Reference documentation for deal.II version 9.6.0
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType > Class Template Reference
Inheritance diagram for NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >:

Public Types

using time_type
 

Public Member Functions

 RefSpaceFEFieldFunction (const DoFHandler< dim > &dof_handler, const VectorType &dof_values)
 
void set_active_cell (const typename Triangulation< dim >::active_cell_iterator &cell) override
 
void set_subcell (const std::vector< unsigned int > &mask, const BoundingBox< dim > &subcell_box) override
 
bool is_fe_q_iso_q1 () const override
 
unsigned int n_subdivisions () const override
 
double value (const Point< dim > &point, const unsigned int component=0) const override
 
Tensor< 1, dim > gradient (const Point< dim > &point, const unsigned int component=0) const override
 
SymmetricTensor< 2, dim > hessian (const Point< dim > &point, const unsigned int component=0) const override
 
virtual void vector_value (const Point< dim > &p, Vector< RangeNumberType > &values) const
 
virtual void value_list (const std::vector< Point< dim > > &points, std::vector< RangeNumberType > &values, const unsigned int component=0) const
 
virtual void vector_value_list (const std::vector< Point< dim > > &points, std::vector< Vector< RangeNumberType > > &values) const
 
virtual void vector_values (const std::vector< Point< dim > > &points, std::vector< std::vector< RangeNumberType > > &values) const
 
virtual void vector_gradient (const Point< dim > &p, std::vector< Tensor< 1, dim, RangeNumberType > > &gradients) const
 
virtual void gradient_list (const std::vector< Point< dim > > &points, std::vector< Tensor< 1, dim, RangeNumberType > > &gradients, const unsigned int component=0) const
 
virtual void vector_gradients (const std::vector< Point< dim > > &points, std::vector< std::vector< Tensor< 1, dim, RangeNumberType > > > &gradients) const
 
virtual void vector_gradient_list (const std::vector< Point< dim > > &points, std::vector< std::vector< Tensor< 1, dim, RangeNumberType > > > &gradients) const
 
virtual RangeNumberType laplacian (const Point< dim > &p, const unsigned int component=0) const
 
virtual void vector_laplacian (const Point< dim > &p, Vector< RangeNumberType > &values) const
 
virtual void laplacian_list (const std::vector< Point< dim > > &points, std::vector< RangeNumberType > &values, const unsigned int component=0) const
 
virtual void vector_laplacian_list (const std::vector< Point< dim > > &points, std::vector< Vector< RangeNumberType > > &values) const
 
virtual void vector_hessian (const Point< dim > &p, std::vector< SymmetricTensor< 2, dim, RangeNumberType > > &values) const
 
virtual void hessian_list (const std::vector< Point< dim > > &points, std::vector< SymmetricTensor< 2, dim, RangeNumberType > > &values, const unsigned int component=0) const
 
virtual void vector_hessian_list (const std::vector< Point< dim > > &points, std::vector< std::vector< SymmetricTensor< 2, dim, RangeNumberType > > > &values) const
 
virtual std::size_t memory_consumption () const
 
numbers::NumberTraits< double >::real_type get_time () const
 
virtual void set_time (const numbers::NumberTraits< double >::real_type new_time)
 
virtual void advance_time (const numbers::NumberTraits< double >::real_type delta_t)
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 
Subscriptor functionality

Classes derived from Subscriptor provide a facility to subscribe to this object. This is mostly used by the SmartPointer class.

void subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
void unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
unsigned int n_subscriptions () const
 
template<typename StreamType >
void list_subscribers (StreamType &stream) const
 
void list_subscribers () const
 

Static Public Member Functions

static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 

Public Attributes

const unsigned int n_components
 

Static Public Attributes

static constexpr unsigned int dimension = dim
 

Private Types

using map_value_type = decltype(counter_map)::value_type
 
using map_iterator = decltype(counter_map)::iterator
 

Private Member Functions

bool cell_is_set () const
 
void check_no_subscribers () const noexcept
 

Private Attributes

const SmartPointer< const DoFHandler< dim > > dof_handler
 
const SmartPointer< const VectorType > global_dof_values
 
SmartPointer< const FiniteElement< dim > > element
 
std::vector< types::global_dof_indexlocal_dof_indices
 
std::vector< typename VectorType::value_type > local_dof_values
 
std::vector< typename VectorType::value_type > local_dof_values_subcell
 
BoundingBox< dim > subcell_box
 
unsigned int n_subdivisions_per_line
 
std::vector< Polynomials::Polynomial< double > > poly
 
std::vector< unsigned intrenumber
 
bool polynomials_are_hat_functions
 
Lazy< std::unique_ptr< FE_Q< dim > > > fe_q1
 
numbers::NumberTraits< double >::real_type time
 
std::atomic< unsigned intcounter
 
std::map< std::string, unsigned intcounter_map
 
std::vector< std::atomic< bool > * > validity_pointers
 
const std::type_info * object_info
 

Static Private Attributes

static std::mutex mutex
 

Detailed Description

template<int dim, typename VectorType = Vector<double>>
class NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >

This class evaluates a function defined by a solution vector and a DoFHandler transformed to reference space. To be precise, if we let \(\hat{x}\) be a point on the reference cell, this class implements the function

\(\hat{f}(\hat{x}) = \sum_{j=0}^{n-1} f_j \hat{\phi}_j(\hat{x})\),

where \(f_j\) are the local solution values and \(\hat{\phi}_j(\hat(x))\) are the local reference space shape functions. The gradient and Hessian of this function are thus derivatives with respect to the reference space coordinates, \(\hat{x}_0, \hat{x}_1, \ldots\).

Note that this class is similar to FEFieldFunction, but that FEFieldFunction implements the following function on a given cell, \(K\),

\(f(x) = \sum_{j=0}^{n-1} f_j \hat{\phi}_j(F_K^{-1}(x))\),

which has the same coefficients but uses real space basis functions. Here, \(F_K\) is the mapping from the reference cell to the real cell.

Before calling the value/gradient/hessian function, the set_active_cell function must be called to specify which cell the function should be evaluated on.

Definition at line 1335 of file quadrature_generator.cc.

Member Typedef Documentation

◆ time_type

template<int dim, typename RangeNumberType = double>
using Function< dim, RangeNumberType >::time_type
inherited
Initial value:
typename FunctionTime<
typename FunctionTime< typename numbers::NumberTraits< RangeNumberType >::real_type >::time_type time_type
Definition function.h:168

The scalar-valued real type used for representing time.

Definition at line 168 of file function.h.

◆ map_value_type

using Subscriptor::map_value_type = decltype(counter_map)::value_type
privateinherited

The data type used in counter_map.

Definition at line 229 of file subscriptor.h.

◆ map_iterator

using Subscriptor::map_iterator = decltype(counter_map)::iterator
privateinherited

The iterator type used in counter_map.

Definition at line 234 of file subscriptor.h.

Constructor & Destructor Documentation

◆ RefSpaceFEFieldFunction()

template<int dim, typename VectorType >
NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >::RefSpaceFEFieldFunction ( const DoFHandler< dim > & dof_handler,
const VectorType & dof_values )

Constructor. Takes the solution vector and the associated DoFHandler.

Pointers to the input arguments are stored internally, so they must have a longer lifetime than the created RefSpaceFEFieldFunction object.

Definition at line 1485 of file quadrature_generator.cc.

Member Function Documentation

◆ set_active_cell()

template<int dim, typename VectorType >
void NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >::set_active_cell ( const typename Triangulation< dim >::active_cell_iterator & cell)
overridevirtual

Set the cell that the function should be evaluated on.

Implements NonMatching::internal::DiscreteQuadratureGeneratorImplementation::CellWiseFunction< dim >.

Definition at line 1500 of file quadrature_generator.cc.

◆ set_subcell()

template<int dim, typename VectorType >
void NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >::set_subcell ( const std::vector< unsigned int > & mask,
const BoundingBox< dim > & subcell_box )
overridevirtual

Set the dof values and the bounding box of the subcell the function should be evaluated on. Relevant for FE_Q_iso_Q1.

Implements NonMatching::internal::DiscreteQuadratureGeneratorImplementation::CellWiseFunction< dim >.

Definition at line 1578 of file quadrature_generator.cc.

◆ is_fe_q_iso_q1()

template<int dim, typename VectorType >
bool NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >::is_fe_q_iso_q1 ( ) const
overridevirtual

Returns flag indicating if the finite element is FE_Q_iso_Q1.

Implements NonMatching::internal::DiscreteQuadratureGeneratorImplementation::CellWiseFunction< dim >.

Definition at line 1592 of file quadrature_generator.cc.

◆ n_subdivisions()

template<int dim, typename VectorType >
unsigned int NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >::n_subdivisions ( ) const
overridevirtual

◆ value()

template<int dim, typename VectorType >
double NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >::value ( const Point< dim > & point,
const unsigned int component = 0 ) const
overridevirtual

Return the value of the function at the given point. Unless there is only one component (i.e. the function is scalar), you should state the component you want to have evaluated; it defaults to zero, i.e. the first component.

Note
The set_active_cell function must be called before this function. The incoming point should be on the reference cell, but this is not checked.

Reimplemented from Function< dim, RangeNumberType >.

Definition at line 1621 of file quadrature_generator.cc.

◆ gradient()

template<int dim, typename VectorType >
Tensor< 1, dim > NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >::gradient ( const Point< dim > & point,
const unsigned int component = 0 ) const
overridevirtual

Return the gradient of the specified component of the function at the given point.

Note
The set_active_cell function must be called before this function. The incoming point should be on the reference cell, but this is not checked.

Reimplemented from Function< dim, RangeNumberType >.

Definition at line 1659 of file quadrature_generator.cc.

◆ hessian()

template<int dim, typename VectorType >
SymmetricTensor< 2, dim > NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >::hessian ( const Point< dim > & point,
const unsigned int component = 0 ) const
overridevirtual

Compute the Hessian of a given component at point p, that is the gradient of the gradient of the function.

Note
The set_active_cell function must be called before this function. The incoming point should be on the reference cell, but this is not checked.

Reimplemented from Function< dim, RangeNumberType >.

Definition at line 1700 of file quadrature_generator.cc.

◆ cell_is_set()

template<int dim, typename VectorType >
bool NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >::cell_is_set ( ) const
private

Return whether the set_active_cell function has been called.

Definition at line 1610 of file quadrature_generator.cc.

◆ vector_value()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_value ( const Point< dim > & p,
Vector< RangeNumberType > & values ) const
virtualinherited

Return all components of a vector-valued function at a given point.

values shall have the right size beforehand, i.e. n_components.

The default implementation will call value() for each component.

Reimplemented in Functions::ConstantFunction< dim, double >.

◆ value_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::value_list ( const std::vector< Point< dim > > & points,
std::vector< RangeNumberType > & values,
const unsigned int component = 0 ) const
virtualinherited

Set values to the point values of the specified component of the function at the points. It is assumed that values already has the right size, i.e. the same size as the points array.

By default, this function repeatedly calls value() for each point separately, to fill the output array.

Reimplemented in Functions::ConstantFunction< dim, double >.

◆ vector_value_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_value_list ( const std::vector< Point< dim > > & points,
std::vector< Vector< RangeNumberType > > & values ) const
virtualinherited

Set values to the point values of the function at the points. It is assumed that values already has the right size, i.e. the same size as the points array, and that all elements be vectors with the same number of components as this function has.

By default, this function repeatedly calls vector_value() for each point separately, to fill the output array.

Reimplemented in Functions::ConstantFunction< dim, double >.

◆ vector_values()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_values ( const std::vector< Point< dim > > & points,
std::vector< std::vector< RangeNumberType > > & values ) const
virtualinherited

For each component of the function, fill a vector of values, one for each point.

The default implementation of this function in Function calls value_list() for each component. In order to improve performance, this can be reimplemented in derived classes to speed up performance.

◆ vector_gradient()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_gradient ( const Point< dim > & p,
std::vector< Tensor< 1, dim, RangeNumberType > > & gradients ) const
virtualinherited

Return the gradient of all components of the function at the given point.

Reimplemented in Functions::ConstantFunction< dim, double >.

◆ gradient_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::gradient_list ( const std::vector< Point< dim > > & points,
std::vector< Tensor< 1, dim, RangeNumberType > > & gradients,
const unsigned int component = 0 ) const
virtualinherited

Set gradients to the gradients of the specified component of the function at the points. It is assumed that gradients already has the right size, i.e. the same size as the points array.

Reimplemented in Functions::ConstantFunction< dim, double >.

◆ vector_gradients()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_gradients ( const std::vector< Point< dim > > & points,
std::vector< std::vector< Tensor< 1, dim, RangeNumberType > > > & gradients ) const
virtualinherited

For each component of the function, fill a vector of gradient values, one for each point.

The default implementation of this function in Function calls value_list() for each component. In order to improve performance, this can be reimplemented in derived classes to speed up performance.

◆ vector_gradient_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_gradient_list ( const std::vector< Point< dim > > & points,
std::vector< std::vector< Tensor< 1, dim, RangeNumberType > > > & gradients ) const
virtualinherited

Set gradients to the gradients of the function at the points, for all components. It is assumed that gradients already has the right size, i.e. the same size as the points array.

The outer loop over gradients is over the points in the list, the inner loop over the different components of the function.

Reimplemented in Functions::ConstantFunction< dim, double >.

◆ laplacian()

◆ vector_laplacian()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_laplacian ( const Point< dim > & p,
Vector< RangeNumberType > & values ) const
virtualinherited

Compute the Laplacian of all components at point p and store them in values.

◆ laplacian_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::laplacian_list ( const std::vector< Point< dim > > & points,
std::vector< RangeNumberType > & values,
const unsigned int component = 0 ) const
virtualinherited

Compute the Laplacian of one component at a set of points.

◆ vector_laplacian_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_laplacian_list ( const std::vector< Point< dim > > & points,
std::vector< Vector< RangeNumberType > > & values ) const
virtualinherited

Compute the Laplacians of all components at a set of points.

◆ vector_hessian()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_hessian ( const Point< dim > & p,
std::vector< SymmetricTensor< 2, dim, RangeNumberType > > & values ) const
virtualinherited

Compute the Hessian of all components at point p and store them in values.

◆ hessian_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::hessian_list ( const std::vector< Point< dim > > & points,
std::vector< SymmetricTensor< 2, dim, RangeNumberType > > & values,
const unsigned int component = 0 ) const
virtualinherited

Compute the Hessian of one component at a set of points.

◆ vector_hessian_list()

template<int dim, typename RangeNumberType = double>
virtual void Function< dim, RangeNumberType >::vector_hessian_list ( const std::vector< Point< dim > > & points,
std::vector< std::vector< SymmetricTensor< 2, dim, RangeNumberType > > > & values ) const
virtualinherited

Compute the Hessians of all components at a set of points.

◆ memory_consumption()

template<int dim, typename RangeNumberType = double>
virtual std::size_t Function< dim, RangeNumberType >::memory_consumption ( ) const
virtualinherited

◆ get_time()

numbers::NumberTraits< double >::real_type FunctionTime< numbers::NumberTraits< double >::real_type >::get_time ( ) const
inherited

Return the value of the time variable.

◆ set_time()

virtual void FunctionTime< numbers::NumberTraits< double >::real_type >::set_time ( const numbers::NumberTraits< double >::real_type new_time)
virtualinherited

Set the time to new_time, overwriting the old value.

◆ advance_time()

virtual void FunctionTime< numbers::NumberTraits< double >::real_type >::advance_time ( const numbers::NumberTraits< double >::real_type delta_t)
virtualinherited

Advance the time by the given time step delta_t.

◆ subscribe()

void Subscriptor::subscribe ( std::atomic< bool > *const validity,
const std::string & identifier = "" ) const
inherited

Subscribes a user of the object by storing the pointer validity. The subscriber may be identified by text supplied as identifier.

Definition at line 135 of file subscriptor.cc.

◆ unsubscribe()

void Subscriptor::unsubscribe ( std::atomic< bool > *const validity,
const std::string & identifier = "" ) const
inherited

Unsubscribes a user from the object.

Note
The identifier and the validity pointer must be the same as the one supplied to subscribe().

Definition at line 155 of file subscriptor.cc.

◆ n_subscriptions()

unsigned int Subscriptor::n_subscriptions ( ) const
inlineinherited

Return the present number of subscriptions to this object. This allows to use this class for reference counted lifetime determination where the last one to unsubscribe also deletes the object.

Definition at line 300 of file subscriptor.h.

◆ list_subscribers() [1/2]

template<typename StreamType >
void Subscriptor::list_subscribers ( StreamType & stream) const
inlineinherited

List the subscribers to the input stream.

Definition at line 317 of file subscriptor.h.

◆ list_subscribers() [2/2]

void Subscriptor::list_subscribers ( ) const
inherited

List the subscribers to deallog.

Definition at line 203 of file subscriptor.cc.

◆ serialize()

template<class Archive >
void Subscriptor::serialize ( Archive & ar,
const unsigned int version )
inlineinherited

Read or write the data of this object to or from a stream for the purpose of serialization using the BOOST serialization library.

This function does not actually serialize any of the member variables of this class. The reason is that what this class stores is only who subscribes to this object, but who does so at the time of storing the contents of this object does not necessarily have anything to do with who subscribes to the object when it is restored. Consequently, we do not want to overwrite the subscribers at the time of restoring, and then there is no reason to write the subscribers out in the first place.

Definition at line 309 of file subscriptor.h.

◆ check_no_subscribers()

void Subscriptor::check_no_subscribers ( ) const
privatenoexceptinherited

Check that there are no objects subscribing to this object. If this check passes then it is safe to destroy the current object. It this check fails then this function will either abort or print an error message to deallog (by using the AssertNothrow mechanism), but will not throw an exception.

Note
Since this function is just a consistency check it does nothing in release mode.
If this function is called when there is an uncaught exception then, rather than aborting, this function prints an error message to the standard error stream and returns.

Definition at line 52 of file subscriptor.cc.

Member Data Documentation

◆ dof_handler

template<int dim, typename VectorType = Vector<double>>
const SmartPointer<const DoFHandler<dim> > NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >::dof_handler
private

Pointer to the DoFHandler passed to the constructor.

Definition at line 1417 of file quadrature_generator.cc.

◆ global_dof_values

template<int dim, typename VectorType = Vector<double>>
const SmartPointer<const VectorType> NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >::global_dof_values
private

Pointer to the vector of solution coefficients passed to the constructor.

Definition at line 1423 of file quadrature_generator.cc.

◆ element

template<int dim, typename VectorType = Vector<double>>
SmartPointer<const FiniteElement<dim> > NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >::element
private

Pointer to the element associated with the cell in the last call to set_active_cell().

Definition at line 1429 of file quadrature_generator.cc.

◆ local_dof_indices

template<int dim, typename VectorType = Vector<double>>
std::vector<types::global_dof_index> NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >::local_dof_indices
private

DOF-indices of the cell in the last call to set_active_cell().

Definition at line 1434 of file quadrature_generator.cc.

◆ local_dof_values

template<int dim, typename VectorType = Vector<double>>
std::vector<typename VectorType::value_type> NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >::local_dof_values
private

Local solution values of the cell in the last call to set_active_cell().

Definition at line 1440 of file quadrature_generator.cc.

◆ local_dof_values_subcell

template<int dim, typename VectorType = Vector<double>>
std::vector<typename VectorType::value_type> NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >::local_dof_values_subcell
private

Local solution values of the subcell after the last call to set_subcell().

Definition at line 1446 of file quadrature_generator.cc.

◆ subcell_box

template<int dim, typename VectorType = Vector<double>>
BoundingBox<dim> NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >::subcell_box
private

Bounding box of the subcell after the last call to set_subcell().

Definition at line 1451 of file quadrature_generator.cc.

◆ n_subdivisions_per_line

template<int dim, typename VectorType = Vector<double>>
unsigned int NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >::n_subdivisions_per_line
private

Number of subdivisions per line of the FE_Q_iso_Q1 element. Set to numbers::invalid_unsigned_int for other elements.

Definition at line 1457 of file quadrature_generator.cc.

◆ poly

template<int dim, typename VectorType = Vector<double>>
std::vector<Polynomials::Polynomial<double> > NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >::poly
private

Description of the 1d polynomial basis for tensor product elements used for the fast path of this class using tensor product evaluators.

Definition at line 1464 of file quadrature_generator.cc.

◆ renumber

template<int dim, typename VectorType = Vector<double>>
std::vector<unsigned int> NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >::renumber
private

Renumbering for the tensor-product evaluator in the fast path.

Definition at line 1469 of file quadrature_generator.cc.

◆ polynomials_are_hat_functions

template<int dim, typename VectorType = Vector<double>>
bool NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >::polynomials_are_hat_functions
private

Check whether the shape functions are linear.

Definition at line 1474 of file quadrature_generator.cc.

◆ fe_q1

template<int dim, typename VectorType = Vector<double>>
Lazy<std::unique_ptr<FE_Q<dim> > > NonMatching::internal::DiscreteQuadratureGeneratorImplementation::RefSpaceFEFieldFunction< dim, VectorType >::fe_q1
private

Linear FE_Q object for FE_Q_iso_Q1 path.

Definition at line 1479 of file quadrature_generator.cc.

◆ dimension

template<int dim, typename RangeNumberType = double>
unsigned int Function< dim, RangeNumberType >::dimension = dim
staticconstexprinherited

Export the value of the template parameter as a static member constant. Sometimes useful for some expression template programming.

Definition at line 158 of file function.h.

◆ n_components

template<int dim, typename RangeNumberType = double>
const unsigned int Function< dim, RangeNumberType >::n_components
inherited

Number of vector components.

Definition at line 163 of file function.h.

◆ time

numbers::NumberTraits< double >::real_type FunctionTime< numbers::NumberTraits< double >::real_type >::time
privateinherited

Store the present time.

Definition at line 112 of file function_time.h.

◆ counter

std::atomic<unsigned int> Subscriptor::counter
mutableprivateinherited

Store the number of objects which subscribed to this object. Initially, this number is zero, and upon destruction it shall be zero again (i.e. all objects which subscribed should have unsubscribed again).

The creator (and owner) of an object is counted in the map below if HE manages to supply identification.

We use the mutable keyword in order to allow subscription to constant objects also.

This counter may be read from and written to concurrently in multithreaded code: hence we use the std::atomic class template.

Definition at line 218 of file subscriptor.h.

◆ counter_map

std::map<std::string, unsigned int> Subscriptor::counter_map
mutableprivateinherited

In this map, we count subscriptions for each different identification string supplied to subscribe().

Definition at line 224 of file subscriptor.h.

◆ validity_pointers

std::vector<std::atomic<bool> *> Subscriptor::validity_pointers
mutableprivateinherited

In this vector, we store pointers to the validity bool in the SmartPointer objects that subscribe to this class.

Definition at line 240 of file subscriptor.h.

◆ object_info

const std::type_info* Subscriptor::object_info
mutableprivateinherited

Pointer to the typeinfo object of this object, from which we can later deduce the class name. Since this information on the derived class is neither available in the destructor, nor in the constructor, we obtain it in between and store it here.

Definition at line 248 of file subscriptor.h.

◆ mutex

std::mutex Subscriptor::mutex
staticprivateinherited

A mutex used to ensure data consistency when accessing the mutable members of this class. This lock is used in the subscribe() and unsubscribe() functions, as well as in list_subscribers().

Definition at line 271 of file subscriptor.h.


The documentation for this class was generated from the following file: