36#include <boost/container/small_vector.hpp>
49template <
int dim,
int spacedim>
51 const unsigned int polynomial_degree)
52 : polynomial_degree(polynomial_degree)
53 , n_shape_functions(
Utilities::fixed_power<dim>(polynomial_degree + 1))
54 , line_support_points(
QGaussLobatto<1>(polynomial_degree + 1))
55 , tensor_product_quadrature(false)
56 , output_data(nullptr)
61template <
int dim,
int spacedim>
79template <
int dim,
int spacedim>
86 this->update_each = update_flags;
88 const unsigned int n_q_points = quadrature.
size();
91 volume_elements.resize(n_q_points);
98 tensor_product_quadrature =
false;
104 if (tensor_product_quadrature)
106 const std::array<Quadrature<1>, dim> &quad_array =
108 for (
unsigned int i = 1; i < dim && tensor_product_quadrature; ++i)
110 if (quad_array[i - 1].size() != quad_array[i].size())
112 tensor_product_quadrature =
false;
117 const std::vector<Point<1>> &points_1 =
118 quad_array[i - 1].get_points();
119 const std::vector<Point<1>> &points_2 =
120 quad_array[i].get_points();
121 const std::vector<double> &weights_1 =
122 quad_array[i - 1].get_weights();
123 const std::vector<double> &weights_2 =
124 quad_array[i].get_weights();
125 for (
unsigned int j = 0; j < quad_array[i].size(); ++j)
127 if (
std::abs(points_1[j][0] - points_2[j][0]) > 1.e-10 ||
128 std::abs(weights_1[j] - weights_2[j]) > 1.e-10)
130 tensor_product_quadrature =
false;
137 if (tensor_product_quadrature)
144 shape_info.lexicographic_numbering =
147 shape_info.n_q_points = n_q_points;
148 shape_info.dofs_per_component_on_cell =
157template <
int dim,
int spacedim>
162 const unsigned int n_original_q_points)
164 reinit(update_flags, quadrature);
168 if (dim > 1 && tensor_product_quadrature)
170 constexpr unsigned int facedim = dim - 1;
173 shape_info.lexicographic_numbering =
176 shape_info.n_q_points = n_original_q_points;
177 shape_info.dofs_per_component_on_cell =
183 if (this->update_each &
187 aux[0].resize(n_original_q_points);
189 aux[1].resize(n_original_q_points);
192 for (
const unsigned int i :
GeometryInfo<dim>::face_indices())
194 unit_tangentials[i].resize(n_original_q_points);
195 std::fill(unit_tangentials[i].begin(),
196 unit_tangentials[i].end(),
201 .resize(n_original_q_points);
216template <
int dim,
int spacedim>
224 FETools::lexicographic_to_hierarchic_numbering<dim>(p))
226 internal::MappingQImplementation::unit_support_points<dim>(
231 compute_support_point_weights_perimeter_to_interior(
235 internal::MappingQImplementation::compute_support_point_weights_cell<dim>(
239 ExcMessage(
"It only makes sense to create polynomial mappings "
240 "with a polynomial degree greater or equal to one."));
245template <
int dim,
int spacedim>
252template <
int dim,
int spacedim>
254 : polynomial_degree(mapping.polynomial_degree)
255 , line_support_points(mapping.line_support_points)
256 , polynomials_1d(mapping.polynomials_1d)
257 , renumber_lexicographic_to_hierarchic(
258 mapping.renumber_lexicographic_to_hierarchic)
259 , unit_cell_support_points(mapping.unit_cell_support_points)
260 , support_point_weights_perimeter_to_interior(
261 mapping.support_point_weights_perimeter_to_interior)
262 , support_point_weights_cell(mapping.support_point_weights_cell)
267template <
int dim,
int spacedim>
268std::unique_ptr<Mapping<dim, spacedim>>
271 return std::make_unique<MappingQ<dim, spacedim>>(*this);
276template <
int dim,
int spacedim>
280 return polynomial_degree;
285template <
int dim,
int spacedim>
291 if (polynomial_degree == 1)
293 const auto vertices = this->get_vertices(cell);
302 polynomials_1d.size() == 2,
303 renumber_lexicographic_to_hierarchic));
326template <
int dim,
int spacedim>
345 const Point<1> &initial_p_unit)
const
349 if (polynomial_degree == 1)
351 const auto vertices = this->get_vertices(cell);
358 renumber_lexicographic_to_hierarchic);
367 renumber_lexicographic_to_hierarchic);
377 const Point<2> &initial_p_unit)
const
379 if (polynomial_degree == 1)
381 const auto vertices = this->get_vertices(cell);
388 renumber_lexicographic_to_hierarchic);
397 renumber_lexicographic_to_hierarchic);
407 const Point<3> &initial_p_unit)
const
409 if (polynomial_degree == 1)
411 const auto vertices = this->get_vertices(cell);
418 renumber_lexicographic_to_hierarchic);
427 renumber_lexicographic_to_hierarchic);
437 const Point<1> &initial_p_unit)
const
440 const int spacedim = 2;
448 get_data(update_flags, point_quadrature));
450 mdata->mapping_support_points = this->compute_mapping_support_points(cell);
460 renumber_lexicographic_to_hierarchic);
470 const Point<2> &initial_p_unit)
const
473 const int spacedim = 3;
481 get_data(update_flags, point_quadrature));
483 mdata->mapping_support_points = this->compute_mapping_support_points(cell);
493 renumber_lexicographic_to_hierarchic);
511template <
int dim,
int spacedim>
519 if ((polynomial_degree == 1) &&
520 ((dim == 1) || ((dim == 2) && (dim == spacedim))))
543 const auto vertices_ = this->get_vertices(cell);
547 for (
unsigned int i = 0; i <
vertices.size(); ++i)
573 const double eps = 1e-15;
574 if (-eps <= point[1] && point[1] <= 1 + eps &&
575 -eps <= point[0] && point[0] <= 1 + eps)
606 if (this->preserves_vertex_locations())
608 initial_p_unit = cell->real_to_unit_cell_affine_approximation(p);
610 if (dim == 1 && polynomial_degree == 1)
611 return initial_p_unit;
616 for (
unsigned int d = 0; d < dim; ++d)
617 initial_p_unit[d] = 0.5;
623 this->transform_real_to_unit_cell_internal(cell, p, initial_p_unit);
631template <
int dim,
int spacedim>
649 std::vector<Point<spacedim>> support_points_higher_order;
650 boost::container::small_vector<Point<spacedim>,
653 if (polynomial_degree == 1)
654 vertices = this->get_vertices(cell);
656 support_points_higher_order = this->compute_mapping_support_points(cell);
658 polynomial_degree == 1 ?
vertices.data() :
659 support_points_higher_order.data(),
660 Utilities::pow(polynomial_degree + 1, dim));
665 inverse_approximation(support_points, unit_cell_support_points);
667 const unsigned int n_points = real_points.size();
672 for (
unsigned int i = 0; i < n_points; i += n_lanes)
673 if (n_points - i > 1)
676 for (
unsigned int j = 0; j < n_lanes; ++j)
677 if (i + j < n_points)
678 for (
unsigned int d = 0; d < spacedim; ++d)
679 p_vec[d][j] = real_points[i + j][d];
681 for (
unsigned int d = 0; d < spacedim; ++d)
682 p_vec[d][j] = real_points[i][d];
688 inverse_approximation.compute(p_vec),
691 renumber_lexicographic_to_hierarchic);
698 for (
unsigned int j = 0; j < n_lanes && i + j < n_points; ++j)
700 for (
unsigned int d = 0; d < dim; ++d)
701 unit_points[i + j][d] = unit_point[d][j];
706 inverse_approximation.compute(real_points[i + j]),
709 renumber_lexicographic_to_hierarchic);
715 inverse_approximation.compute(real_points[i]),
718 renumber_lexicographic_to_hierarchic);
723template <
int dim,
int spacedim>
734 for (
unsigned int i = 0; i < 5; ++i)
779template <
int dim,
int spacedim>
780std::unique_ptr<typename Mapping<dim, spacedim>::InternalDataBase>
784 std::unique_ptr<typename Mapping<dim, spacedim>::InternalDataBase> data_ptr =
785 std::make_unique<InternalData>(polynomial_degree);
786 data_ptr->reinit(update_flags, q);
792template <
int dim,
int spacedim>
793std::unique_ptr<typename Mapping<dim, spacedim>::InternalDataBase>
800 std::unique_ptr<typename Mapping<dim, spacedim>::InternalDataBase> data_ptr =
801 std::make_unique<InternalData>(polynomial_degree);
806 quadrature[0].size());
813template <
int dim,
int spacedim>
814std::unique_ptr<typename Mapping<dim, spacedim>::InternalDataBase>
819 std::unique_ptr<typename Mapping<dim, spacedim>::InternalDataBase> data_ptr =
820 std::make_unique<InternalData>(polynomial_degree);
832template <
int dim,
int spacedim>
848 const unsigned int n_q_points = quadrature.
size();
860 if (polynomial_degree == 1)
863 const auto vertices = this->get_vertices(cell);
864 for (
unsigned int i = 0; i < GeometryInfo<dim>::vertices_per_cell; ++i)
877 (polynomial_degree == 1 && this->preserves_vertex_locations() ?
885 computed_cell_similarity,
895 computed_cell_similarity,
899 renumber_lexicographic_to_hierarchic,
906 computed_cell_similarity,
910 renumber_lexicographic_to_hierarchic,
916 spacedim>(computed_cell_similarity,
920 renumber_lexicographic_to_hierarchic,
925 spacedim>(computed_cell_similarity,
929 renumber_lexicographic_to_hierarchic,
934 computed_cell_similarity,
938 renumber_lexicographic_to_hierarchic,
943 spacedim>(computed_cell_similarity,
947 renumber_lexicographic_to_hierarchic,
952 computed_cell_similarity,
956 renumber_lexicographic_to_hierarchic,
960 const std::vector<double> &weights = quadrature.
get_weights();
968 (output_data.
JxW_values.size() == n_q_points),
978 for (
unsigned int point = 0; point < n_q_points; ++point)
991 cell->diameter() /
std::sqrt(
double(dim))),
993 cell->center(), det, point)));
995 output_data.
JxW_values[point] = weights[point] * det;
1003 for (
unsigned int i = 0; i < spacedim; ++i)
1004 for (
unsigned int j = 0; j < dim; ++j)
1005 DX_t[j][i] = output_data.
jacobians[point][i][j];
1008 for (
unsigned int i = 0; i < dim; ++i)
1009 for (
unsigned int j = 0; j < dim; ++j)
1010 G[i][j] = DX_t[i] * DX_t[j];
1016 if (computed_cell_similarity ==
1027 Assert(spacedim == dim + 1,
1029 "There is no (unique) cell normal for " +
1031 "-dimensional cells in " +
1033 "-dimensional space. This only works if the "
1034 "space dimension is one greater than the "
1035 "dimensionality of the mesh cells."));
1039 cross_product_2d(-DX_t[0]);
1042 cross_product_3d(DX_t[0], DX_t[1]);
1047 if (cell->direction_flag() ==
false)
1055 return computed_cell_similarity;
1060template <
int dim,
int spacedim>
1064 const unsigned int face_no,
1083 (&cell->get_triangulation() !=
1087 if (polynomial_degree == 1)
1091 const auto vertices = this->get_vertices(cell);
1092 for (
unsigned int i = 0; i < GeometryInfo<dim>::vertices_per_cell;
1098 this->compute_mapping_support_points(cell);
1110 cell->face_orientation(face_no),
1111 cell->face_flip(face_no),
1112 cell->face_rotation(face_no),
1113 quadrature[0].
size()),
1117 renumber_lexicographic_to_hierarchic,
1123template <
int dim,
int spacedim>
1127 const unsigned int face_no,
1128 const unsigned int subface_no,
1145 (&cell->get_triangulation() !=
1149 if (polynomial_degree == 1)
1153 const auto vertices = this->get_vertices(cell);
1154 for (
unsigned int i = 0; i < GeometryInfo<dim>::vertices_per_cell;
1160 this->compute_mapping_support_points(cell);
1173 cell->combined_face_orientation(face_no),
1175 cell->subface_case(face_no)),
1179 renumber_lexicographic_to_hierarchic,
1185template <
int dim,
int spacedim>
1202 const unsigned int n_q_points = quadrature.size();
1204 if (polynomial_degree == 1)
1207 const auto vertices = this->get_vertices(cell);
1208 for (
unsigned int i = 0; i < GeometryInfo<dim>::vertices_per_cell; ++i)
1220 renumber_lexicographic_to_hierarchic,
1230 renumber_lexicographic_to_hierarchic,
1239 renumber_lexicographic_to_hierarchic,
1248 renumber_lexicographic_to_hierarchic,
1257 renumber_lexicographic_to_hierarchic,
1266 renumber_lexicographic_to_hierarchic,
1275 renumber_lexicographic_to_hierarchic,
1279 const std::vector<double> &weights = quadrature.get_weights();
1291 for (
unsigned int point = 0; point < n_q_points; ++point)
1301 cell->diameter() /
std::sqrt(
double(dim))),
1303 cell->center(), det, point)));
1307 for (
unsigned int d = 0; d < spacedim; d++)
1311 output_data.
JxW_values[point] = weights[point] * det * normal.
norm();
1315 normal /= normal.
norm();
1324template <
int dim,
int spacedim>
1341 output_data.
initialize(unit_points.size(), update_flags);
1343 auto internal_data =
1344 this->get_data(update_flags,
1346 unit_points.end())));
1349 if (polynomial_degree == 1)
1352 const auto vertices = this->get_vertices(cell);
1353 for (
unsigned int i = 0; i < GeometryInfo<dim>::vertices_per_cell; ++i)
1364 renumber_lexicographic_to_hierarchic,
1372template <
int dim,
int spacedim>
1376 const unsigned int face_no,
1390 if (polynomial_degree == 1)
1393 const auto vertices = this->get_vertices(cell);
1394 for (
unsigned int i = 0; i < GeometryInfo<dim>::vertices_per_cell; ++i)
1410 renumber_lexicographic_to_hierarchic,
1416template <
int dim,
int spacedim>
1432template <
int dim,
int spacedim>
1448template <
int dim,
int spacedim>
1456 switch (mapping_kind)
1480template <
int dim,
int spacedim>
1492 &data = *
static_cast<const InternalData &
>(mapping_data).output_data;
1494 switch (mapping_kind)
1500 "update_covariant_transformation"));
1502 for (
unsigned int q = 0; q < output.size(); ++q)
1503 for (
unsigned int i = 0; i < spacedim; ++i)
1504 for (
unsigned int j = 0; j < spacedim; ++j)
1509 for (
unsigned int K = 0; K < dim; ++K)
1511 tmp[K] = covariant[j][0] * input[q][i][0][K];
1512 for (
unsigned int J = 1; J < dim; ++J)
1513 tmp[K] += covariant[j][J] * input[q][i][J][K];
1515 for (
unsigned int k = 0; k < spacedim; ++k)
1517 output[q][i][j][k] = covariant[k][0] * tmp[0];
1518 for (
unsigned int K = 1; K < dim; ++K)
1519 output[q][i][j][k] += covariant[k][K] * tmp[K];
1532template <
int dim,
int spacedim>
1540 switch (mapping_kind)
1557template <
int dim,
int spacedim>
1564 if (this->polynomial_degree == 2)
1566 for (
unsigned int line_no = 0;
1567 line_no < GeometryInfo<dim>::lines_per_cell;
1574 cell->line(line_no));
1579 cell->get_manifold() :
1588 std::vector<Point<spacedim>> tmp_points;
1589 for (
unsigned int line_no = 0;
1590 line_no < GeometryInfo<dim>::lines_per_cell;
1597 cell->line(line_no));
1602 cell->get_manifold() :
1606 const std::array<Point<spacedim>, 2>
vertices{
1607 {cell->vertex(reference_cell.line_to_cell_vertices(line_no, 0)),
1608 cell->vertex(reference_cell.line_to_cell_vertices(line_no, 1))}};
1610 const std::size_t n_rows =
1611 support_point_weights_perimeter_to_interior[0].size(0);
1612 a.resize(a.size() + n_rows);
1616 support_point_weights_perimeter_to_interior[0],
1633 std::vector<Point<3>> tmp_points;
1636 for (
unsigned int face_no = 0; face_no < faces_per_cell; ++face_no)
1641 const bool face_orientation = cell->face_orientation(face_no),
1642 face_flip = cell->face_flip(face_no),
1643 face_rotation = cell->face_rotation(face_no);
1648 for (
unsigned int i = 0; i < vertices_per_face; ++i)
1649 Assert(face->vertex_index(i) ==
1651 face_no, i, face_orientation, face_flip, face_rotation)),
1656 for (
unsigned int i = 0; i < lines_per_face; ++i)
1659 face_no, i, face_orientation, face_flip, face_rotation)),
1665 boost::container::small_vector<Point<3>, 200> tmp_points(
1670 if (polynomial_degree > 1)
1671 for (
unsigned int line = 0; line < GeometryInfo<2>::lines_per_cell;
1673 for (
unsigned int i = 0; i < polynomial_degree - 1; ++i)
1674 tmp_points[4 + line * (polynomial_degree - 1) + i] =
1676 (polynomial_degree - 1) *
1680 const std::size_t n_rows =
1681 support_point_weights_perimeter_to_interior[1].size(0);
1682 a.resize(a.size() + n_rows);
1684 face->get_manifold().get_new_points(
1686 support_point_weights_perimeter_to_interior[1],
1705 for (
unsigned int q = 0, q2 = 0; q2 < polynomial_degree - 1; ++q2)
1706 for (
unsigned int q1 = 0; q1 < polynomial_degree - 1; ++q1, ++q)
1708 Point<2> point(line_support_points[q1 + 1][0],
1709 line_support_points[q2 + 1][0]);
1714 const std::size_t n_rows = weights.size(0);
1715 a.resize(a.size() + n_rows);
1717 cell->get_manifold().get_new_points(
1723template <
int dim,
int spacedim>
1734template <
int dim,
int spacedim>
1735std::vector<Point<spacedim>>
1740 std::vector<Point<spacedim>> a;
1743 a.push_back(cell->vertex(i));
1745 if (this->polynomial_degree > 1)
1752 bool all_manifold_ids_are_equal = (dim == spacedim);
1753 if (all_manifold_ids_are_equal &&
1755 &cell->get_manifold()) ==
nullptr)
1758 if (&cell->face(f)->get_manifold() != &cell->get_manifold())
1759 all_manifold_ids_are_equal =
false;
1762 for (
unsigned int l = 0; l < GeometryInfo<dim>::lines_per_cell; ++l)
1763 if (&cell->line(l)->get_manifold() != &cell->get_manifold())
1764 all_manifold_ids_are_equal =
false;
1767 if (all_manifold_ids_are_equal)
1769 const std::size_t n_rows = support_point_weights_cell.size(0);
1770 a.resize(a.size() + n_rows);
1774 support_point_weights_cell,
1781 add_line_support_points(cell, a);
1786 add_line_support_points(cell, a);
1789 if (dim != spacedim)
1790 add_quad_support_points(cell, a);
1793 const std::size_t n_rows =
1794 support_point_weights_perimeter_to_interior[1].size(0);
1795 a.resize(a.size() + n_rows);
1797 cell->get_manifold().get_new_points(
1799 support_point_weights_perimeter_to_interior[1],
1806 add_line_support_points(cell, a);
1807 add_quad_support_points(cell, a);
1811 const std::size_t n_rows =
1812 support_point_weights_perimeter_to_interior[2].size(0);
1813 a.resize(a.size() + n_rows);
1815 cell->get_manifold().get_new_points(
1817 support_point_weights_perimeter_to_interior[2],
1833template <
int dim,
int spacedim>
1843template <
int dim,
int spacedim>
1848 Assert(dim == reference_cell.get_dimension(),
1849 ExcMessage(
"The dimension of your mapping (" +
1851 ") and the reference cell cell_type (" +
1853 " ) do not agree."));
1855 return reference_cell.is_hyper_cube();
1861#include "mapping_q.inst"
auto make_const_array_view(const Container &container) -> decltype(make_array_view(container))
ArrayView< std::remove_reference_t< typename std::iterator_traits< Iterator >::reference >, MemorySpaceType > make_array_view(const Iterator begin, const Iterator end)
virtual Point< spacedim > get_new_point_on_line(const typename Triangulation< dim, spacedim >::line_iterator &line) const
virtual void get_new_points(const ArrayView< const Point< spacedim > > &surrounding_points, const Table< 2, double > &weights, ArrayView< Point< spacedim > > new_points) const
Triangulation< dim, spacedim >::cell_iterator cell_of_current_support_points
virtual std::size_t memory_consumption() const override
std::vector< Point< spacedim > > mapping_support_points
bool tensor_product_quadrature
virtual void reinit(const UpdateFlags update_flags, const Quadrature< dim > &quadrature) override
internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > * output_data
void initialize_face(const UpdateFlags update_flags, const Quadrature< dim > &quadrature, const unsigned int n_original_q_points)
InternalData(const unsigned int polynomial_degree)
AlignedVector< double > volume_elements
const std::vector< unsigned int > renumber_lexicographic_to_hierarchic
const Table< 2, double > support_point_weights_cell
virtual std::vector< Point< spacedim > > compute_mapping_support_points(const typename Triangulation< dim, spacedim >::cell_iterator &cell) const
virtual std::unique_ptr< typename Mapping< dim, spacedim >::InternalDataBase > get_data(const UpdateFlags, const Quadrature< dim > &quadrature) const override
void fill_mapping_data_for_face_quadrature(const typename Triangulation< dim, spacedim >::cell_iterator &cell, const unsigned int face_number, const Quadrature< dim - 1 > &face_quadrature, const typename Mapping< dim, spacedim >::InternalDataBase &internal_data, internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > &output_data) const
virtual BoundingBox< spacedim > get_bounding_box(const typename Triangulation< dim, spacedim >::cell_iterator &cell) const override
virtual std::unique_ptr< typename Mapping< dim, spacedim >::InternalDataBase > get_subface_data(const UpdateFlags flags, const Quadrature< dim - 1 > &quadrature) const override
virtual void fill_fe_subface_values(const typename Triangulation< dim, spacedim >::cell_iterator &cell, const unsigned int face_no, const unsigned int subface_no, const Quadrature< dim - 1 > &quadrature, const typename Mapping< dim, spacedim >::InternalDataBase &internal_data, internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > &output_data) const override
virtual void transform(const ArrayView< const Tensor< 1, dim > > &input, const MappingKind kind, const typename Mapping< dim, spacedim >::InternalDataBase &internal, const ArrayView< Tensor< 1, spacedim > > &output) const override
virtual CellSimilarity::Similarity fill_fe_values(const typename Triangulation< dim, spacedim >::cell_iterator &cell, const CellSimilarity::Similarity cell_similarity, const Quadrature< dim > &quadrature, const typename Mapping< dim, spacedim >::InternalDataBase &internal_data, internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > &output_data) const override
virtual void fill_fe_immersed_surface_values(const typename Triangulation< dim, spacedim >::cell_iterator &cell, const NonMatching::ImmersedSurfaceQuadrature< dim > &quadrature, const typename Mapping< dim, spacedim >::InternalDataBase &internal_data, internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > &output_data) const override
const unsigned int polynomial_degree
virtual void transform_points_real_to_unit_cell(const typename Triangulation< dim, spacedim >::cell_iterator &cell, const ArrayView< const Point< spacedim > > &real_points, const ArrayView< Point< dim > > &unit_points) const override
virtual std::unique_ptr< typename Mapping< dim, spacedim >::InternalDataBase > get_face_data(const UpdateFlags flags, const hp::QCollection< dim - 1 > &quadrature) const override
Point< dim > transform_real_to_unit_cell_internal(const typename Triangulation< dim, spacedim >::cell_iterator &cell, const Point< spacedim > &p, const Point< dim > &initial_p_unit) const
const std::vector< Table< 2, double > > support_point_weights_perimeter_to_interior
void fill_mapping_data_for_generic_points(const typename Triangulation< dim, spacedim >::cell_iterator &cell, const ArrayView< const Point< dim > > &unit_points, const UpdateFlags update_flags, internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > &output_data) const
const std::vector< Point< 1 > > line_support_points
virtual Point< spacedim > transform_unit_to_real_cell(const typename Triangulation< dim, spacedim >::cell_iterator &cell, const Point< dim > &p) const override
const std::vector< Polynomials::Polynomial< double > > polynomials_1d
virtual std::unique_ptr< Mapping< dim, spacedim > > clone() const override
const std::vector< Point< dim > > unit_cell_support_points
virtual Point< dim > transform_real_to_unit_cell(const typename Triangulation< dim, spacedim >::cell_iterator &cell, const Point< spacedim > &p) const override
MappingQ(const unsigned int polynomial_degree)
virtual void add_line_support_points(const typename Triangulation< dim, spacedim >::cell_iterator &cell, std::vector< Point< spacedim > > &a) const
virtual void add_quad_support_points(const typename Triangulation< dim, spacedim >::cell_iterator &cell, std::vector< Point< spacedim > > &a) const
virtual UpdateFlags requires_update_flags(const UpdateFlags update_flags) const override
virtual void fill_fe_face_values(const typename Triangulation< dim, spacedim >::cell_iterator &cell, const unsigned int face_no, const hp::QCollection< dim - 1 > &quadrature, const typename Mapping< dim, spacedim >::InternalDataBase &internal_data, internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > &output_data) const override
virtual bool is_compatible_with(const ReferenceCell &reference_cell) const override
unsigned int get_degree() const
Abstract base class for mapping classes.
virtual void transform_points_real_to_unit_cell(const typename Triangulation< dim, spacedim >::cell_iterator &cell, const ArrayView< const Point< spacedim > > &real_points, const ArrayView< Point< dim > > &unit_points) const
const Tensor< 1, spacedim > & normal_vector(const unsigned int i) const
bool is_tensor_product() const
const std::vector< double > & get_weights() const
const std::array< Quadrature< 1 >, dim > & get_tensor_basis() const
const std::vector< Point< dim > > & get_points() const
unsigned int size() const
numbers::NumberTraits< Number >::real_type norm() const
Triangulation< dim, spacedim > & get_triangulation()
static constexpr std::size_t size()
unsigned int size() const
#define DEAL_II_NAMESPACE_OPEN
#define DEAL_II_NAMESPACE_CLOSE
static ::ExceptionBase & ExcNotImplemented()
#define Assert(cond, exc)
static ::ExceptionBase & ExcImpossibleInDim(int arg1)
#define AssertDimension(dim1, dim2)
static ::ExceptionBase & ExcInternalError()
static ::ExceptionBase & ExcDimensionMismatch(std::size_t arg1, std::size_t arg2)
static ::ExceptionBase & ExcMessage(std::string arg1)
#define AssertThrow(cond, exc)
typename IteratorSelector::line_iterator line_iterator
@ update_jacobian_pushed_forward_2nd_derivatives
@ update_volume_elements
Determinant of the Jacobian.
@ update_contravariant_transformation
Contravariant transformation.
@ update_jacobian_pushed_forward_grads
@ update_jacobian_grads
Gradient of volume element.
@ update_normal_vectors
Normal vectors.
@ update_JxW_values
Transformed quadrature weights.
@ update_covariant_transformation
Covariant transformation.
@ update_jacobians
Volume element.
@ update_inverse_jacobians
Volume element.
@ update_quadrature_points
Transformed quadrature points.
@ update_default
No update.
@ update_jacobian_pushed_forward_3rd_derivatives
@ update_boundary_forms
Outer normal vector, not normalized.
const Manifold< dim, spacedim > & get_manifold(const types::manifold_id number) const
@ mapping_covariant_gradient
@ mapping_contravariant_hessian
@ mapping_covariant_hessian
@ mapping_contravariant_gradient
#define DEAL_II_ASSERT_UNREACHABLE()
#define DEAL_II_NOT_IMPLEMENTED()
std::enable_if_t< std::is_fundamental_v< T >, std::size_t > memory_consumption(const T &t)
constexpr const ReferenceCell & get_hypercube()
std::unique_ptr< To > dynamic_unique_cast(std::unique_ptr< From > &&p)
constexpr T fixed_power(const T t)
std::string to_string(const number value, const unsigned int digits=numbers::invalid_unsigned_int)
std::string int_to_string(const unsigned int value, const unsigned int digits=numbers::invalid_unsigned_int)
constexpr T pow(const T base, const int iexp)
Point< 1 > transform_real_to_unit_cell(const std::array< Point< spacedim >, GeometryInfo< 1 >::vertices_per_cell > &vertices, const Point< spacedim > &p)
void maybe_update_jacobian_pushed_forward_2nd_derivatives(const CellSimilarity::Similarity cell_similarity, const typename ::MappingQ< dim, spacedim >::InternalData &data, const ArrayView< const Point< dim > > &unit_points, const std::vector< Polynomials::Polynomial< double > > &polynomials_1d, const std::vector< unsigned int > &renumber_lexicographic_to_hierarchic, std::vector< Tensor< 4, spacedim > > &jacobian_pushed_forward_2nd_derivatives)
Point< dim, Number > do_transform_real_to_unit_cell_internal(const Point< spacedim, Number > &p, const Point< dim, Number > &initial_p_unit, const ArrayView< const Point< spacedim > > &points, const std::vector< Polynomials::Polynomial< double > > &polynomials_1d, const std::vector< unsigned int > &renumber, const bool print_iterations_to_deallog=false)
void transform_differential_forms(const ArrayView< const DerivativeForm< rank, dim, spacedim > > &input, const MappingKind mapping_kind, const typename Mapping< dim, spacedim >::InternalDataBase &mapping_data, const ArrayView< Tensor< rank+1, spacedim > > &output)
void maybe_update_jacobian_grads(const CellSimilarity::Similarity cell_similarity, const typename ::MappingQ< dim, spacedim >::InternalData &data, const ArrayView< const Point< dim > > &unit_points, const std::vector< Polynomials::Polynomial< double > > &polynomials_1d, const std::vector< unsigned int > &renumber_lexicographic_to_hierarchic, std::vector< DerivativeForm< 2, dim, spacedim > > &jacobian_grads)
void do_fill_fe_face_values(const ::MappingQ< dim, spacedim > &mapping, const typename ::Triangulation< dim, spacedim >::cell_iterator &cell, const unsigned int face_no, const unsigned int subface_no, const typename QProjector< dim >::DataSetDescriptor data_set, const Quadrature< dim - 1 > &quadrature, const typename ::MappingQ< dim, spacedim >::InternalData &data, const std::vector< Polynomials::Polynomial< double > > &polynomials_1d, const std::vector< unsigned int > &renumber_lexicographic_to_hierarchic, internal::FEValuesImplementation::MappingRelatedData< dim, spacedim > &output_data)
void transform_fields(const ArrayView< const Tensor< rank, dim > > &input, const MappingKind mapping_kind, const typename Mapping< dim, spacedim >::InternalDataBase &mapping_data, const ArrayView< Tensor< rank, spacedim > > &output)
void maybe_update_jacobian_3rd_derivatives(const CellSimilarity::Similarity cell_similarity, const typename ::MappingQ< dim, spacedim >::InternalData &data, const ArrayView< const Point< dim > > &unit_points, const std::vector< Polynomials::Polynomial< double > > &polynomials_1d, const std::vector< unsigned int > &renumber_lexicographic_to_hierarchic, std::vector< DerivativeForm< 4, dim, spacedim > > &jacobian_3rd_derivatives)
void maybe_update_jacobian_pushed_forward_grads(const CellSimilarity::Similarity cell_similarity, const typename ::MappingQ< dim, spacedim >::InternalData &data, const ArrayView< const Point< dim > > &unit_points, const std::vector< Polynomials::Polynomial< double > > &polynomials_1d, const std::vector< unsigned int > &renumber_lexicographic_to_hierarchic, std::vector< Tensor< 3, spacedim > > &jacobian_pushed_forward_grads)
void maybe_update_q_points_Jacobians_generic(const CellSimilarity::Similarity cell_similarity, const typename ::MappingQ< dim, spacedim >::InternalData &data, const ArrayView< const Point< dim > > &unit_points, const std::vector< Polynomials::Polynomial< double > > &polynomials_1d, const std::vector< unsigned int > &renumber_lexicographic_to_hierarchic, std::vector< Point< spacedim > > &quadrature_points, std::vector< DerivativeForm< 1, dim, spacedim > > &jacobians, std::vector< DerivativeForm< 1, spacedim, dim > > &inverse_jacobians)
void transform_gradients(const ArrayView< const Tensor< rank, dim > > &input, const MappingKind mapping_kind, const typename Mapping< dim, spacedim >::InternalDataBase &mapping_data, const ArrayView< Tensor< rank, spacedim > > &output)
void maybe_update_q_points_Jacobians_and_grads_tensor(const CellSimilarity::Similarity cell_similarity, const typename ::MappingQ< dim, spacedim >::InternalData &data, std::vector< Point< spacedim > > &quadrature_points, std::vector< DerivativeForm< 1, dim, spacedim > > &jacobians, std::vector< DerivativeForm< 1, spacedim, dim > > &inverse_jacobians, std::vector< DerivativeForm< 2, dim, spacedim > > &jacobian_grads)
void transform_hessians(const ArrayView< const Tensor< 3, dim > > &input, const MappingKind mapping_kind, const typename Mapping< dim, spacedim >::InternalDataBase &mapping_data, const ArrayView< Tensor< 3, spacedim > > &output)
void maybe_update_jacobian_pushed_forward_3rd_derivatives(const CellSimilarity::Similarity cell_similarity, const typename ::MappingQ< dim, spacedim >::InternalData &data, const ArrayView< const Point< dim > > &unit_points, const std::vector< Polynomials::Polynomial< double > > &polynomials_1d, const std::vector< unsigned int > &renumber_lexicographic_to_hierarchic, std::vector< Tensor< 5, spacedim > > &jacobian_pushed_forward_3rd_derivatives)
Point< dim > do_transform_real_to_unit_cell_internal_codim1(const Point< dim+1 > &p, const Point< dim > &initial_p_unit, const ArrayView< const Point< dim+1 > > &points, const std::vector< Polynomials::Polynomial< double > > &polynomials_1d, const std::vector< unsigned int > &renumber)
void maybe_update_jacobian_2nd_derivatives(const CellSimilarity::Similarity cell_similarity, const typename ::MappingQ< dim, spacedim >::InternalData &data, const ArrayView< const Point< dim > > &unit_points, const std::vector< Polynomials::Polynomial< double > > &polynomials_1d, const std::vector< unsigned int > &renumber_lexicographic_to_hierarchic, std::vector< DerivativeForm< 3, dim, spacedim > > &jacobian_2nd_derivatives)
ProductTypeNoPoint< Number, Number2 >::type evaluate_tensor_product_value_linear(const Number *values, const Point< dim, Number2 > &p)
ProductTypeNoPoint< Number, Number2 >::type evaluate_tensor_product_value(const std::vector< Polynomials::Polynomial< double > > &poly, const ArrayView< const Number > &values, const Point< dim, Number2 > &p, const bool d_linear=false, const std::vector< unsigned int > &renumber={})
static const unsigned int invalid_unsigned_int
const types::manifold_id flat_manifold_id
bool is_finite(const double x)
::VectorizedArray< Number, width > sqrt(const ::VectorizedArray< Number, width > &)
::VectorizedArray< Number, width > abs(const ::VectorizedArray< Number, width > &)
static std_cxx20::ranges::iota_view< unsigned int, unsigned int > face_indices()
static double d_linear_shape_function(const Point< dim > &xi, const unsigned int i)
static std_cxx20::ranges::iota_view< unsigned int, unsigned int > vertex_indices()
DEAL_II_HOST constexpr Number determinant(const SymmetricTensor< 2, dim, Number > &)