant must be non-negative.

Definition at line 95 of file quadrature_generator.h.

◆ min_distance_between_roots

double NonMatching::AdditionalQGeneratorData::min_distance_between_roots

If two roots are closer to each other than this distance they are merged to one.

Definition at line 101 of file quadrature_generator.h.

◆ limit_to_be_definite

double NonMatching::AdditionalQGeneratorData::limit_to_be_definite

A constant, \(C\), controlling when a level set function, \(\psi\), is considered positive or negative definite:

\(\psi(x) > C \Rightarrow \text{Positive definite}\), \(\psi(x) < -C \Rightarrow \text{Negative definite}\).

Definition at line 110 of file quadrature_generator.h.

◆ root_finder_tolerance

double NonMatching::AdditionalQGeneratorData::root_finder_tolerance

Tolerance for convergence of the underlying root finder.

Definition at line 115 of file quadrature_generator.h.

◆ max_root_finder_splits

unsigned int NonMatching::AdditionalQGeneratorData::max_root_finder_splits

The number of times the underlying rootfinder is allowed to split an interval, while trying to find multiple roots.

Definition at line 121 of file quadrature_generator.h.

◆ split_in_half

bool NonMatching::AdditionalQGeneratorData::split_in_half

This determines how a box is split when this is necessary. If true, the box is split in two, if set to false the box is split into its \(2^{dim}\) children.

Definition at line 128 of file quadrature_generator.h.


The documentation for this struct was generated from the following files: