Reference documentation for deal.II version 9.5.0
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
scalar_polynomials_base.h
Go to the documentation of this file.
1// ---------------------------------------------------------------------
2//
3// Copyright (C) 2005 - 2022 by the deal.II authors
4//
5// This file is part of the deal.II library.
6//
7// The deal.II library is free software; you can use it, redistribute
8// it, and/or modify it under the terms of the GNU Lesser General
9// Public License as published by the Free Software Foundation; either
10// version 2.1 of the License, or (at your option) any later version.
11// The full text of the license can be found in the file LICENSE.md at
12// the top level directory of deal.II.
13//
14// ---------------------------------------------------------------------
15
16#ifndef dealii_scalar_polynomials_base_h
17#define dealii_scalar_polynomials_base_h
18
19
20#include <deal.II/base/config.h>
21
23#include <deal.II/base/point.h>
24#include <deal.II/base/tensor.h>
25
26#include <memory>
27#include <string>
28#include <vector>
29
31
62template <int dim>
64{
65public:
70 ScalarPolynomialsBase(const unsigned int deg,
71 const unsigned int n_polynomials);
72
77
82
87 virtual ~ScalarPolynomialsBase() = default;
88
101 virtual void
102 evaluate(const Point<dim> & unit_point,
103 std::vector<double> & values,
104 std::vector<Tensor<1, dim>> &grads,
105 std::vector<Tensor<2, dim>> &grad_grads,
106 std::vector<Tensor<3, dim>> &third_derivatives,
107 std::vector<Tensor<4, dim>> &fourth_derivatives) const = 0;
108
115 virtual double
116 compute_value(const unsigned int i, const Point<dim> &p) const = 0;
117
126 template <int order>
128 compute_derivative(const unsigned int i, const Point<dim> &p) const;
129
136 virtual Tensor<1, dim>
137 compute_1st_derivative(const unsigned int i, const Point<dim> &p) const = 0;
138
145 virtual Tensor<2, dim>
146 compute_2nd_derivative(const unsigned int i, const Point<dim> &p) const = 0;
147
154 virtual Tensor<3, dim>
155 compute_3rd_derivative(const unsigned int i, const Point<dim> &p) const = 0;
156
163 virtual Tensor<4, dim>
164 compute_4th_derivative(const unsigned int i, const Point<dim> &p) const = 0;
165
172 virtual Tensor<1, dim>
173 compute_grad(const unsigned int /*i*/, const Point<dim> & /*p*/) const = 0;
174
181 virtual Tensor<2, dim>
182 compute_grad_grad(const unsigned int /*i*/,
183 const Point<dim> & /*p*/) const = 0;
184
188 unsigned int
189 n() const;
190
196 virtual unsigned int
197 degree() const;
198
209 virtual std::unique_ptr<ScalarPolynomialsBase<dim>>
210 clone() const = 0;
211
215 virtual std::string
216 name() const = 0;
217
221 virtual std::size_t
222 memory_consumption() const;
223
224private:
228 const unsigned int polynomial_degree;
229
233 const unsigned int n_pols;
234};
235
236
237
238template <int dim>
239inline unsigned int
241{
242 return n_pols;
243}
244
245
246
247template <int dim>
248inline unsigned int
250{
251 return polynomial_degree;
252}
253
254
255
256template <int dim>
257template <int order>
260 const Point<dim> & p) const
261{
262 if (order == 1)
263 {
264 auto derivative = compute_1st_derivative(i, p);
265 return *reinterpret_cast<Tensor<order, dim> *>(&derivative);
266 }
267 if (order == 2)
268 {
269 auto derivative = compute_2nd_derivative(i, p);
270 return *reinterpret_cast<Tensor<order, dim> *>(&derivative);
271 }
272 if (order == 3)
273 {
274 auto derivative = compute_3rd_derivative(i, p);
275 return *reinterpret_cast<Tensor<order, dim> *>(&derivative);
276 }
277 if (order == 4)
278 {
279 auto derivative = compute_4th_derivative(i, p);
280 return *reinterpret_cast<Tensor<order, dim> *>(&derivative);
281 }
282 Assert(false, ExcNotImplemented());
283 Tensor<order, dim> empty;
284 return empty;
285}
286
288
289#endif
Definition point.h:112
ScalarPolynomialsBase(ScalarPolynomialsBase< dim > &&)=default
virtual Tensor< 2, dim > compute_grad_grad(const unsigned int, const Point< dim > &) const =0
virtual Tensor< 4, dim > compute_4th_derivative(const unsigned int i, const Point< dim > &p) const =0
virtual Tensor< 1, dim > compute_grad(const unsigned int, const Point< dim > &) const =0
virtual std::unique_ptr< ScalarPolynomialsBase< dim > > clone() const =0
virtual std::string name() const =0
virtual ~ScalarPolynomialsBase()=default
virtual void evaluate(const Point< dim > &unit_point, std::vector< double > &values, std::vector< Tensor< 1, dim > > &grads, std::vector< Tensor< 2, dim > > &grad_grads, std::vector< Tensor< 3, dim > > &third_derivatives, std::vector< Tensor< 4, dim > > &fourth_derivatives) const =0
virtual Tensor< 3, dim > compute_3rd_derivative(const unsigned int i, const Point< dim > &p) const =0
virtual Tensor< 1, dim > compute_1st_derivative(const unsigned int i, const Point< dim > &p) const =0
virtual unsigned int degree() const
const unsigned int polynomial_degree
virtual double compute_value(const unsigned int i, const Point< dim > &p) const =0
virtual Tensor< 2, dim > compute_2nd_derivative(const unsigned int i, const Point< dim > &p) const =0
virtual std::size_t memory_consumption() const
ScalarPolynomialsBase(const ScalarPolynomialsBase< dim > &)=default
Tensor< order, dim > compute_derivative(const unsigned int i, const Point< dim > &p) const
#define DEAL_II_NAMESPACE_OPEN
Definition config.h:472
#define DEAL_II_NAMESPACE_CLOSE
Definition config.h:473
static ::ExceptionBase & ExcNotImplemented()
#define Assert(cond, exc)