Reference documentation for deal.II version 9.6.0
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
FunctionFromFunctionObjects< dim, RangeNumberType > Class Template Reference

#include <deal.II/base/function.h>

Inheritance diagram for FunctionFromFunctionObjects< dim, RangeNumberType >:

Public Types

using time_type
 

Public Member Functions

 FunctionFromFunctionObjects (const unsigned int n_components=1, const double initial_time=0)
 
 FunctionFromFunctionObjects (const std::vector< std::function< RangeNumberType(const Point< dim > &)> > &values, const double initial_time=0.0)
 
 FunctionFromFunctionObjects (const std::vector< std::function< RangeNumberType(const Point< dim > &)> > &values, const std::vector< std::function< Tensor< 1, dim, RangeNumberType >(const Point< dim > &)> > &gradients, const double initial_time=0.0)
 
virtual RangeNumberType value (const Point< dim > &p, const unsigned int component=0) const override
 
virtual Tensor< 1, dim, RangeNumberType > gradient (const Point< dim > &p, const unsigned int component=0) const override
 
void set_function_values (const std::vector< std::function< RangeNumberType(const Point< dim > &)> > &values)
 
void set_function_gradients (const std::vector< std::function< Tensor< 1, dim, RangeNumberType >(const Point< dim > &)> > &gradients)
 
virtual void vector_value (const Point< dim > &p, Vector< double > &values) const
 
virtual void value_list (const std::vector< Point< dim > > &points, std::vector< double > &values, const unsigned int component=0) const
 
virtual void vector_value_list (const std::vector< Point< dim > > &points, std::vector< Vector< double > > &values) const
 
virtual void vector_values (const std::vector< Point< dim > > &points, std::vector< std::vector< double > > &values) const
 
virtual void vector_gradient (const Point< dim > &p, std::vector< Tensor< 1, dim, double > > &gradients) const
 
virtual void gradient_list (const std::vector< Point< dim > > &points, std::vector< Tensor< 1, dim, double > > &gradients, const unsigned int component=0) const
 
virtual void vector_gradients (const std::vector< Point< dim > > &points, std::vector< std::vector< Tensor< 1, dim, double > > > &gradients) const
 
virtual void vector_gradient_list (const std::vector< Point< dim > > &points, std::vector< std::vector< Tensor< 1, dim, double > > > &gradients) const
 
virtual double laplacian (const Point< dim > &p, const unsigned int component=0) const
 
virtual void vector_laplacian (const Point< dim > &p, Vector< double > &values) const
 
virtual void laplacian_list (const std::vector< Point< dim > > &points, std::vector< double > &values, const unsigned int component=0) const
 
virtual void vector_laplacian_list (const std::vector< Point< dim > > &points, std::vector< Vector< double > > &values) const
 
virtual SymmetricTensor< 2, dim, double > hessian (const Point< dim > &p, const unsigned int component=0) const
 
virtual void vector_hessian (const Point< dim > &p, std::vector< SymmetricTensor< 2, dim, double > > &values) const
 
virtual void hessian_list (const std::vector< Point< dim > > &points, std::vector< SymmetricTensor< 2, dim, double > > &values, const unsigned int component=0) const
 
virtual void vector_hessian_list (const std::vector< Point< dim > > &points, std::vector< std::vector< SymmetricTensor< 2, dim, double > > > &values) const
 
virtual std::size_t memory_consumption () const
 
numbers::NumberTraits< double >::real_type get_time () const
 
virtual void set_time (const numbers::NumberTraits< double >::real_type new_time)
 
virtual void advance_time (const numbers::NumberTraits< double >::real_type delta_t)
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 
Subscriptor functionality

Classes derived from Subscriptor provide a facility to subscribe to this object. This is mostly used by the SmartPointer class.

void subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
void unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
unsigned int n_subscriptions () const
 
template<typename StreamType >
void list_subscribers (StreamType &stream) const
 
void list_subscribers () const
 

Static Public Member Functions

static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 

Public Attributes

const unsigned int n_components
 

Static Public Attributes

static constexpr unsigned int dimension
 

Private Types

using map_value_type = decltype(counter_map)::value_type
 
using map_iterator = decltype(counter_map)::iterator
 

Private Member Functions

void check_no_subscribers () const noexcept
 

Private Attributes

std::vector< std::function< RangeNumberType(const Point< dim > &)> > function_values
 
std::vector< std::function< Tensor< 1, dim, RangeNumberType >(const Point< dim > &)> > function_gradients
 
numbers::NumberTraits< double >::real_type time
 
std::atomic< unsigned intcounter
 
std::map< std::string, unsigned intcounter_map
 
std::vector< std::atomic< bool > * > validity_pointers
 
const std::type_info * object_info
 

Static Private Attributes

static std::mutex mutex
 

Detailed Description

template<int dim, typename RangeNumberType = double>
class FunctionFromFunctionObjects< dim, RangeNumberType >

This class is similar to the ScalarFunctionFromFunctionObject and VectorFunctionFromFunctionObject classes in that it allows for the easy conversion of a vector of function objects to something that satisfies the interface of the Function base class.

The difference is that here the Function object generated may be vector valued, and you can specify the gradients of the function. The number of vector components is deduced from the size of the vector in the constructor.

To be more concrete, let us consider the following example:

RangeNumberType
first_component(const Point<2> &p)
{
return 1.0;
}
RangeNumberType
second_component(const Point<2> &p)
{
return 2.0;
}
zero_gradient(const Point<2> &) {
}
custom_function({&first_component, &second_component},
{&zero_gradient, &zero_gradient});
Definition point.h:111

Definition at line 957 of file function.h.

Member Typedef Documentation

◆ time_type

using Function< dim, double >::time_type
inherited

The scalar-valued real type used for representing time.

Definition at line 168 of file function.h.

◆ map_value_type

using Subscriptor::map_value_type = decltype(counter_map)::value_type
privateinherited

The data type used in counter_map.

Definition at line 229 of file subscriptor.h.

◆ map_iterator

using Subscriptor::map_iterator = decltype(counter_map)::iterator
privateinherited

The iterator type used in counter_map.

Definition at line 234 of file subscriptor.h.

Constructor & Destructor Documentation

◆ FunctionFromFunctionObjects() [1/3]

template<int dim, typename RangeNumberType = double>
FunctionFromFunctionObjects< dim, RangeNumberType >::FunctionFromFunctionObjects ( const unsigned int n_components = 1,
const double initial_time = 0 )
explicit

Default constructor.

This constructor does not initialize the internal methods. To have a usable function, you need to call at least the set_function_values() method. If you need also the gradients of the solution, then you must also call the set_function_gradients() method.

◆ FunctionFromFunctionObjects() [2/3]

template<int dim, typename RangeNumberType = double>
FunctionFromFunctionObjects< dim, RangeNumberType >::FunctionFromFunctionObjects ( const std::vector< std::function< RangeNumberType(const Point< dim > &)> ,
& values,
const double initial_time = 0.0 )
explicit

Constructor for functions of which you only know the values.

The resulting function will have a number of components equal to the size of the vector values. A call to the FunctionFromFunctionObject::gradient() method will trigger an exception, unless you first call the set_function_gradients() method.

◆ FunctionFromFunctionObjects() [3/3]

template<int dim, typename RangeNumberType = double>
FunctionFromFunctionObjects< dim, RangeNumberType >::FunctionFromFunctionObjects ( const std::vector< std::function< RangeNumberType(const Point< dim > &)> ,
& values,
const std::vector< std::function< Tensor< 1, dim, RangeNumberType >(const Point< dim > &)> ,
& gradients,
const double initial_time = 0.0 )

Constructor for functions of which you know both the values and the gradients.

The resulting function will have a number of components equal to the size of the vector values. If the size of values and gradients does not match, an exception is triggered.

Member Function Documentation

◆ value()

template<int dim, typename RangeNumberType = double>
virtual RangeNumberType FunctionFromFunctionObjects< dim, RangeNumberType >::value ( const Point< dim > & p,
const unsigned int component = 0 ) const
overridevirtual

Return the value of the function at the given point. Unless there is only one component (i.e. the function is scalar), you should state the component you want to have evaluated; it defaults to zero, i.e. the first component.

Reimplemented from Function< dim, double >.

◆ gradient()

template<int dim, typename RangeNumberType = double>
virtual Tensor< 1, dim, RangeNumberType > FunctionFromFunctionObjects< dim, RangeNumberType >::gradient ( const Point< dim > & p,
const unsigned int component = 0 ) const
overridevirtual

Return the gradient of the function at the given point. Unless there is only one component (i.e. the function is scalar), you should state the component you want to have evaluated; it defaults to zero, i.e. the first component.

Reimplemented from Function< dim, double >.

◆ set_function_values()

template<int dim, typename RangeNumberType = double>
void FunctionFromFunctionObjects< dim, RangeNumberType >::set_function_values ( const std::vector< std::function< RangeNumberType(const Point< dim > &)> ,
& values )

Reset the function values of this object. An assertion is thrown if the size of the values parameter does not match the number of components of this object.

◆ set_function_gradients()

template<int dim, typename RangeNumberType = double>
void FunctionFromFunctionObjects< dim, RangeNumberType >::set_function_gradients ( const std::vector< std::function< Tensor< 1, dim, RangeNumberType >(const Point< dim > &)> ,
& gradients )

Reset the function gradients of this object. An assertion is thrown if the size of the gradients parameter does not match the number of components of this object.

◆ vector_value()

virtual void Function< dim, double >::vector_value ( const Point< dim > & p,
Vector< double > & values ) const
virtualinherited

Return all components of a vector-valued function at a given point.

values shall have the right size beforehand, i.e. n_components.

The default implementation will call value() for each component.

Reimplemented in Functions::ConstantFunction< dim, double >.

◆ value_list()

virtual void Function< dim, double >::value_list ( const std::vector< Point< dim > > & points,
std::vector< double > & values,
const unsigned int component = 0 ) const
virtualinherited

Set values to the point values of the specified component of the function at the points. It is assumed that values already has the right size, i.e. the same size as the points array.

By default, this function repeatedly calls value() for each point separately, to fill the output array.

Reimplemented in Functions::ConstantFunction< dim, double >.

◆ vector_value_list()

virtual void Function< dim, double >::vector_value_list ( const std::vector< Point< dim > > & points,
std::vector< Vector< double > > & values ) const
virtualinherited

Set values to the point values of the function at the points. It is assumed that values already has the right size, i.e. the same size as the points array, and that all elements be vectors with the same number of components as this function has.

By default, this function repeatedly calls vector_value() for each point separately, to fill the output array.

Reimplemented in Functions::ConstantFunction< dim, double >.

◆ vector_values()

virtual void Function< dim, double >::vector_values ( const std::vector< Point< dim > > & points,
std::vector< std::vector< double > > & values ) const
virtualinherited

For each component of the function, fill a vector of values, one for each point.

The default implementation of this function in Function calls value_list() for each component. In order to improve performance, this can be reimplemented in derived classes to speed up performance.

◆ vector_gradient()

virtual void Function< dim, double >::vector_gradient ( const Point< dim > & p,
std::vector< Tensor< 1, dim, double > > & gradients ) const
virtualinherited

Return the gradient of all components of the function at the given point.

Reimplemented in Functions::ConstantFunction< dim, double >.

◆ gradient_list()

virtual void Function< dim, double >::gradient_list ( const std::vector< Point< dim > > & points,
std::vector< Tensor< 1, dim, double > > & gradients,
const unsigned int component = 0 ) const
virtualinherited

Set gradients to the gradients of the specified component of the function at the points. It is assumed that gradients already has the right size, i.e. the same size as the points array.

Reimplemented in Functions::ConstantFunction< dim, double >.

◆ vector_gradients()

virtual void Function< dim, double >::vector_gradients ( const std::vector< Point< dim > > & points,
std::vector< std::vector< Tensor< 1, dim, double > > > & gradients ) const
virtualinherited

For each component of the function, fill a vector of gradient values, one for each point.

The default implementation of this function in Function calls value_list() for each component. In order to improve performance, this can be reimplemented in derived classes to speed up performance.

◆ vector_gradient_list()

virtual void Function< dim, double >::vector_gradient_list ( const std::vector< Point< dim > > & points,
std::vector< std::vector< Tensor< 1, dim, double > > > & gradients ) const
virtualinherited

Set gradients to the gradients of the function at the points, for all components. It is assumed that gradients already has the right size, i.e. the same size as the points array.

The outer loop over gradients is over the points in the list, the inner loop over the different components of the function.

Reimplemented in Functions::ConstantFunction< dim, double >.

◆ laplacian()

virtual double Function< dim, double >::laplacian ( const Point< dim > & p,
const unsigned int component = 0 ) const
virtualinherited

◆ vector_laplacian()

virtual void Function< dim, double >::vector_laplacian ( const Point< dim > & p,
Vector< double > & values ) const
virtualinherited

Compute the Laplacian of all components at point p and store them in values.

◆ laplacian_list()

virtual void Function< dim, double >::laplacian_list ( const std::vector< Point< dim > > & points,
std::vector< double > & values,
const unsigned int component = 0 ) const
virtualinherited

Compute the Laplacian of one component at a set of points.

◆ vector_laplacian_list()

virtual void Function< dim, double >::vector_laplacian_list ( const std::vector< Point< dim > > & points,
std::vector< Vector< double > > & values ) const
virtualinherited

Compute the Laplacians of all components at a set of points.

◆ hessian()

virtual SymmetricTensor< 2, dim, double > Function< dim, double >::hessian ( const Point< dim > & p,
const unsigned int component = 0 ) const
virtualinherited

Compute the Hessian of a given component at point p, that is the gradient of the gradient of the function.

Reimplemented in Functions::ConstantFunction< dim, RangeNumberType >, Functions::ConstantFunction< dim, double >, Functions::IdentityFunction< dim, RangeNumberType >, and Functions::SymbolicFunction< dim, RangeNumberType >.

◆ vector_hessian()

virtual void Function< dim, double >::vector_hessian ( const Point< dim > & p,
std::vector< SymmetricTensor< 2, dim, double > > & values ) const
virtualinherited

Compute the Hessian of all components at point p and store them in values.

◆ hessian_list()

virtual void Function< dim, double >::hessian_list ( const std::vector< Point< dim > > & points,
std::vector< SymmetricTensor< 2, dim, double > > & values,
const unsigned int component = 0 ) const
virtualinherited

Compute the Hessian of one component at a set of points.

◆ vector_hessian_list()

virtual void Function< dim, double >::vector_hessian_list ( const std::vector< Point< dim > > & points,
std::vector< std::vector< SymmetricTensor< 2, dim, double > > > & values ) const
virtualinherited

Compute the Hessians of all components at a set of points.

◆ memory_consumption()

virtual std::size_t Function< dim, double >::memory_consumption ( ) const
virtualinherited

Return an estimate for the memory consumption, in bytes, of this object.

This function is virtual and can be overloaded by derived classes.

Reimplemented in ComponentSelectFunction< dim, RangeNumberType >, Functions::ConstantFunction< dim, RangeNumberType >, and Functions::ConstantFunction< dim, double >.

◆ get_time()

numbers::NumberTraits< double >::real_type FunctionTime< numbers::NumberTraits< double >::real_type >::get_time ( ) const
inherited

Return the value of the time variable.

◆ set_time()

virtual void FunctionTime< numbers::NumberTraits< double >::real_type >::set_time ( const numbers::NumberTraits< double >::real_type new_time)
virtualinherited

Set the time to new_time, overwriting the old value.

◆ advance_time()

virtual void FunctionTime< numbers::NumberTraits< double >::real_type >::advance_time ( const numbers::NumberTraits< double >::real_type delta_t)
virtualinherited

Advance the time by the given time step delta_t.

◆ subscribe()

void Subscriptor::subscribe ( std::atomic< bool > *const validity,
const std::string & identifier = "" ) const
inherited

Subscribes a user of the object by storing the pointer validity. The subscriber may be identified by text supplied as identifier.

Definition at line 135 of file subscriptor.cc.

◆ unsubscribe()

void Subscriptor::unsubscribe ( std::atomic< bool > *const validity,
const std::string & identifier = "" ) const
inherited

Unsubscribes a user from the object.

Note
The identifier and the validity pointer must be the same as the one supplied to subscribe().

Definition at line 155 of file subscriptor.cc.

◆ n_subscriptions()

unsigned int Subscriptor::n_subscriptions ( ) const
inlineinherited

Return the present number of subscriptions to this object. This allows to use this class for reference counted lifetime determination where the last one to unsubscribe also deletes the object.

Definition at line 300 of file subscriptor.h.

◆ list_subscribers() [1/2]

template<typename StreamType >
void Subscriptor::list_subscribers ( StreamType & stream) const
inlineinherited

List the subscribers to the input stream.

Definition at line 317 of file subscriptor.h.

◆ list_subscribers() [2/2]

void Subscriptor::list_subscribers ( ) const
inherited

List the subscribers to deallog.

Definition at line 203 of file subscriptor.cc.

◆ serialize()

template<class Archive >
void Subscriptor::serialize ( Archive & ar,
const unsigned int version )
inlineinherited

Read or write the data of this object to or from a stream for the purpose of serialization using the BOOST serialization library.

This function does not actually serialize any of the member variables of this class. The reason is that what this class stores is only who subscribes to this object, but who does so at the time of storing the contents of this object does not necessarily have anything to do with who subscribes to the object when it is restored. Consequently, we do not want to overwrite the subscribers at the time of restoring, and then there is no reason to write the subscribers out in the first place.

Definition at line 309 of file subscriptor.h.

◆ check_no_subscribers()

void Subscriptor::check_no_subscribers ( ) const
privatenoexceptinherited

Check that there are no objects subscribing to this object. If this check passes then it is safe to destroy the current object. It this check fails then this function will either abort or print an error message to deallog (by using the AssertNothrow mechanism), but will not throw an exception.

Note
Since this function is just a consistency check it does nothing in release mode.
If this function is called when there is an uncaught exception then, rather than aborting, this function prints an error message to the standard error stream and returns.

Definition at line 52 of file subscriptor.cc.

Member Data Documentation

◆ function_values

template<int dim, typename RangeNumberType = double>
std::vector<std::function<RangeNumberType(const Point<dim> &)> > FunctionFromFunctionObjects< dim, RangeNumberType >::function_values
private

The actual function values.

Definition at line 1046 of file function.h.

◆ function_gradients

template<int dim, typename RangeNumberType = double>
std::vector< std::function<Tensor<1, dim, RangeNumberType>(const Point<dim> &)> > FunctionFromFunctionObjects< dim, RangeNumberType >::function_gradients
private

The actual function gradients.

Definition at line 1053 of file function.h.

◆ dimension

unsigned int Function< dim, double >::dimension
staticconstexprinherited

Export the value of the template parameter as a static member constant. Sometimes useful for some expression template programming.

Definition at line 158 of file function.h.

◆ n_components

const unsigned int Function< dim, double >::n_components
inherited

Number of vector components.

Definition at line 163 of file function.h.

◆ time

numbers::NumberTraits< double >::real_type FunctionTime< numbers::NumberTraits< double >::real_type >::time
privateinherited

Store the present time.

Definition at line 112 of file function_time.h.

◆ counter

std::atomic<unsigned int> Subscriptor::counter
mutableprivateinherited

Store the number of objects which subscribed to this object. Initially, this number is zero, and upon destruction it shall be zero again (i.e. all objects which subscribed should have unsubscribed again).

The creator (and owner) of an object is counted in the map below if HE manages to supply identification.

We use the mutable keyword in order to allow subscription to constant objects also.

This counter may be read from and written to concurrently in multithreaded code: hence we use the std::atomic class template.

Definition at line 218 of file subscriptor.h.

◆ counter_map

std::map<std::string, unsigned int> Subscriptor::counter_map
mutableprivateinherited

In this map, we count subscriptions for each different identification string supplied to subscribe().

Definition at line 224 of file subscriptor.h.

◆ validity_pointers

std::vector<std::atomic<bool> *> Subscriptor::validity_pointers
mutableprivateinherited

In this vector, we store pointers to the validity bool in the SmartPointer objects that subscribe to this class.

Definition at line 240 of file subscriptor.h.

◆ object_info

const std::type_info* Subscriptor::object_info
mutableprivateinherited

Pointer to the typeinfo object of this object, from which we can later deduce the class name. Since this information on the derived class is neither available in the destructor, nor in the constructor, we obtain it in between and store it here.

Definition at line 248 of file subscriptor.h.

◆ mutex

std::mutex Subscriptor::mutex
staticprivateinherited

A mutex used to ensure data consistency when accessing the mutable members of this class. This lock is used in the subscribe() and unsubscribe() functions, as well as in list_subscribers().

Definition at line 271 of file subscriptor.h.


The documentation for this class was generated from the following file: