|
static void | evaluate (const unsigned int n_components, const EvaluationFlags::EvaluationFlags evaluation_flag, const Number *values_dofs, FEEvaluationData< dim, Number, false > &fe_eval) |
|
static void | do_evaluate (const MatrixFreeFunctions::UnivariateShapeData< Number2 > &shape, const EvaluationFlags::EvaluationFlags evaluation_flag, const Number *values_dofs, Number *gradients_quad, Number *hessians_quad) |
|
static void | integrate (const unsigned int n_components, const EvaluationFlags::EvaluationFlags integration_flag, Number *values_dofs, FEEvaluationData< dim, Number, false > &fe_eval, const bool add_into_values_array) |
|
static void | do_integrate (const MatrixFreeFunctions::UnivariateShapeData< Number2 > &shape, const EvaluationFlags::EvaluationFlags integration_flag, Number *values_dofs, Number *gradients_quad, const Number *hessians_quad, const bool add_into_values_array) |
|
template<
int dim,
int fe_degree, typename Number>
struct internal::FEEvaluationImplCollocation< dim, fe_degree, Number >
This struct performs the evaluation of function values, gradients and Hessians for tensor-product finite elements. This a specialization for elements where the nodal points coincide with the quadrature points like FE_Q shape functions on Gauss-Lobatto elements integrated with Gauss-Lobatto quadrature. The assumption of this class is that the shape 'values' operation is identity, which allows us to write shorter code.
In literature, this form of evaluation is often called spectral evaluation, spectral collocation or simply collocation, meaning the same location for shape functions and evaluation space (quadrature points).
Definition at line 1846 of file evaluation_kernels.h.